A Deskop Quick Reference (Javain aNutshell: Java™ in a Nutshell)

O’'REILLY* JAVA 5

& e

IN A'NUTSHELL &

Thivd Edition

by David Flanagan

ISBN 1-56592-487-8E

Third edition, published November 1999.
(See the catalog page for this book.)

Search the text of Java™ in a Nutshell: A Deskop Quick Reference.

Table of Contents

Copyright
Preface

Part 1. Introducing Java

Chapter 1: Introduction

Chapter 2: Java Syntax from the Ground Up

Chapter 3: Object-Oriented Programming in Java

Chapter 4: The Java Platform

Chapter 5: Java Security

Chapter 6: JavaBeans

Chapter 7: Java Programming and Documentation Conventions
Chapter 8: Java Development Tools

Part 2: APl Quick Reference

How To Use This Quick Reference

Chapter 9: The java.beans Package

Chapter 10: The java.beans.beancontext Package
Chapter 11: The java.io Package

Chapter 12: The java.lang Package

Chapter 13: The java.lang.ref Package

Chapter 14: The java.lang.reflect Package
Chapter 15: The java.math Package

file:/lIC|/orielly/jnut/index.htm (1 of 2) [2/5/2003 7:45:15 PM]

http://www.oreilly.com/catalog/javanut3
file:///C|/orielly/jnut/jobjects/fsearch.htm
file:///C|/orielly/jnut/copyrght.htm

A Deskop Quick Reference (Javain aNutshell: Java™ in a Nutshell)

Chapter 16:

The java.net Package

Chapter 17:

The java.security Package

Chapter 18:

The java.security.acl Package

Chapter 19:

The java.security.cert Package

Chapter 20:

The java.security.interfaces Package

Chapter 21:

The java.security.spec Package

Chapter 22:

The java.text Package

Chapter 23:

The java.util Package

Chapter 24:

The java.util.jar Package

Chapter 25:

Thejava.util.zip Package

Chapter 26:

The javax.crypto Package

Chapter 27:

The javax.crypto.interfaces Package

Chapter 28:

The javax.crypto.spec Package

Chapter 29:

Class, Method, and Field Index

I ndex
Colophon

Copyright © 2001 O'Rellly & Associates. All rights reserved.

file://IC|/orielly/jnut/index.htm (2 of 2) [2/5/2003 7:45:15 PM]

file:///C|/orielly/jnut/colophon.htm
file:///C|/orielly/jnut/copyrght.htm

Preface (Javain a Nutshell)

41 PREVIOUS Java™ in aNutshell: A MEXT B
Deskop Quick Reference

Preface

This book is a desktop quick reference for Java™ programmers, designed to sit faithfully by your
keyboard while you program. Part 1, "Introducing Java' of the book is a fast-paced, "no-fluff"

introduction to the Java programming language and the core APIs of the Java platform. Part 2, "API
Quick Reference’ is a quick-reference section that succinctly details every class and interface of those
core APIs. The book coversVersions 1.0, 1.1, 1.2, and 1.3 beta of Java.

0.1. Changes Since the Second Edition

Readers who are familiar with the second edition of this book will notice a number of changesin this
edition. Most notably, the AWT and applet APIs are no longer documented in this book. The Java
platform tripled in size between Java 1.1 and Java 1.2. Accordingly, and unavoidably, Java in a Nutshell
has been split into three volumes. The volume you are now reading documents only the essential APIs of
the platform, including the basic language and utility classes, as well as classes for input/output,
networking, and security. See the Table of Contents for a complete list of the packages documented here.

If you are a client-side programmer who is working with graphics or graphical user interfaces, you will
probably want to supplement this book with Java Foundation Classes in a Nutshell, which documents all
the graphics- and GUI-related classes, including the AWT, Swing, Java 2D, and applet APIs. And, if you
are an server-side or enterprise programmer, you will likely be interested in Java Enterprisein a
Nutshell.

Another big change isthat Part 1, "Introducing Java' of this book has been amost entirely rewritten. The

first and second editions of this book assumed knowledge of and experience with C or C++. Now that
Java has come thoroughly into its own, that assumption no longer seems appropriate, so | have rewritten
and expanded Chapters 2 and 3 to explain Java without any referenceto C, C++, or any other
programming language. Programmers with a modest amount of experience should now be able to learn
Java programming from this book. These introductory chapters are written in atight, concise style, so
programmers who aready know Java should find them useful as alanguage reference.

Another new feature of Part 1, "Introducing Java' is Chapter 4, "The Java Platform". This chapter isan
introduction to the APIs documented in the reference section of the book. It includes more than 60

file://IC|/orielly/jnut/ch00_01.htm (1 of 2) [2/5/2003 7:45:25 PM]

file:///C|/orielly/jnut/copyrght.htm

Preface (Javain a Nutshell)

detailed API usage examples that show how to accomplish common tasks with the predefined classes of
the Java platform.

Finally, the quick-reference section in Part 2, "API Quick Reference” of the book has a new look that

dramatically improves the readability of the reference material and packs even more APl information
into asmall space. Even if you are already familiar with the second edition, you should take the time to
read the "How To Use This Quick Reference” section at the beginning of Part 2, "API Quick Reference'”;

it explains the new quick-reference format and shows you how to get the most out of it.

4 PREVIOUS HOME MEXT B
Copyright BOOK INDEX 0.2. Contents of This Book

Copyright © 2001 O'Rellly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch00_01.htm (2 of 2) [2/5/2003 7:45:25 PM]

file:///C|/orielly/jnut/copyrght.htm
file:///C|/orielly/jnut/copyrght.htm

Contents of This Book (Javain a Nutshell)

4 PREVIOUS Preface MEXT B

0.2. Contents of This Book

Thefirst eight chapters of this book document the Java language, the Java platform, and the Java
development tools that are supplied with Sun's Java SDK (software development kit):

Chapter 1, " Introduction”

This chapter is an overview of the Javalanguage and the Java platform that explains the important
features and benefits of Java. It concludes with an example Java program and walks the new Java
programmer through it line by line.

Chapter 2, " Java Syntax from the Ground Up"

This chapter explains the details of the Java programming language. It isalong and detailed
chapter. Experienced Java programmers can use it as alanguage reference. Programmers with
substantial experience with languages such as C and C++ should be able to pick up Java syntax by
reading this chapter. The chapter does not assume years of programming experience, or even
familiarity, with C or C++, however. Even beginning programmers, with only modest experience,
should be able to learn Java programming by studying this chapter carefully.

Chapter 3, " Object-Oriented Programming in Java"

This chapter describes how the basic Java syntax documented in Chapter 2, "Java Syntax from the

Ground Up" is used to write object-oriented programs in Java. The chapter assumes no prior

experience with OO programming. It can be used as atutorial by new programmersor asa
reference by experienced Java programmers.

Chapter 4, " The Java Platform"

This chapter is an overview of the essential Java APIs covered in this book. It contains numerous
short examples that demonstrate how to perform common tasks with the classes and interfaces
that comprise the Java platform. Programmers who are new to Java, and especially those who
learn best by example, should find this a valuable chapter.

Chapter 5, " Java Security"

file://IC|/orielly/jnut/ch00_02.htm (1 of 2) [2/5/2003 7:45:33 PM]

Contents of This Book (Javain a Nutshell)

This chapter explains the Java security architecture that allows untrusted code to run in a secure
environment from which it cannot do any malicious damage to the host system. It isimportant for
all Java programmers to have at least a passing familiarity with Java security mechanisms.

Chapter 6, " JavaBeans'

This chapter documents the JavaBeans™ component framework and explains what programmers
need to know to create and use the reusable, embeddabl e Java classes known as beans.

Chapter 7, " Java Programming and Documentation Conventions'

This chapter documents important and widely adopted Java programming conventions and also
explains how you can make your Java code self-documenting by including specially formatted
documentation comments.

Chapter 8, " Java Development Tools'

The Java SDK shipped by Sun includes a number of useful Java development tools, most notably
the Javainterpreter and the Java compiler. This chapter documents those tools.

These first eight chapters teach you the Java language and get you up and running with the Java APIs.
The bulk of the book, however, isthe API quick reference, Chapters 9 through 29, which is a succinct
but detailed API reference formatted for optimum ease of use. Please be sure to read the How To Use
This Quick Reference section, which appears at the beginning of the reference section; it explains how to
get the most out of this section.

41 PREVIOUS HOME MEXT B
0.1. Changes Since the BOOK INDEX 0.3. Related Books
Second Edition

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch00_02.htm (2 of 2) [2/5/2003 7:45:33 PM]

file:///C|/orielly/jnut/copyrght.htm

Related Books (Javain a Nutshell)

4 PREVIOUS Preface MEXT B

0.3. Related Books

O'Rellly & Associates, Inc. publishes an entire series of books on Java programming. These books
include Java Foundation Classes in a Nutshell and Java Enterprise in a Nutshell, which, as mentioned
earlier, are companions to this book.

A related reference work is the Java Power Reference. It is an electronic Java quick reference on CD-
ROM that uses the Java in a Nutshell style. But sinceit is designed for viewing in aweb browser, itis
fully hyperlinked and includes a powerful search engine. It iswider in scope but narrower in depth than
the Java in a Nutshell books. The Java Power Reference coversall the APIs of the Java 2 platform, plus
the APIs of many standard extensions. But it does not include tutorial chapters on the various APIs, nor
does it include descriptions of the individual classes.

Y ou can find a complete list of Java books from O'Reilly & Associates at http://[ava.oreilly.com/. Books
that focus on the core Java APIs, as this one does, include:

Exploring Java, by Pat Niemeyer and Joshua Peck

A comprehensive tutorial introduction to Java, with an emphasis on client-side Java
programming.

Java Threads, by Scott Oaksand Henry Wong

Java makes multithreaded programming easy, but doing it right can still be tricky. This book
explains everything you need to know.

Java |/O, by Elliotte Rusty Harold

Java's stream-based input/output architecture is athing of beauty. Thisbook coversit in the detail
it deserves.

Java Network Programming, by Elliotte Rusty Harold

This book documents the Java networking APIs in detail.

file:///C|/orielly/jnut/ch00_03.htm (1 of 2) [2/5/2003 7:45:36 PM]

http://java.oreilly.com/

Related Books (Javain a Nutshell)

Java Security, by Scott Oaks

This book explains the Java access-control mechanisms in detail and also documents the
authentication mechanisms of digital signatures and message digests.

Java Cryptography, by Jonathan Knudsen

Thorough coverage of the Java Cryptography Extension, thej avax. cr ypt o. * packages, and
everything you need to know about cryptography in Java.

Developing Java Beans, by Robert Englander

A complete guide to writing components that work with the JavaBeans API.

41 PREVIOUS HOME HEXT »

0.2. Contents of This Book BOOK INDEX 0.4. Java Programming
Resources Online

Copyright © 2001 O'Rellly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch00_03.htm (2 of 2) [2/5/2003 7:45:36 PM]

file:///C|/orielly/jnut/copyrght.htm

Java Programming Resources Online (Javain a Nutshell)

41 PREVIOUS Preface MEXT B

0.4. Java Programming Resources Online

Thisbook isaquick reference designed for speedy access to frequently needed information. It does not,
and cannot, tell you everything you need to know about Java. In addition to the books listed earlier, there
are severa valuable (and free) electronic sources of information about Java programming.

Sun's main web site for all things related to Java s http://java.sun.com/. The web site specifically for
Java developersis http://devel oper.java.sun.com/. Much of the content on this developer site is password-
protected, and access to it requires (free) registration.

Sun distributes el ectronic documentation for all Java classes and methods in its javadoc HTML format.
Although this documentation is somewhat difficult to navigate and is rough or outdated in places, it is
still an excellent starting point when you need to know more about a particular Java package, class,
method, or field. If you do not already have the javadoc files with your Java distribution, see
http://|ava.sun.com/docs/ for alink to the latest available version. Sun aso distributes its excellent Java

Tutorial online. Y ou can browse and download it from http://java.sun.com/docs/books/tutorial/.

For Usenet discussion (in English) about Java, try the comp.lang.java.programmer and related
comp.lang.java.* newsgroups. Y ou can find the very comprehensive comp.lang.java.programmer FAQ
by Peter van der Linden at http://www.afu.com/|avafag.htm.

Finally, don't forget O'Rellly's Java web site. http://|ava.oreilly.com/ contains Java news and commentary
and a monthly tips-and-tricks column by O'Reilly Java author Jonathan Knudsen.

4 PREVIOUS HOME NEXT »
0.3. Related Books BOOK INDEX 0.5. Examples Online

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch00_04.htm [2/5/2003 7:45:38 PM]

http://java.sun.com/
http://developer.java.sun.com/
http://java.sun.com/docs/
http://java.sun.com/docs/books/tutorial/
http://www.afu.com/javafaq.htm
http://java.oreilly.com/
file:///C|/orielly/jnut/copyrght.htm

Examples Online (Javain a Nutshell)

4 PREVIOUS Preface MEXT B

0.5. Examples Online

The examplesin this book are available online and can be downloaded from the home page for the book
at http://www.orellly.com/catal og/javanut3. Y ou also may want to visit this site to see if any important

notes or errata about the book have been published there.

41 PREVIOUS HOME HEXT »
0.4. Java Programming BOOK INDEX 0.6. Conventions Used in
Resources Online This Book

Copyright © 2001 O'Rellly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch00_05.htm [2/5/2003 7:45:41 PM]

http://www.oreilly.com/catalog/javanut3
file:///C|/orielly/jnut/copyrght.htm

Conventions Used in This Book (Javain a Nutshell)

4 PREVIOUS Preface MEXT B

0.6. Conventions Used in This Book

We use the following formatting conventions in this book:
Italic

Used for emphasis and to signify the first use of aterm. Italic is also used for commands, emall
addresses, web sites, FTP sites, file and directory names, and newsgroups.

Bold

Occasionally used to refer to particular keys on a computer keyboard or to portions of a user
interface, such as the Back button or the Options menu.

Letter Gothic

Used in all Java code and generally for anything that you would type literally when programming,
including keywords, data types, constants, method names, variables, class names, and interface
names.

Letter Gothic Oblique

Used for the names of function arguments and generally as a placeholder to indicate an item that
should be replaced with an actual value in your program.

Frankl i n Got hi c Book Condensed

Used for the Java class synopses in the quick-reference section. This very narrow font allows usto
fit alot of information on the page without a lot of distracting line breaks. Thisfont is also used
for code entities in the descriptions in the quick-reference section.

Franklin Gothic Dem Condensed

Used for highlighting class, method, field, property, and constructor names in the quick-reference
section, which makes it easier to scan the class synopses.

file:///C|/orielly/jnut/ch00_06.htm (1 of 2) [2/5/2003 7:45:43 PM]

Conventions Used in This Book (Javain a Nutshell)

Franklin Gothic Book Conpressed Italic

Used for method parameter names and comments in the quick-reference section.

41 PREVIOUS HOME MEXT »
0.5. Examples Online BOOK INDEX 0.7. Request for Comments

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch00_06.htm (2 of 2) [2/5/2003 7:45:43 PM]

file:///C|/orielly/jnut/copyrght.htm

Request for Comments (Javain a Nutshell)

4 PREVIOUS Preface MEXT B

0.7. Request for Comments

Please help us improve future editions of this book by reporting any errors, inaccuracies, bugs,
misleading or confusing statements, and even plain old typos that you find. Please also | et us know what
we can do to make this book more useful to you. We take your comments seriously and will try to
Incorporate reasonabl e suggestions into future editions. Y ou can contact us by writing:

O Reilly & Associ ates, Inc.

101 Morris Street

Sebast opol, CA 95472

1-800-998-9938 (in the United States or Canada)
1-707-829-0515 (international/l ocal)
1-707-829-0104 (fax)

Y ou can also send us messages electronically. To be put on the mailing list or request a catalog, send
email to:

Info@reilly.com
To ask technical questions or comment on the book, send email to:
bookquestions@reilly.com

We have aweb site for the book, where we'll list examples, errata, and any plans for future editions. You
can access this page at:

http://ww. oreilly. conicatal og/javanut 3/

For more information about this book and others, see the O'Rellly web site:

http://ww.oreilly.com

41 PREVIOUS HOME HEXT »

file://IC|/orielly/jnut/ch00_07.htm (1 of 2) [2/5/2003 7:45:46 PM]

http://www.oreilly.com/catalog/javanut3/
http://www.oreilly.com/

Request for Comments (Javain a Nutshell)

0.6. Conventions Used in BOOK INDEX 0.8. How the Quick
This Book Reference |s Generated

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch00_07.htm (2 of 2) [2/5/2003 7:45:46 PM]

file:///C|/orielly/jnut/copyrght.htm

How the Quick Reference Is Generated (Javain a Nutshell)

4 PREVIOUS Preface MEXT B

0.8. How the Quick Reference Is Generated

For the nerdy or merely inquisitive reader, this section explains a bit about how the quick-reference
material in Java in a Nutshell and related booksis created.

As Java has evolved, so has my system for generating Java quick-reference material. The current system
Is part of alarger commercial documentation browser system I'm developing (visit
http://www.davidflanagan.com/Jude/ for more information about it). The program works in two passes:
the first pass collects and organizes the API information, and the second pass outputs that information in
the form of quick-reference chapters.

Thefirst pass begins by reading the classfiles for al of the classes and interfaces to be documented.
Almost al of the API information in the quick reference is available in these classfiles. The notable
exception is the names of method arguments, which are not stored in class files. These argument names
are obtained by parsing the Java source file for each class and interface. Where source files are not
available, | obtain method argument names by parsing the APl documentation generated by javadoc. The
parsers | useto extract APl information from the source files and javadoc files are created using the Antlr
parser generator developed by Terrence Parr of the Magelang Institute. (See http://www.antlr.org/ for

details on this very powerful programming tool.)

Once the API information has been obtained by reading class files, source files, and javadoc files, the
program spends some time sorting and cross-referencing everything. Then it stores all the AP
information into asingle large datafile.

The second pass reads APl information from that data file and outputs quick-reference chapters using a
custom SGML format. The SGML markup isfairly complex, but the code that generatesit is quite
mundane. Once |I've generated the SGML output, | hand it off to the production team at O'Rellly &
Associates. They processit and convert it to troff source code. The troff source is processed with the
GNU groff program (ftp://ftp.gnu.org/gnu/groff/) and a custom set of troff macros to produce PostScript

output that is shipped directly to the printer.

41 PREVIOUS HOME MEXT »
0.7. Request for Comments BOOK INDEX 0.9. Acknowledgments

file://IC|/orielly/jnut/ch00_08.htm (1 of 2) [2/5/2003 7:45:49 PM]

http://www.davidflanagan.com/Jude/
http://www.antlr.org/
ftp://ftp.gnu.org/gnu/groff/

How the Quick Reference Is Generated (Javain a Nutshell)

Copyright © 2001 O'Rellly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch00_08.htm (2 of 2) [2/5/2003 7:45:49 PM]

file:///C|/orielly/jnut/copyrght.htm

Acknowledgments (Javain a Nutshell)

4 PREVIOUS Preface MEXT B

0.9. Acknowledgments

Many people helped in the creation of this book, and | am grateful to them all. | am indebted to the many,
many readers of the first two editions who wrote in with comments, suggestions, bug reports, and praise.
Their many small contributions are scattered throughout the book. Also, my apologies to those who made
the many good suggestions that could not be incorporated into this edition.

Paula Ferguson, a friend and colleague, has been the editor of all three editions of this book. Her careful
reading and always-practical suggestions have made the book stronger, clearer, and more useful. She
guided the evolution of Java in a Nutshell from a single book into a three-volume series and, at times,
juggled editing tasks for all three books at once. Finally, Paula went above and beyond the call of
editoria duty by designing the hierarchy diagrams found at the start of each reference chapter.

Mike Loukides provided high-level direction and guidance for the first edition of the book. Eric
Raymond and Troy Downing reviewed that first edition--they helped spot my errors and omissions and
offered good advice on making the book more useful to Java programmers.

For the second edition, John Zukowski reviewed my Java 1.1 AWT quick-reference material, and George
Reese reviewed most of the remaining new material. The second edition was aso blessed with a"dream
team" of technical reviewers from Sun. John Rose, the author of the Javainner class specification,
reviewed the chapter on inner classes. Mark Reinhold, author of the new character stream classesin

j ava. i o, reviewed my documentation of these classes. Nakul Saraiya, the designer of the new Java
Reflection API, reviewed my documentation of thej ava. | ang. r ef | ect package. | am very grateful
to these engineers and architects; their efforts made this a stronger, more accurate book.

The third edition aso benefited greatly from the contributions of reviewers who are intimately familiar
with the Java platform. Joshua Bloch, one of the primary authors of the Java collections framework,
reviewed my descriptions of the collections classes and interfaces. Joshua was aso helpful in discussing
the Ti mer and Ti mer Task classes of Java 1.3 with me. Mark Reinhold, creator of the

j ava. | ang. r ef package, explained the package to me and reviewed my documentation of it. Scott
Oaks reviewed my descriptions of the Java security and cryptography classes and interfaces. Joshua,
Mark, and Scott are all engineers with Sun Microsystems, and I'm very grateful for their time. The
documentation of thej avax. cr ypt o package and its subpackages was also reviewed by Jon Eaves.
Jon worked on a clean-room implementation of the Java Cryptography Extension (which is available
from http://www.aba.net.au/), and his comments were quite helpful. Jon now works for Fluent

Technologies (http://www.fluent.com.au/) consulting in Java and electronic commerce. Finaly, Chapter

file:///CJ/orielly/jnut/ch00_09.htm (1 of 2) [2/5/2003 7:45:52 PM]

http://www.aba.net.au/
http://www.fluent.com.au/

Acknowledgments (Javain a Nutshell)

1 was improved by the comments of reviewers who were not already familiar with the Java platform:
Christina Byrne reviewed it from the standpoint of a novice programmer, and Judita Byrne of Virginia
Power offered her comments as a professional COBOL programmer.

The O'Rellly & Associates production team has done its usual fine work of creating a book out of the
electronic files | submit. My thanks to them all. And a special thanksto Lenny Muellner and Chris
Maden, who worked overtime to implement the new and improved format of the quick-reference section.

Asaways, my thanks and love to Christie.

Davi d Fl anagan
http://ww. davi df | anagan. coml

Sept enber 1999

41 PREVIOUS HOME

0.8. How the Quick BOOK INDEX
Reference |s Generated

HEXT »
Part 1. Introducing Java

Copyright © 2001 O'Rellly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch00_09.htm (2 of 2) [2/5/2003 7:45:52 PM]

http://www.davidflanagan.com/
file:///C|/orielly/jnut/copyrght.htm

Introducing Java (Javain a Nutshell)

41 PREVIOUS Java™ in aNutshell: A MEXT B
Deskop Quick Reference

Part 1. Introducing Java

Part | isan introduction to the Java language and the Java platform. These chapters provide enough
information for you to get started using Javaright away.

41 PREVIOUS HOME HEXT »
0.9. Acknowledgments BOOK INDEX 1. Introduction

Copyright © 2001 O'Rellly & Associates. All rights reserved.

file://IC|/orielly/jnut/partl.htm [2/5/2003 7:45:55 PM]

file:///C|/orielly/jnut/copyrght.htm

Introduction (Javain a Nutshell)

41 PREVIOUS Part 1: Introducing Java HEXT »

Chapter 1. Introduction

Contents:

What |s Java?
Key Benefits of Java
An Example Program

Welcome to Java. Sinceitsintroduction in late 1995, the Java language and platform have taken the
programming world by storm. This chapter begins by explaining what Javais and why it has become so
popular. Then, asatutoria introduction to the language, it walks you through a simple Java program you
can type in, compile, and run.

1.1. What Is Java?

In discussing Java, it isimportant to distinguish between the Java programming language, the Java
Virtual Machine, and the Java platform. The Java programming language is the language in which Java
applications (including applets, servlets, and JavaBeans components) are written. When a Java program
Iscompiled, it is converted to byte codes that are the portable machine language of a CPU architecture
known as the Java Virtual Machine (also called the JavaVM or JVM). The VM can be implemented
directly in hardware, but it is usually implemented in the form of a software program that interprets and
executes byte codes.

The Java platform is distinct from both the Java language and Java VM. The Java platform isthe
predefined set of Java classes that exist on every Javainstallation; these classes are available for use by
al Java programs. The Java platform is a'so sometimes referred to as the Java runtime environment or
the core Java APIs (application programming interfaces). The Java platform can be extended with
optional standard extensions. These extension APIs exist in some Java installations, but are not
guaranteed to exist in all installations.

1.1.1. The Java Programming Language

The Java programming language is a state-of -the-art, object-oriented language that has a syntax similar
to that of C. The language designers strove to make the Java language powerful, but, at the same time,

file:///C]/orielly/jnut/ch01_01.htm (1 of 4) [2/5/2003 7:45:57 PM]

Introduction (Javain a Nutshell)

they tried to avoid the overly complex features that have bogged down other object-oriented languages,
such as C++. By keeping the language simple, the designers also made it easier for programmers to write
robust, bug-free code. As aresult of its elegant design and next-generation features, the Javalanguage
has proved wildly popular with programmers, who typically find it a pleasure to work with Java after
struggling with more difficult, less powerful languages.

1.1.2. The Java Virtual Machine

The Java Virtual Machine, or Java interpreter, isthe crucial piece of every Javainstalation. By design,
Java programs are portable, but they are only portable to platforms to which a Javainterpreter has been
ported. Sun ships VM implementations for its own Solaris operating system and for Microsoft Windows
(95/98/NT) platforms. Many other vendors, including Apple and various Unix vendors, provide Java
interpreters for their platforms. Thereis afreely available port of Sun's VM for Linux platforms, and
there are also other third-party VM implementations available. The Java VM is not only for desktop
systems, however. It has been ported to set-top boxes, and versions are even available for hand-held
devices that run Windows CE and PalmOS.

Although interpreters are not typically considered high-performance systems, Java VM performanceis
remarkably good and has been improving steadily. Of particular noteisa VM technology called just-in-
time (JI'T) compilation, whereby Java byte codes are converted on-the-fly into native-platform machine
language, boosting execution speed for code that is run repeatedly. Sun's new Hotspot technology isa
particularly good implementation of JI'T compilation.

1.1.3. The Java Platform

The Java platform isjust as important as the Java programming language and the Java Virtual Machine.
All programs written in the Javalanguage rely on the set of predefined classes[1] that comprise the Java
platform. Java classes are organized into related groups known as packages. The Java platform defines
packages for functionality such as input/output, networking, graphics, user-interface creation, security,
and much more.

[1]A classisamodule of Java code that defines a data structure and a set of methods (also
called procedures, functions, or subroutines) that operate on that data.

The Java 1.2 release was a magjor milestone for the Java platform. This release almost tripled the number
of classesin the platform and introduced significant new functionality. In recognition of this, Sun named
the new version the Java 2 Platform. Thisis a trademarked name created for marketing purposes; it
serves to emphasize how much Java has grown since its first release. However, most programmers refer
to the Java platform by its official version number, which, at the time of thiswriting, is 1.2.[2]

[2]Although thereis currently a beta release of Java 1.3 available

file:///C]/orielly/jnut/ch01_01.htm (2 of 4) [2/5/2003 7:45:57 PM]

Introduction (Javain a Nutshell)

It isimportant to understand what is meant by the term platform. To a computer programmer, a platform
Is defined by the APIs he or she can rely on when writing programs. These APIs are usually defined by
the operating system of the target computer. Thus, a programmer writing a program to run under
Microsoft Windows must use a different set of APIs than a programmer writing the same program for the
Macintosh or for a Unix-based system. In this respect, Windows, Macintosh, and Unix are three distinct
platforms.

Javais not an operating system.[3] Nevertheless, the Java platform--particularly the Java 2 Platform--
provides APIs with a comparable breadth and depth to those defined by an operating system. With the
Java 2 Platform, you can write applications in Java without sacrificing the advanced features available to
programmers writing native applications targeted at a particular underlying operating system. An
application written on the Java platform runs on any operating system that supports the Java platform.
This means you do not have to create distinct Windows, Macintosh, and Unix versions of your programs,
for example. A single Java program runs on all these operating systems, which explains why "Write
once, run anywhere" is Sun's motto for Java.

[3] There is a Java-based operating system, however; it is known as JavaOS.

It also explains why companies like Microsoft might feel threatened by Java. The Java platform is not an
operating system, but for programmers, it is an alternative development target and a very popular one at
that. The Java platform reduces programmers' reliance on the underlying operating system, and, by
allowing programs to run on top of any operating system, it increases end users freedom to choose an
operating system.

1.1.4. Versions of Java

As of thiswriting, there have been four magjor versions of Java. They are:

Java 1.0
Thiswas the first public version of Java. It contained 212 classes organized in 8 packages. There
iIsalargeinstalled base of web browsers that run this version of Java, so thisversionisstill in use
for writing simple applets--Java programs that are included in web pages. (See Java Foundation
Classesin a Nutshell (O'Reilly) for a discussion of applets.)

Javal.l

Thisrelease of Java doubled the size of the Java platform to 504 classes in 23 packages. It
introduced inner classes, an important change to the Java language itself, and included significant
performance improvements in the Java VM. This version of Javais out of date, but is still in use
on systems that do not yet have a stable port of Java 1.2.

file:///C]/orielly/jnut/ch01_01.htm (3 of 4) [2/5/2003 7:45:57 PM]

Introduction (Javain a Nutshell)

Java l.2

Thisisthe latest and greatest significant release of Java; it tripled the size of the Java platform to
1520 classes in 59 packages. Because of the many new featuresincluded in this release, the
platform was renamed and is now called the Java 2 Platform.

Java 1.3 (beta)

This release includes minor corrections and updates to the Java platform, but does not include
major changes or significant new functionality.

In addition, Sun has instituted a process for proposing and devel oping standard extensions to the Java
platform. In the future, most new functionality is expected to take the form of a standard extension, rather
than be arequired part of every Javainstallation.

In order to work with Java 1.0 or Java 1.1, you have to obtain the Java Development Kit (JDK) for that
release. As of Java 1.2, the JDK has been renamed and is now called a Software Devel opment Kit
(SDK), so we have the Java 2 SDK or, more precisely, the Java 2 SDK, Standard Edition, Version 1.2 (or
Version 1.3 beta). Despite the new name, many programmers still refer to the development kit as the
JDK.

Don't confuse the JDK (or SDK) with the Java Runtime Environment (JRE). The JRE contains
everything you need to run Java programs, but does not contain the tools you need to develop Java
programs (i.e., the compiler). Y ou should also be aware of the Java Plug-in, aversion of the Java 1.2
(and 1.3) JRE that is designed to be integrated into the Netscape Navigator and Microsoft Internet
Explorer web browsers.

In addition to evolving the Java platform over time, Sun is aso trying to produce different versions of the
platform for different uses. The Standard Edition is the only version currently available, but Sun isaso
working on the Java 2 Platform, Enterprise Edition (J2EE), for enterprise developers and the Java 2
Platform, Micro Edition, for consumer electronic systems, like handheld PDAs and cellular telephones.

41 PREVIOUS HOME HEXT »
Part 1. Introducing Java BOOK INDEX 1.2. Key Benefits of Java

Copyright © 2001 O'Rellly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch01_01.htm (4 of 4) [2/5/2003 7:45:57 PM]

file:///C|/orielly/jnut/copyrght.htm

Key Benefits of Java (Javain a Nutshell)

41 PREVIOUS Chapter 1: Introduction HEXT »

1.2. Key Benefits of Java

Why use Java at al? Isit worth learning a new language and a new platform? This section explores some
of the key benefits of Java.

1.2.1. Write Once, Run Anywhere

Sun identifies "Write once, run anywhere" as the core value proposition of the Java platform. Trans ated
from business jargon, this means that the most important promise of Javatechnology is that you only
have to write your application once--for the Java platform--and then you'll be able to run it anywhere.

Anywhere, that is, that supports the Java platform. Fortunately, Java support is becoming ubiquitous. It is
integrated, or being integrated, into practically all major operating systems. It is built into the popular
web browsers, which placesit on virtually every Internet-connected PC in the world. It is even being
built into consumer electronic devices, such astelevision set-top boxes, PDAS, and cell phones.

1.2.2. Security

Another key benefit of Javaisits security features. Both the language and the platform were designed
from the ground up with security in mind. The Java platform allows users to download untrusted code
over anetwork and run it in a secure environment in which it cannot do any harm: it cannot infect the
host system with avirus, cannot read or write files from the hard drive, and so forth. This capability
alone makes the Java platform unique.

The Java 2 Platform takes the security model a step further. It makes security levels and restrictions
highly configurable and extends them beyond applets. As of Java 1.2, any Java code, whether it isan
applet, a servlet, a JavaBeans component, or a complete Java application, can be run with restricted
permissions that prevent it from doing harm to the host system.

The security features of the Javalanguage and platform have been subjected to intense scrutiny by
security experts around the world. Security-related bugs, some of them potentially serious, have been
found and promptly fixed. Because of the security promises Java makes, it is big news when a new
security bug is found. Remember, however, that no other mainstream platform can make security
guarantees nearly as strong as those Java makes. If Java's security is not yet perfect, it has been proven
strong enough for practical day-to-day use and is certainly better than any of the alternatives.

file:///C]/orielly/jnut/ch01_02.htm (1 of 3) [2/5/2003 7:46:00 PM]

Key Benefits of Java (Javain a Nutshell)

1.2.3. Network-centric Programming

Sun's corporate motto has always been "The network is the computer." The designers of the Java
platform believed in the importance of networking and designed the Java platform to be network-centric.
From a programmer's point of view, Java makesit unbelievably easy to work with resources across a
network and to create network-based applications using client/server or multitier architectures. This
means that Java programmers have a serious head start in the emerging network economy.

1.2.4. Dynamic, Extensible Programs

Javais both dynamic and extensible. Java code is organized in modular object-oriented units called
classes. Classes are stored in separate files and are loaded into the Java interpreter only when needed.
This means that an application can decide asit is running what classes it needs and can load them when it
needs them. It also means that a program can dynamically extend itself by loading the classes it needsto
expand its functionality.

The network-centric design of the Java platform means that a Java application can dynamically extend
itself by loading new classes over a network. An application that takes advantage of these features ceases
to be amonolithic block of code. Instead, it becomes an interacting collection of independent software
components. Thus, Java enables a powerful new metaphor of application design and development.

1.2.5. Internationalization

The Javalanguage and the Java platform were designed from the start with the rest of the world in mind.
Javais the only commonly used programming language that has internationalization features at its very
core, rather than tacked on as an afterthought. While most programming languages use 8-bit characters
that represent only the alphabets of English and Western European languages, Java uses 16-bit Unicode
characters that represent the phonetic alphabets and ideographic character sets of the entire world. Java's
internationalization features are not restricted to just low-level character representation, however. The
features permeate the Java platform, making it easier to write internationalized programs with Java than
it iswith any other environment.

1.2.6. Performance

As | described earlier, Java programs are compiled to a portable intermediate form known as byte codes,
rather than to native machine-language instructions. The Java Virtual Machine runs a Java program by
interpreting these portable byte-code instructions. This architecture means that Java programs are faster
than programs or scripts written in purely interpreted languages, but they are typically slower than C and
C++ programs compiled to native machine language. Keep in mind, however, that although Java
programs are compiled to byte code, not all of the Java platform isimplemented with interpreted byte

file:///C]/orielly/jnut/ch01_02.htm (2 of 3) [2/5/2003 7:46:00 PM]

Key Benefits of Java (Javain a Nutshell)

codes. For efficiency, computationally intensive portions of the Java platform--such as the string-
mani pul ation methods--are implemented using native machine code.

Although early releases of Java suffered from performance problems, the speed of the JavaVM has
improved dramatically with each new release. The VM has been highly tuned and optimized in many
significant ways. Furthermore, many implementations include a just-in-time compiler, which converts
Java byte codes to native machine instructions on the fly. Using sophisticated J T compilers, Java
programs can execute at speeds comparabl e to the speeds of native C and C++ applications.

Javais a portable, interpreted language; Java programs run almost as fast as native, non-portable C and
C++ programs. Performance used to be an issue that made some programmers avoid using Java. Now,
with the improvements made in Java 1.2, performance issues should no longer keep anyone away. In
fact, the winning combination of performance plus portability is a unique feature no other language can
offer.

1.2.7. Programmer Efficiency and Time-to-Market

Thefinal, and perhaps most important, reason to use Javais that programmers like it. Javais an elegant
language combined with a powerful and well-designed set of APIs. Programmers enjoy programming in
Java and are usually amazed at how quickly they can get results with it. Studies have consistently shown
that switching to Javaincreases programmer efficiency. Because Javais a simple and elegant language
with awell-designed, intuitive set of APIs, programmers write better code with fewer bugs than for other
platforms, again reducing development time.

4 PREVIOUS HOME NEXT B
1.1. What Is Java? BOOK INDEX 1.3. An Example Program

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch01_02.htm (3 of 3) [2/5/2003 7:46:00 PM]

file:///C|/orielly/jnut/copyrght.htm

An Example Program (Javain a Nutshell)

41 PREVIOUS

Chapter 1: Introduction

MEXT up

1.3. An Example Program

Example 1-1 shows a Java program to compute factorials.[4] The numbers at the beginning of each line are not part of
the program; they are there for ease of reference when we dissect the program line-by-line.

[4] The factorial of an integer isthe product of the number and all positive integers less than the number.
So, for example, the factorial of 4, which isalso written 4!, is4 times 3 times 2 times 1, or 24. By
definition, 0! is 1.

Example 1-1. Factorial.java: A Program to Compute Factorials

1 /**
* This program conmputes the factori al

2
3

*/

4 public class Factorial {

=
O © 0o ~NO U1

11
12
13
14
15
16
17
18
19
20
21 }

public static void main(String[] args) {
I nt eger. parselnt(args[0]);

}

public static double factorial (int x) {

}

int input =
doubl e result

= factorial (input);

Systemout.println(result);

if (x <0)
return 0.O;

doubl e fact =
while(x > 1) {

fact = fact
X =X - 1;
}

return fact;

1.0;

* X;

1.3.1. Compiling and Running the Program

/1
/1
/11
/1
/1
/11

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

of a nunber

Define a class

The program starts here

Get the user's input
Comput e the factorial

Print out the result

The mai n() nethod ends here

Thi s met hod conput es x!
Check for bad input

if bad, return O
Begin with an initial
Loop until x equals 1

mul tiply by x each tine

and then decrenent x
Junp back to start of
Return the result
factorial () ends here
The cl ass ends here

val ue

| oop

Before we look at how the program works, we must first discuss how to run it. In order to compile and run the program,
you need a Java software development kit (SDK) of some sort. Sun Microsystems created the Java language and ships a
free Java SDK for its Solaris operating system and for Microsoft Windows (95/98/NT) platforms. At the time of this
writing, the current version of Sun's SDK is entitled Java 2 SDK, Standard Edition, Version 1.2.2 and is available for
download from http://java.sun.com/products/jdk/1.2/ (Sun's Java SDK is still often called the JDK, even internaly). Be

sure to get the SDK and not the Java Runtime Environment. The JRE enables you to run existing Java programs, but not

file://IC|/orielly/jnut/ch01_03.htm (1 of 9) [2/5/2003 7:46:04 PM]

http://java.sun.com/products/jdk/1.2/

An Example Program (Javain a Nutshell)
to write your own.
Sun supportsits SDK only on Solaris and Windows platforms. Many other companies have licensed and ported the SDK

to their platforms, however. Contact your operating-system vendor to find if aversion of the Java SDK is available for
your system. Linux users should visit http://www.blackdown.org/.

The Sun SDK is not the only Java programming environment you can use. Companies such as Borland, Inprise,
Metrowerks, Oracle, Sybase, and Symantec offer commercial products that enable you to write Java programs. This
book assumes that you are using Sun's SDK. If you are using a product from some other vendor, be sure to read that
vendor's documentation to learn how to compile and run a simple program, like that shown in Example 1-1.

Once you have a Java programming environment installed, the first step towards running our program isto typeit in.
Using your favorite text editor, enter the program asit is shown in Example 1-1. Omit the line numbers, asthey are just

there for reference. Note that Javais a case-sensitive language, so you must type lowercase lettersin lowercase and
uppercase letters in uppercase. Y ou'll notice that many of the lines of this program end with semicolons. It isacommon
mistake to forget these characters, but the program won't work without them, so be careful! If you are not afast typist,
you can omit everything from/ / to the end of aline. Those are comments ; they are there for your benefit and are
ignored by Java.[5]

[5]1 recommend that you type this example in by hand, to get afeel for the language. If you really don't
want to, however, you can download this, and all examples in the book, from
http://www.oreilly.com/catal og/javanut3/.

When writing Java programs, you should use atext editor that saves files in plain-text format, not aword processor that
supports fonts and formatting and savesfilesin a proprietary format. My favorite text editor on Unix systemsis emacs.
If you use a Windows system, you might use Notepad or WordPad, if you don't have a more specialized programmer's
editor. If you are using acommercial Java programming environment, it probably includes an appropriate text editor;
read the documentation that came with the product. When you are done entering the program, saveit in afile named
Factorial.java. Thisisimportant; the program will not work if you save it by any other name.

After writing a program like this one, the next step is to compileit. With Sun's SDK, the Java compiler is known as
javac. javac is acommand-line tool, so you can only use it from atermina window, such as an MS-DOS window on a
Windows system or an xterm window on a Unix system. Compile the program by typing the following command

line:[6]
[6]The"C:\>" characters represent the command-line prompt; don't type these characters yourself.
C.\> javac Factorial.java

If this command prints any error messages, you probably got something wrong when you typed in the program. If it does
not print any error messages, however, the compilation has succeeded, and javac creates afile called Factorial.class.
Thisisthe compiled version of the program.

Once you have compiled a Java program, you must still run it. Unlike some other languages, Java programs are not
compiled into native machine language, so they cannot be executed directly by the system. Instead, they are run by
another program known as the Java interpreter. In Sun's SDK, the interpreter is a command-line program named,
appropriately enough, java. To run the factorial program, type:

file://IC|/orielly/jnut/ch01_03.htm (2 of 9) [2/5/2003 7:46:04 PM]

http://www.blackdown.org/
http://www.oreilly.com/catalog/javanut3/

An Example Program (Javain a Nutshell)

C\> java Factorial 4

java is the command to run the Javainterpreter, Factorial isthe name of the Java program we want the interpreter to
run, and 4 is the input data--the number we want the interpreter to compute the factorial of. The program printsasingle
line of output, telling us that the factorial of 4 is 24:

C\> java Factorial 4
24.0

Congratulations! Y ou've just written, compiled, and run your first Java program. Try running it again to compute the
factorials of some other numbers.

1.3.2. Analyzing the Program

Now that you have run the factorial program, let's analyze it line by line, to see what makes a Java program tick.

1.3.2.1. Comments

The first three lines of the program are a comment. Java ignores them, but they tell a human programmer what the
program does. A comment begins with the characters/ * and ends with the characters * / . Any amount of text, including
multiple lines of text, may appear between these characters. Java also supports another type of comment, which you can
seein lines 4 through 21. If the characters/ / appear in a Java program, Java ignores those characters and any other text
that appears between those characters and the end of the line.

1.3.2.2. Defining a class

Line 4 isthe beginning of the program. It says that we are defining aclass named Fact or i al . This explains why the
program had to be stored in afile named Factorial .java. That filename indicates that the file contains Java source code
for aclassnamed Fact ori al . Theword publ i ¢ isamodifier ; it saysthat the classis publicly available and that
anyone may useit. The open curly-brace character ({) marks the beginning of the body of the class, which extends all
the way to line 21, where we find the matching close curly-brace character (}). The program contains a number of pairs
of curly braces; the lines are indented to show the nesting within these braces.

A classisthe fundamental unit of program structure in Java, so it is not surprising that the first line of our program
declares aclass. All Java programs are classes, although some programs use many classes instead of just one. Javaisan
object-oriented programming language, and classes are a fundamental part of the object-oriented paradigm. Each class
defines a unique kind of object. Example 1-1 is not really an object-oriented program, however, so I'm not going to go
into detail about classes and objects here. That is the topic of Chapter 3, "Object-Oriented Programming in Java'. For
now, all you need to understand is that a class defines a set of interacting members. Those members may be fields,
methods, or other classes. The Fact ori al class contains two members, both of which are methods. They are
described in upcoming sections.

1.3.2.3. Defining a method

Line 5 begins the definition of amethod of our Fact or i al class. A method is anamed chunk of Java code. A Java
program can call, or invoke, a method to execute the codein it. If you have programmed in other languages, you have

file://IC|/orielly/jnut/ch01_03.htm (3 of 9) [2/5/2003 7:46:04 PM]

An Example Program (Javain a Nutshell)

probably seen methods before, but they may have been called functions, procedures, or subroutines. The interesting
thing about methods is that they have parameters and return values. When you call a method, you pass it some data you
want it to operate on, and it returns aresult to you. A method is like an algebraic function:

y = f(x)

Here, the mathematical function f performs some computation on the value represented by x and returns avalue, which
werepresent by y.

Toreturnto line 5, thepubl i ¢ and st at i ¢ keywords are modifiers. publ i ¢ means the method is publicly
accessible; anyone can use it. The meaning of the st at i ¢ modifier is not important here; it is explained in Chapter 3,
"Object-Oriented Programming in Java'. Thevoi d keyword specifies the return value of the method. In this case, it

specifies that this method does not have areturn value.

The word mai n isthe name of the method. mai n isaspecial name. When you run the Java interpreter, it readsin the
class you specify, then looks for a method named mai n() .[7] When the interpreter finds this method, it starts running
the program at that method. When the mai n() method finishes, the program is done, and the Javainterpreter exits. In
other words, the mai n() method isthe main entry point into a Java program. It is not actually sufficient for a method to
be named mai n() , however. The method must be declared publ i ¢ stati ¢ voi d exactly asshowninline5. In
fact, the only part of line 5 you can change isthe word ar gs, which you can replace with any word you want. Y ou'll be
using thislinein al of your Java programs, so go ahead and commit it to memory now![8]

[7]By convention, when this book refersto a method, it follows the name of the method by a pair of
parentheses. Asyou'll see, parentheses are an important part of method syntax, and they serve here to keep
method names distinct from the names of classes, fields, variables, and so on.

[8]All Java programs that are run directly by the Javainterpreter must have anmai n() method. Programs
of this sort are often called applications. It is possible to write programs that are not run directly by the
interpreter, but are dynamically loaded into some other already running Java program. Examples are
applets, which are programs run by aweb browser, and servlets, which are programs run by a web server.
Applets are discussed in Java Foundation Classes in a Nutshell (O'Reilly), while servlets are discussed in
Java Enterprise in a Nutshell (O'Reilly). In this book, we consider only applications.

Following the name of the mai n() method isalist of method parameters, contained in parentheses. This mai n()
method has only asingle parameter. St ri ng[] specifies the type of the parameter, which isan array of strings (i.e., a
numbered list of strings of text). ar gs specifies the name of the parameter. In the algebraic equation f (X) , x issimply
away of referring to an unknown value. ar gs serves the same purpose for the mai n() method. Aswell see, the name
ar gs isused in the body of the method to refer to the unknown value that is passed to the method.

Asl'vejust explained, the mai n() method isa special one that is caled by the Javainterpreter when it starts running a
Java class (program). When you invoke the Javainterpreter like this:

C.\> java Factorial 4

the string "4" is passed to the mai n() method as the value of the parameter named ar gs. More precisely, an array of
strings containing only one entry, "4", is passed to mai n() . If weinvoke the program like this:

file://IC|/orielly/jnut/ch01_03.htm (4 of 9) [2/5/2003 7:46:04 PM]

An Example Program (Javain a Nutshell)

C\> java Factorial 4 3 2 1

then an array of four strings, "4, "3", "2", and "1", are passed to the mai n() method as the value of the parameter
named ar gs. Our program looks only at the first string in the array, so the other strings are ignored.

Finally, the last thing on line 5 is an open curly brace. This marks the beginning of the body of the mai n() method,
which continues until the matching close curly brace on line 9. Methods are composed of statements, which the Java
interpreter executes in sequential order. In this case, lines 6, 7, and 8 are three statements that compose the body of the
mai n() method. Each statement ends with a semicolon to separate it from the next. Thisis an important part of Java
syntax; beginning programmers often forget the semicolons.

1.3.2.4. Declaring a variable and parsing input

Thefirst statement of the mai n() method, line 6, declares avariable and assigns avalueto it. In any programming
language, avariable is ssmply a symbolic name for avalue. Think back to algebra class again:

2=a+ b2

Theletters a, b, and ¢ are names we use to refer to unknown values. They make this formula (the Pythagorean theorem)
ageneral one that appliesto arbitrary values of a, b, and c, not just a specific set like:

52 =42 + 32

A variable in a Java program is exactly the same thing: it is a name we use to refer to avalue. More precisely, avariable
isaname that refers to a storage space for avalue. We often say that a variable holds a value.

Line 6 beginswith thewordsi nt i nput . Thisdeclaresavariable named i nput and specifies that the variable has
thetypei nt ; that is, it is an integer. Java can work with several different types of values, including integers, real or
floating-point numbers, characters (e.g., letters, digits), and strings. Javais a strongly typed language, which means that
all variables must have atype specified and can only refer to values of that type. Our i nput variable awaysrefersto an
integer; it cannot refer to a floating point number or a string. Method parameters are also typed. Recall that the ar gs
parameter had atypeof String[] .

Continuing with line 6, the variable declaration i nt i nput isfollowed by the = character. Thisis the assignment
operator in Java; it sets the value of a variable. When reading Java code, don't read = as "equals,”" but instead read it as
"is assigned the value." Aswelll seein Chapter 2, "Java Syntax from the Ground Up", there is a different operator for

IImuaI S_"

The value being assigned to our i nput variableis| nt eger . par sel nt (ar gs[0]) . Thisisamethod invocation.
Thisfirst statement of the mai n() method invokes another method whose nameis| nt eger . parsel nt () . Asyou
might guess, this method "parses" an integer; that is, it converts a string representation of an integer, such as"4", to the
integer itself. Thel nt eger . par sel nt () method is not part of the Javalanguage, but it is a core part of the Java
API or Application Programming Interface. Every Java program can use the powerful set of classes and methods defined
by this core API. The second half of thisbook is a quick-reference that documents that core API.

When you call amethod, you pass values (called arguments) that are assigned to the corresponding parameters defined
by the method, and the method returns a value. The argument passed to | nt eger . par sel nt () isar gs[0] . Recal

file://IC|/orielly/jnut/ch01_03.htm (5 of 9) [2/5/2003 7:46:04 PM]

An Example Program (Javain a Nutshell)

that ar gs isthe name of the parameter for mai n() ; it specifies an array (or list) of strings. The elements of an array
are numbered sequentially, and the first one is aways numbered 0. We only care about the first string in the ar gs array,
so we use the expression ar gs[0] to refer to that string. Thus, when we invoke the program as shown earlier, line 6
takes the first string specified after the name of the class, "4", and passes it to the method named

I nt eger . par sel nt () . Thismethod converts the string to the corresponding integer and returns the integer asits
return value. Finally, this returned integer is assigned to the variable named i nput .

1.3.2.5. Computing the result

The statement on line 7 isalot like the statement on line 6. It declares avariable and assigns avalue to it. The value
assigned to the variable is computed by invoking a method. The variableisnamed r esul t , and it has atype of

doubl e. doubl e means a double-precision floating-point number. The variable is assigned a value that is computed
by thef act ori al () method. Thef act ori al () method, however, isnot part of the standard Java API. Instead, it
is defined as part of our program, by lines 11 through 19. The argument passedto f act ori al () isthevauereferred
to by thei nput variable, which was computed on line 6. We'll consider the body of thef act ori al () method
shortly, but you can surmise from its name that this method takes an input value, computes the factorial of that value,
and returns the result.

1.3.2.6. Displaying output

Line 8 simply calls a method named Syst em out . pri ntl n() . Thiscommonly used method is part of the core Java
API; it causes the Javainterpreter to print out avalue. In this case, the value that it printsisthe value referred to by the
variable named r esul t . Thisistheresult of our factorial computation. If thei nput variable holdsthe value 4, the
resul t variable holds the value 24, and this line prints out that value.

TheSyst em out . printl n() method does not have areturn value, so thereis no variable declaration or =
assignment operator in this statement, since there is no value to assign to anything. Another way to say thisisthat, like
themai n() method of line5, Syst em out . printl n() isdeclaredvoi d.

1.3.2.7. The end of a method

Line 9 contains only a single character, } . This marks the end of the method. When the Java interpreter gets here, it is
done executing the mai n() method, so it stops running. The end of the mai n() method is also the end of the variable
scope for thei nput andr esul t variables declared within mai n() and for the ar gs parameter of mai n() . These
variable and parameter names have meaning only within the mai n() method and cannot be used elsewhere in the
program, unless other parts of the program declare different variables or parameters that happen to have the same name.

1.3.2.8. Blank lines

Line 10 isablank line. Y ou can insert blank lines, spaces, and tabs anywhere in a program, and you should use them
liberally to make the program readable. A blank line appears here to separate the mai n() method from the
factori al () method that beginson line 11. You'll notice that the program also uses spaces and tabs to indent the
various lines of code. Thiskind of indentation is optional; it emphasizes the structure of the program and greatly
enhances the readability of the code.

1.3.2.9. Another method

file:///C|/orielly/jnut/ch01_03.htm (6 of 9) [2/5/2003 7:46:04 PM]

An Example Program (Javain a Nutshell)

Line 11 begins the definition of thef act ori al () method that was used by the mai n() method. Compare this line to
line 5 to note its similarities and differences. Thef act ori al () method hasthe same publ i c andstati c
modifiers. It takes a single integer parameter, which we call x. Unlike the mai n() method, which had no return value
(voi d),factorial () returnsavalue of typedoubl e. The open curly brace marks the beginning of the method
body, which continues past the nested braces on lines 15 and 18 to line 20, where the matching close curly braceis
found. The body of thef act ori al () method, like the body of the mai n() method, is composed of statements,
which are found on lines 12 through 19.

1.3.2.10. Checking for valid input

Inthemai n() method, we saw variable declarations, assignments, and method invocations. The statement online 12 is
different. Itisani f statement, which executes another statement conditionally. We saw earlier that the Javainterpreter
executes the three statements of the mai n() method one after another. It always executes them in exactly that way, in
exactly that order. Ani f statement is aflow-control statement; it can affect the way the interpreter runs a program.

Thei f keyword isfollowed by a parenthesized expression and a statement. The Javainterpreter first evaluates the
expression. If itist r ue, the interpreter executes the statement. If the expression isf al se, however, the interpreter
skips the statement and goes to the next one. The condition for thei f statementonline12isx < 0. It checks whether
thevalue passed to thef act ori al () method islessthan zero. If itis, thisexpressionist r ue, and the statement on
line 13 is executed. Line 12 does not end with a semicolon because the statement on line 13 is part of the i f statement.
Semicolons are required only at the end of a statement.

Line13isar et ur n statement. It says that the return value of thef act ori al () methodis0.0.ret urnisasoa
flow-control statement. When the Java interpreter seesar et ur n, it stops executing the current method and returns the
specified value immediately. A r et ur n statement can stand alone, but in this case, ther et ur n statement is part of the
I f statement on line 12. The indentation of line 13 helps emphasize this fact. (Javaignores thisindentation, but it is
very helpful for humans who read Java code!) Line 13 is executed only if the expression online 12 ist r ue.

Before we move on, we should pull back abit and talk about why lines 12 and 13 are necessary in thefirst place. Itisan
error to try to compute afactorial for a negative number, so these lines make sure that the input value x isvalid. If itis
not valid, they causef act ori al () toreturnaconsistent invalid result, 0.0.

1.3.2.11. An important variable

Line 14 is another variable declaration; it declares avariable named f act of type doubl e and assignsit aninitial
value of 1.0. Thisvariable holds the value of the factorial as we compute it in the statements that follow. In Java,
variables can be declared anywhere; they are not restricted to the beginning of a method or block of code.

1.3.2.12. Looping and computing the factorial

Line 15 introduces another type of statement: thewhi | e loop. Likeani f statement, awhi | e statement consists of a
parenthesized expression and a statement. When the Java interpreter seesawhi | e statement, it evaluates the associated
expression. If that expressionist r ue, the interpreter executes the statement. The interpreter repeats this process,
evaluating the expression and executing the statement if the expressionist r ue, until the expression evaluatesto

fal se. Theexpressononlinel5isx > 1, sothewhi | e statement loops while the parameter x holdsavaluethat is
greater than 1. Another way to say thisisthat the loop continues untilx holds avalue less than or equal to 1. We can
assume from this expression that if the loop is ever going to terminate, the value of x must somehow be modified by the

file:///C]/orielly/jnut/ch01_03.htm (7 of 9) [2/5/2003 7:46:04 PM]

An Example Program (Javain a Nutshell)

statement that the loop executes.

The major difference between thei f statement on lines 12-13 and the whi | e loop on lines 15-18 is that the statement
associated with thewhi | e loop isacompound statement. A compound statement is zero or more statements grouped
between curly braces. Thewhi | e keyword on line 15 is followed by an expression in parentheses and then by an open
curly brace. This means that the body of the loop consists of all statements between that opening brace and the closing
brace on line 18. Earlier in the chapter, | said that all Java statements end with semicolons. This rule does not apply to
compound statements, however, as you can see by the lack of a semicolon at the end of line 18. The statements inside
the compound statement (lines 16 and 17) do end with semicolons, of course.

The body of thewhi | e loop consists of the statements on line 16 and 17. Line 16 multiplies the value of f act by the
value of x and storesthe result back intof act . Line 17 issimilar. It subtracts 1 from the value of x and stores the result
back into x. The* character on line 16 isimportant: it is the multiplication operator. And, as you can probably guess,
the- on line 17 isthe subtraction operator. An operator is akey part of Java syntax: it performs a computation on one or
two operands to produce a new value. Operands and operators combine to form expressions, suchasfact * xorx -
1. We've seen other operators in the program. Line 15, for example, uses the greater-than operator (>) in the expression
x > 1, which compares the value of the variable x to 1. The value of this expression is a boolean truth value--either
true or f al se, depending on the result of the comparison.

To understand thiswhi | e loop, it is helpful to think like the Java interpreter. Suppose we are trying to compute the
factorial of 4. Before the loop starts, f act is 1.0, and x is4. After the body of the loop has been executed once--after
thefirst iteration--f act is4.0, and x is 3. After the second iteration, f act is12.0, and x is 2. After the third iteration,
fact is24.0, and x is 1. When the interpreter tests the loop condition after the third iteration, it findsthat x > 1 isno
longer true, so it stops running the loop, and the program resumes at line 19.

1.3.2.13. Returning the result

Line 19 isanother r et ur n statement, like the one we saw on line 13. This one does not return a constant value like 0.0,
but instead returns the value of the f act variable. If the value of x passed intothef act ori al () functionis4, then,
aswe saw earlier, thevalue of f act is24.0, so thisisthe value returned. Recall that thef act ori al () method was
invoked on line 7 of the program. When thisr et ur n statement is executed, control returnsto line 7, where the return
value is assigned to the variable named r esul t .

1.3.3. Exceptions

If you've madeit all the way through the line-by-line analysis of Example 1-1, you are well on your way to
understanding the basics of the Javalanguage.[9] It isasimple but nontrivial program that illustrates many of the

features of Java. There is one more important feature of Java programming | want to introduce, but it is one that does not
appear in the program listing itself. Recall that the program computes the factorial of the number you specify on the
command line. What happensif you run the program without specifying a number?

[9] If you didn't understood all the details of this factorial program, don't worry. We'll cover the details of
the Javalanguage alot more thoroughly in Chapter 2, "Java Syntax from the Ground Up" and Chapter 3,
"Object-Oriented Programming in Java'. However, if you feel like you didn't understand any of the line-
by-line analysis, you may also find that the upcoming chapters are over your head. In that case, you
should probably go elsewhere to learn the basics of the Java language and return to this book to solidify
your understanding, and, of course, to use as areference. One resource you may find useful in learning the

file://IC|/orielly/jnut/ch01_03.htm (8 of 9) [2/5/2003 7:46:04 PM]

An Example Program (Javain a Nutshell)

language is Sun's online Java tutorial, available at http://java.sun.com/docs/books/tutorial/.

C.\> java Factori al
java. | ang. Arrayl ndexQut OF BoundsException: O
at Factorial.min(Factorial.java:6)

C\>
And what happensif you specify avalue that is not a number?

C.\> java Factorial ten

j ava. | ang. Nunber For mat Exception: ten
at java.l ang. I nteger. parselnt(lnteger.java)
at java.l ang. I nteger.parselnt(lnteger.java)
at Factorial.min(Factorial.java: 6)

C\>

In both cases, an error occurs or, in Java terminology, an exception is thrown. When an exception is thrown, the Java
interpreter prints out a message that explains what type of exception it was and where it occurred (both exceptions above
occurred on line 6¢). In the first case, the exception is thrown because there are no stringsin the ar gs list, meaning we
asked for a nonexistent string with ar gs[0] . In the second case, the exception is thrown because

I nt eger. parsel nt () cannot convert the string "ten" to a number. We'll see more about exceptionsin Chapter 2,

"Java Syntax from the Ground Up" and learn how to handle them gracefully as they occur.

4 PREVIOUS HOME MEXT
1.2. Key Benefits of Java BOOK INDEX 2. Java Syntax from the
Ground Up

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch01_03.htm (9 of 9) [2/5/2003 7:46:04 PM]

http://java.sun.com/docs/books/tutorial/
file:///C|/orielly/jnut/copyrght.htm

Java Syntax from the Ground Up (Javain a Nutshell)

41 PREVIOUS Part 1: Introducing Java HEXT »

Chapter 2. Java Syntax from the Ground
Up

Contents:

The Unicode Character Set
Comments

|dentifiers and Reserved Words
Primitive Data Types

Expressions and Operators
Statements

M ethods

Classes and Objects

Array Types

Reference Types

Packages and the Java Namespace
Java File Structure

Defining and Running Java Programs
Differences Between C and Java

This chapter is aterse but comprehensive introduction to Java syntax. It iswritten primarily for readers
who are new to the language, but have at |east some previous programming experience. Determined
novices with no prior programming experience may also find it useful. If you already know Java, you
should find it a useful language reference. In previous editions of this book, this chapter was written
explicitly for C and C++ programmers making the transition to Java. It has been rewritten for this edition
to make it more generally useful, but it still contains comparisonsto C and C++ for the benefit of
programmers coming from those languages.[1]

[1] Readers who want even more thorough coverage of the Java language should consider
The Java Programming Language, Second Edition, by Ken Arnold and James Gosling (the
creator of Java) (Addison Wesley Longman). And hard-core readers may want to go
straight to the primary source: The Java Language Specification, by James Gosling, Bill
Joy, and Guy Steele (Addison Wesley Longman). This specification is available in printed

file://IC|/orielly/jnut/ch02_01.htm (1 of 3) [2/5/2003 7:46:08 PM]

Java Syntax from the Ground Up (Javain a Nutshell)

book form, but is also freely available for download from Sun's web site at
http://java.sun.com/docs/books/jl<. | found both documents quite helpful while writing

this chapter.

This chapter documents the syntax of Java programs by starting at the very lowest level of Java syntax
and building from there, covering increasingly higher orders of structure. It covers:

. The characters used to write Java programs and the encoding of those characters.

. Datatypes, literal values, identifiers, and other tokens that comprise a Java program.

. The operators used in Javato group individual tokensinto larger expressions.

. Statements, which group expressions and other statements to form logical chunks of Java code.

. Methods (also called functions, procedures, or subroutines), which are named collections of Java
statements that can be invoked by other Java code.

. Classes, which are collections of methods and fields. Classes are the central program element in
Java and form the basis for object-oriented programming. Chapter 3, "Object-Oriented

Programming in Java', is devoted entirely to a discussion of classes and objects.

. Packages, which are collections of related classes.

. Javaprograms, which consist of one or more interacting classes that may be drawn from one or
more packages.

The syntax of most programming languages is complex, and Javais no exception. In general, it is not
possible to document all elements of alanguage without referring to other elements that have not yet
been discussed. For example, it is not really possible to explain in a meaningful way the operators and
statements supported by Java without referring to objects. But it is aso not possible to document objects
thoroughly without referring to the operators and statements of the language. The process of learning
Java, or any language, istherefore an iterative one. If you are new to Java (or a Java-style programming
language), you may find that you benefit greatly from working through this chapter and the next twice, so
that you can grasp the interrelated concepts.

2.1. The Unicode Character Set

Java programs are written using the Unicode character set. Unlike the 7-bit ASCII encoding, whichis
useful only for English, and the 8-bit 1SO Latin-1 encoding, which is useful only for major Western

file:///C]/orielly/jnut/ch02_01.htm (2 of 3) [2/5/2003 7:46:08 PM]

http://java.sun.com/docs/books/jls/

Java Syntax from the Ground Up (Javain a Nutshell)

European languages, the 16-bit Unicode encoding can represent virtually every written language in
common use on the planet. Very few text editors support Unicode, however, and in practice, most Java
programs are written in plain ASCII. 16-bit Unicode characters are typically written to files using an
encoding known as UTF-8, which converts the 16-bit charactersinto a stream of bytes. The format is
designed so that plain ASCII and Latin-1 text are valid UTF-8 byte streams. Thus, you can ssmply write
plain ASCII programs, and they will work as valid Unicode.

If you want to embed a Unicode character within a Java program that is written in plain ASCII, use the
special Unicode escape sequence\ uxxxx. That is, a backslash and alowercase u, followed by four
hexadecimal characters. For example, \ u0020 isthe space character, and \ u3c00 isthe character Tt
Y ou can use Unicode characters anywhere in a Java program, including comments and variable names.

4 PREVIOUS HOME MEXT
1.3. An Example Program BOOK INDEX 2.2. Comments

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch02_01.htm (3 of 3) [2/5/2003 7:46:08 PM]

file:///C|/orielly/jnut/copyrght.htm

Comments (Javain a Nutshell)

41 PREVIOUS Chapter 2: Java Syntax from HEXT »
the Ground Up

2.2. Comments

Java supports three types of comments. The first type is a single-line comment, which begins with the
characters/ / and continues until the end of the current line. For example:

int i = 0; /'l initialize the |oop variable

The second kind of comment is a multiline comment. It begins with the characters/ * and continues,
over any number of lines, until the characters*/ . Any text betweenthe/ * and the*/ isignored by the
Java compiler. Although this style of comment is typically used for multiline comments, it can also be
used for single-line comments. This type of comment cannot be nested (i.e., one/ * */ comment cannot
appear within another one). When writing multiline comments, programmers often use extra* characters
to make the comments stand out. Here is atypical multiline comment:

/*

* Step 4: Print static nethods, both public and protected,
* but don't |ist deprecated ones.

*/

The third type of comment is a special case of the second. If acomment beginswith/ ** | it is regarded
as a special doc comment. Like regular multiline comments, doc comments end with */ and cannot be
nested. When you write a Java class you expect other programmers to use, use doc comments to embed
documentation about the class and each of its methods directly into the source code. A program named
javadoc extracts these comments and processes them to create online documentation for your class. A
doc comment can contain HTML tags and can use additional syntax understood by javadoc. For
example:

*

/
Display a list of classes, many to a |ine.

@par am cl asses The cl asses to display
@eturn <tt>true</tt> on success,
<tt>false</tt> on failure.

@ut hor David Fl anagan

* ok Kk k% % ok ok

~

file://IC|/orielly/jnut/ch02_02.htm (1 of 2) [2/5/2003 7:46:12 PM]

Comments (Javain a Nutshell)

See Chapter 7, "Java Programming and Documentation Conventions', for more information on the doc-
comment syntax and Chapter 8, "Java Development Tools", for more information on the javadoc
program.

41 PREVIOUS HOME HEXT
2.1. The Unicode Character BOOK INDEX 2.3. ldentifiers and Reserved
Set Words

Copyright © 2001 O'Rellly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch02_02.htm (2 of 2) [2/5/2003 7:46:12 PM]

file:///C|/orielly/jnut/copyrght.htm

Identifiers and Reserved Words (Javain a Nutshell)

41 PREVIOUS Chapter 2: Java Syntax from HEXT »
the Ground Up

2.3. ldentifiers and Reserved Words

Anidentifier is any symbolic name that refers to something in a Java program. Class, method, parameter,
and variable names are all identifiers. An identifier must begin with aletter, an underscore(_), ora
Unicode currency symbol (e.g., $, £, ¥). Thisinitial letter can be followed by any number of |etters,
digits, underscores, or currency symbols. Remember that Java uses the Unicode character set, which
contains quite afew letters and digits other than those in the ASCI I character set. The following are legal
identifiers:

i

engi ne3
theCurrentTi ne
the current tine

0

| dentifiers can include numbers, but cannot begin with a number. In addition, they cannot contain any
punctuation characters other than underscores and currency characters. By convention, dollar signs and
other currency characters are reserved for identifiers automatically generated by a compiler or some kind
of code preprocessor. It is best to avoid these charactersin your own identifiers.

Another important restriction on identifiersis that you cannot use any of the keywords and literals that
are part of the Javalanguage itself. These reserved words are listed in Table 2-1.

Table 2-1. Java Reserved Words

abstract |do I f package |synchronized
bool ean |doubl e |inplenents private |this

br eak el se I nport prot ected|t hr ow

byt e ext ends |i nst anceof public t hr ows
case false |int return transi ent
catch final interface |[short true

file://IC|/orielly/jnut/ch02_03.htm (1 of 2) [2/5/2003 7:46:15 PM]

Identifiers and Reserved Words (Javain a Nutshell)

char finally|long static try

cl ass f | oat native strictfp |void
const for new super vol atil e
conti nue goto nul | swi tch whi | e
default

Notethat const and got o arereserved words, but aren't part of the Java language.

41 PREVIOUS HOME HEXT &
2.2. Comments BOOK INDEX 2.4. Primitive Data Types

Copyright © 2001 O'Rellly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch02_03.htm (2 of 2) [2/5/2003 7:46:15 PM]

file:///C|/orielly/jnut/copyrght.htm

Primitive Data Types (Javain a Nutshell)

41 PREVIOUS Chapter 2: Java Syntax from MEXT o
the Ground Up

2.4. Primitive Data Types

Java supports eight basic data types known as primitive types. In addition, it supports classes and arrays as composite
data types, or reference types. Classes and arrays are documented later in this chapter. The primitive types are: a boolean
type, a character type, four integer types, and two floating-point types. The four integer types and the two floating-point
types differ in the number of bits that represent them, and therefore in the range of numbers they can represent. Table 2-

2 summarizes these primitive data types.

Table 2-2. Java Primitive Data Types

Type Contains Default |Size |Range
bool ean trueorfal se false |1bit |NA
char Unicode character \ u0000 |16 bits|\ u0000 to\ uFFFF
byt e Signed integer 0 8 bits |-128to 127
short Signed integer 0 16 bits -32768 to 32767
i nt Signed integer 0 32 bits |-2147483648 to 2147483647
. . .. |-9223372036854775808 to 9223372036854775807
| ong Signed integer 0 64 bits ©
i i + - + +
f1 oat |EEE 754 floating point 0.0 32 bits +1.4E-45 to +3.4028235E+38
i i + - + +
doubl e |EEE 754 floating point 0.0 64 bits +4.9E-324 t0 £1.7976931348623157E+308

2.4.1. The boolean Type

Thebool ean type represents atruth value. There are only two possible values of this type, representing the two
boolean states: on or off, yes or no, true or false. Javareservesthewordst r ue and f al se to represent these two
boolean values.

C and C++ programmers should note that Javais quite strict about itsbool ean type: bool ean values can never be
converted to or from other data types. In particular, abool ean isnot an integral type, and integer values cannot be
used in place of abool ean. In other words, you cannot take shortcuts such as the following in Java:

if (o) {
while(i) {
}

}

file://IC|/orielly/jnut/ch02_04.htm (1 of 7) [2/5/2003 7:46:19 PM]

Primitive Data Types (Javain a Nutshell)

Instead, Java forces you to write cleaner code by explicitly stating the comparisons you want:

if (o !=null) {
while(i '= 0) {
}

}

2.4.2. The char Type

Thechar type represents Unicode characters. It surprises many experienced programmers to learn that Javachar
values are 16 bitslong, but in practice thisfact is totally transparent. To include a character literal in a Java program,
simply place it between single quotes (apostrophes):

char ¢ = "A';

Y ou can, of course, use any Unicode character as a character literal, and you can use the\ u Unicode escape sequence.
In addition, Java supports a number of other escape sequences that make it easy both to represent commonly used
nonprinting ASCII characters such as newline and to escape certain punctuation characters that have special meaning in
Java. For example:

char tab = "\t', apostrophe ="'\"", nul = "'\000', aleph="\u05D0";

Table 2-3 lists the escape characters that can be used in char literals. These characters can also be used in string
literals, which are covered later in this chapter.

Table 2-3. Java Escape Characters

Escape Sequence |Character Value

\b Backspace

\'t Horizontal tab
\n Newline

\ f Form feed

\r Carriage return
\ " Double quote
\' Single quote
\\ Backslash

The Latin-1 character with the encoding xxx, where xxx is an octal (base 8) number between 000
and 377. Theforms\ xand \ xx areaso legal, asin' \ 0" , but are not recommended because they

\ 30X can cause difficultiesin string constants where the escape sequence is followed by aregular digit.

file://IC|/orielly/jnut/ch02_04.htm (2 of 7) [2/5/2003 7:46:19 PM]

Primitive Data Types (Javain a Nutshell)

The Unicode character with encoding xxxx, where xxxx is four hexadecimal digits. Unicode escapes
\ LXK can appear anywhere in a Java program, not only in character and string literals.

char values can be converted to and from the various integral types. Unlike byt e, short,i nt,and | ong, however,
char isan unsigned type. The Char act er class defines anumber of useful st at i ¢ methods for working with
characters, includingi sDigit () ,i sJavaLetter(),i sLower Case(),andt oUpper Case().

2.4.3. Integer Types

Theinteger typesin Javaare byt e, short,i nt,and| ong. Asshown in Table 2-2, these four types differ only in the

number of bits and, therefore, in the range of numbers each type can represent. All integral types represent signed
numbers; thereisno unsi gned keyword asthereisin C and C++.

Literals for each of these types are written exactly as you would expect: as a string of decimal digits. Although it is not
technically part of the literal syntax, any integer literal can be preceded by the unary minus operator to indicate a
negative number. Here are some legal integer literals:

0

1

123

- 42000

Integer literals can also be expressed in hexadecimal or octal notation. A literal that begins with Ox or OXistaken asa
hexadecimal number, using the letters Ato F (or a to f) asthe additional digits required for base-16 numbers. Integer
literals beginning with aleading O are taken to be octal (base-8) numbers and cannot include the digits 8 or 9. Java does
not allow integer literals to be expressed in binary (base-2) notation. Legal hexadecimal and octal literals include:

Oxf f /'l Decimal 255, expressed in hexadeci nal
0377 /'l The sanme nunber, expressed in octal (base 8)
Ox CAFEBABE /'l A magi ¢ nunber used to identify Java class files

Integer literals are 32-bit i nt values unless they end with the character L or | , in which case they are 64-bit | ong
values:

1234 /1 An int value
1234L /1 A long val ue
OxffL /'l Anot her |ong val ue

Integer arithmetic in Javais modular, which means that it never produces an overflow or an underflow when you exceed
the range of a given integer type. Instead, numbers just wrap around. For example:

byte bl = 127, b2 = 1; /'l Largest byte is 127
byte sum = bl + b2; /1 Sumwaps to -128, which is the small est byte

Neither the Java compiler nor the Java interpreter warns you in any way when this occurs. When doing integer
arithmetic, you simply must ensure that the type you are using has a sufficient range for the purposes you intend. Integer

file://IC|/orielly/jnut/ch02_04.htm (3 of 7) [2/5/2003 7:46:19 PM]

Primitive Data Types (Javain a Nutshell)

division by zero and modulo by zero areillegal and causean Ari t hrret i cExcept i on to be thrown.

Each integer type has a corresponding wrapper class: Byt e, Short, | nt eger, and Long. Each of these classes
definesM N_VALUE and MAX_ VAL UE constants that describe the range of the type. The classes also define useful static
methods, such asByt e. par seByt e() and | nt eger . par sel nt (), for converting strings to integer values.

2.4.4. Floating-Point Types

Real numbersin Java are represented with thef | oat and doubl e datatypes. Asshownin Table2-3,f | oat isa32-
bit, single-precision floating-point value, and doubl e is a64-bit, double-precision floating-point value. Both types
adhere to the |EEE 754-1985 standard, which specifies both the format of the numbers and the behavior of arithmetic for
the numbers.

Floating-point values can be included literally in a Java program as an optional string of digits, followed by a decimal
point and another string of digits. Here are some examples:

123. 45
0.0
.01

Floating-point literals can also use exponential, or scientific, notation, in which a number isfollowed by the letter e or E
(for exponent) and another number. This second number represents the power of ten by which the first number is
multiplied. For example:

1. 2345E02 /[l 1.2345 * 1072, or 123.45
le-6 // 1 * 10~-6, or 0.000001
6. 02e23 /'l Avagadro's Nunber: 6.02 * 10723

Floating-point literals are doubl e values by default. Toincludeaf | oat valueliterally in a program, follow the
number by the character f or F:

double d = 6. 02E23;
float f = 6.02e23f;

Floating-point literals cannot be expressed in hexadecimal or octal notation.

Most real numbers, by their very nature, cannot be represented exactly in any finite number of bits. Thus, it isimportant
to remember that f | oat and doubl e values are only approximations of the numbers they are meant to represent. A

f | oat isa32-bit approximation, which resultsin at least 6 significant decimal digits, and adoubl e isa64-bit
approximation, which resultsin at least 15 significant digits. In practice, these data types are suitable for most real -
number computations.

In addition to representing ordinary numbers, thef | oat and doubl e types can also represent four special values:
positive and negative infinity, zero, and NaN. The infinity values result when a floating-point computation produces a
value that overflows the representable range of af | oat or doubl e. When afloating-point computation underflows the
representable range of af | oat or adoubl e, azero value results. The Java floating-point types make a distinction
between positive zero and negative zero, depending on the direction from which the underflow occurred. In practice,

file://IC|/orielly/jnut/ch02_04.htm (4 of 7) [2/5/2003 7:46:19 PM]

Primitive Data Types (Javain a Nutshell)

positive and negative zero behave pretty much the same. Finally, the last special floating-point valueis NaN, which
stands for not-a-number. The NaN value results when an illegal floating-point operation, such as 0/0, is performed. Here
are examples of statements that result in these special values:

double inf = 1/0; [l Infinity
doubl e neginf = -1/0; Il -Infinity
doubl e negzero = -1/inf; /'l Negative zero
doubl e NaN = 0/ 0; /1 NaN

Because the Java floating-point types can handle overflow to infinity and underflow to zero and have a special NaN
value, floating-point arithmetic never throws exceptions, even when performing illegal operations, like dividing zero by
zero or taking the square root of a negative number.

Thef | oat and doubl e primitive types have corresponding classes, named Fl oat and Doubl e. Each of these
classes defines the following useful constants: M N_VALUE, MAX VALUE, NEGATI VE_| NFI NI TY,
POSI Tl VE_I NFI NI TY, and NaN.

The infinite floating-point values behave as you would expect. Adding or subtracting anything to or from infinity, for
example, yields infinity. Negative zero behaves almost identically to positive zero, and, in fact, the = = equality
operator reports that negative zero is equal to positive zero. The only way to distinguish negative zero from positive, or
regular, zero isto divide by it. 1/0 yields positive infinity, but 1 divided by negative zero yields negative infinity.
Finally, since NaN is not-a-number, the = = operator saysthat it is not equal to any other number, including itself ! To
check whether af | oat or doubl e valueis NaN, you must usethe Fl oat . i sNan() and Doubl e. i sNan()
methods.

2.4.5. Strings

In addition to the boolean, character, integer, and floating-point data types, Java also has a data type for working with
strings of text (usually simply called strings). The St r i ng typeisaclass, however, and is not one of the primitive types
of the language. Because strings are so commonly used, though, Java does have a syntax for including string values
literally inaprogram. A St r i ng literal consists of arbitrary text within double quotes. For example:

"Hel l o, world"
"'This' is a string!"”

String literals can contain any of the escape sequences that can appear aschar literals (see Table 2-3). Use the\ "

sequence to include a double-quote withina St r i ng literal. Strings and string literals are discussed in more detail later
in this chapter. Chapter 4, "The Java Platform"”, demonstrates some of the ways you can work with St r i ng objectsin

Java

2.4.6. Type Conversions

Java allows conversions between integer values and floating-point values. In addition, because every character
corresponds to a number in the Unicode encoding, char types can be converted to and from the integer and floating-
point types. In fact, bool ean isthe only primitive type that cannot be converted to or from another primitive type in
Java.

file://IC|/orielly/jnut/ch02_04.htm (5 of 7) [2/5/2003 7:46:19 PM]

Primitive Data Types (Javain a Nutshell)

There are two basic types of conversions. A widening conversion occurs when avalue of one typeis converted to a
wider type--one that is represented with more bits and therefore has a wider range of legal values. A narrowing
conversion occurs when avalue is converted to atype that is represented with fewer bits. Java performs widening
conversions automatically when, for example, you assignani nt literal toadoubl e variableor achar literal to an
I nt variable.

Narrowing conversions are another matter, however, and are not always safe. It is reasonable to convert the integer value
13toabyt e, for example, but it is not reasonable to convert 13000 to abyt e, since byt e can only hold numbers
between -128 and 127. Because you can lose data in a narrowing conversion, the Java compiler complains when you
attempt any narrowing conversion, even if the value being converted would in fact fit in the narrower range of the
specified type:

int i = 13;
byte b = i; /'l The conpiler does not allowthis

The one exception to thisrule is that you can assign an integer literal (ani nt value) toabyt e or short variable, if
the literal falls within the range of the variable.

If you need to perform a narrowing conversion and are confident you can do so without losing data or precision, you can
force Javato perform the conversion using a language construct known as a cast. Perform a cast by placing the name of
the desired type in parentheses before the value to be converted. For example:

int i = 13;
byte b = (byte) i; /'l Force the int to be converted to a byte
i = (int) 13.456; /'l Force this double literal to the int 13

Casts of primitive types are most often used to convert floating-point values to integers. When you do this, the fractional
part of the floating-point value is simply truncated (i.e., the floating-point value is rounded towards zero, not towards the
nearest integer). The methods Mat h. r ound(), Mat h. f1 oor () ,and Mat h. cei | () perform other types of
rounding.

Thechar type acts like an integer type in most ways, so achar value can be used anywhereani nt or | ong valueis
required. Recall, however, that the char typeisunsigned, so it behaves differently than the shor t type, even though
both of them are 16 bits wide:

short s = (short) Oxffff; // These bits represent the nunber -1

char c "\uffff'; /'l The sane bits, representing a Uni code character
int il ; /1l Converting the short to an int yields -1

int i2 ; /1l Converting the char to an int yields 65535

S
C

Table 2-4 isagrid that shows which primitive types can be converted to which other types and how the conversionis
performed. The letter N in the table means that the conversion cannot be performed. The letter Y means that the
conversion isawidening conversion and is therefore performed automatically and implicitly by Java. The letter C means
that the conversion is a narrowing conversion and requires an explicit cast. Finally, the notation Y* means that the
conversion is an automatic widening conversion, but that some of the least significant digits of the value may be lost by
the conversion. This can happen when convertingani nt orl ong toaf | oat or doubl e. The floating-point types
have alarger range than the integer types, soany i nt or | ong can berepresented by af | oat or doubl e. However,

file:///C|/orielly/jnut/ch02_04.htm (6 of 7) [2/5/2003 7:46:19 PM]

Primitive Data Types (Javain a Nutshell)

the floating-point types are approximations of numbers and cannot always hold as many significant digits as the integer
types.

Table 2-4. Java Primitive Type Conversions

Convert |Convert To:

From: bool ean |byte|short |char |int || ong |fl oat doubl e
bool ean |- N N N N N N N

byt e N - Y C Y Y Y Y
short N C - C Y Y Y Y

char N C C - Y Y Y Y

i nt N C C C - Y Y* Y

| ong N C C C C | Y* Y*

f | oat N C C C c |C - Y
doubl e |N C C C c |C C -

2.4.7. Reference Types

In addition to its eight primitive types, Java defines two additional categories of datatypes. classes and arrays. Java
programs consist of class definitions; each class defines a new data type that can be manipulated by Java programs. For
example, a program might define a class named Poi nt and use it to store and manipulate X,Y pointsin a Cartesian
coordinate system. This makes Poi nt anew datatype in that program. An array type represents alist of values of some
other type. char isadatatype, and an array of char valuesis another datatype, writtenchar [] . An array of Poi nt
objectsis adatatype, written Poi nt [] . And an array of Poi nt arraysisyet another type, writtenPoi nt [][] .

Asyou can see, there are an infinite number of possible class and array data types. Collectively, these data types are
known as reference types. The reason for this name will become clear later in this chapter. For now, however, what is
important to understand is that class and array types differ significantly from primitive types, in that they are compound,
or composite, types. A primitive data type holds exactly one value. Classes and arrays are aggregate types that contain
multiple values. The Poi nt type, for example, holdstwo doubl e values representing the X and Y coordinates of the
point. And char [] isobviously acompound type because it represents alist of characters. By their very nature, class
and array types are more complicated than the primitive data types. We'll discuss classes and arraysin detail later in this
chapter and examine classes in even more detail in Chapter 3, "Object-Oriented Programming in Java''.

4 PREVIOUS HOME MEXT
2.3. ldentifiers and Reserved BOOK INDEX 2.5. Expressions and
Words Operators

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch02_04.htm (7 of 7) [2/5/2003 7:46:19 PM]

file:///C|/orielly/jnut/copyrght.htm

Expressions and Operators (Javain a Nutshell)

41 PREVIOUS Chapter 2: Java Syntax from HEXT mp
the Ground Up

2.5. Expressions and Operators

So far in this chapter, we've learned about the primitive types that Java programs can manipulate and seen how to include
primitive values as literals in a Java program. We've also used variables as symbolic names that represent, or hold, values.
These literals and variables are the tokens out of which Java programs are built.

An expression is the next higher level of structure in a Java program. The Javainterpreter evaluates an expression to
compute its value. The very simplest expressions are called primary expressions and consist of literals and variables. So,
for example, the following are all expressions:

1.7 /'l An integer literal
true /1 A boolean literal
sum /1 A variabl e

When the Javainterpreter evaluates aliteral expression, the resulting value isthe literal itself. When the interpreter
evaluates a variable expression, the resulting value is the value stored in the variable.

Primary expressions are not very interesting. More complex expressions are made by using operators to combine primary
expressions. For example, the following expression uses the assignment operator to combine two primary expressions--a
variable and afloating-point literal--into an assignment expression:

sum= 1.7

But operators are used not only with primary expressions; they can also be used with expressions at any level of
complexity. Thus, the following are al legal expressions:

sum=1 + 2 + 3*1.2 + (4 + 8)/3.0

sumi Math.sqrt (3.0 * 1.234)
(int)(sum + 33)

2.5.1. Operator Summary
The kinds of expressions you can write in a programming language depend entirely on the set of operators available to you.
Table 2-5 summarizes the operators available in Java. The P and A columns of the table specify the precedence and

associativity of each group of related operators, respectively.

Table 2-5. Java Operators

P |A |Operator Operand Type(s) Operation Performed
15\L . object, member object member access

file:/lIC|/orielly/jnut/ch02_05.htm (1 of 15) [2/5/2003 7:46:24 PM]

Expressions and Operators (Javain a Nutshell)

] array, int array element access
(args) imethod, arglist | method invocation
++, - — variable post-increment, decrement
]ﬂ’ﬁ ++, - — variable pre-increment, decrement
+, - number unary plus, unary minus
I~ linteger Ibitwise complement
! 'boolean boolean NOT
13|R [new class, arglist lobject creation
(type) 'type, any cast (type conversion)

|£|:*1/,%

number, number

multiplication, division, remainder

-

number, number

addition, subtraction

string concatenation

+ string, any
. . right shift with sign extension
>> Integer, integer
. . right shift with zero extension
>>> Integer, Integer
|;|: < <= number, number less than, less than or equal
> >= number, number greater than, greater than or equal
i nst anceof |reference, type type comparison

primitive, primitive

equal (have identical values)

primitive, primitive

not equal (have different values)

reference, reference

equal (refer to same object)

reference, reference

not equal (refer to different objects)

integer, integer

bitwise AND

boolean, boolean

boolean AND

file:///Cl/orielly/jnut/ch02_05.htm (2 of 15) [2/5/2003 7:46:24 PM]

Expressions and Operators (Javain a Nutshell)

6 L integer, integer bitwise XOR
N boolean, boolean boolean XOR
)) bitwise OR
5 L integer, integer
boolean OR

| boolean, boolean

conditional AND

4 L |&& boolean, boolean

3 LI boolean, boolean conditionsl OR

2 RI?: boolean, any, any conditional (ternary) operator
1 R= variable, any assignment

) assignment with operation
*= /=%, |variable any g P

+:1 -=, <<:1
>>= >>>=,
&:, /\:’ | =

2.5.1.1. Precedence

The P column of Table 2-5 specifies the precedence of each operator. Precedence specifies the order in which operations
are performed. Consider this expression:

a+b?*c
The multiplication operator has higher precedence than the addition operator, so a is added to the product of b and c.

Operator precedence can be thought of as a measure of how tightly operators bind to their operands. The higher the number,
the more tightly they bind.

Default operator precedence can be overridden through the use of parentheses, to explicitly specify the order of operations.
The previous expression can be rewritten as follows to specify that the addition should be performed before the
multiplication:

(a +b) *c
The default operator precedence in Java was chosen for compatibility with C; the designers of C chose this precedence so
that most expressions can be written naturally without parentheses. There are only afew common Javaidioms for which

parentheses are required. Examples include:

/] d ass cast conbined with nenber access

file:/lIC|/orielly/jnut/ch02_05.htm (3 of 15) [2/5/2003 7:46:24 PM]

Expressions and Operators (Javain a Nutshell)
((I'nteger) o).intValue();

/' Assignment conbined with conparison
while((line = in.readLine()) !'=null) { ... }

/1 Bitw se operators conbined with conparison
if ((flags & (PUBLIC | PROTECTED)) !'=0) { ... }

2.5.1.2. Associativity

When an expression involves several operators that have the same precedence, the operator associativity governs the order
in which the operations are performed. Most operators are left-to-right associative, which means that the operations are
performed from left to right. The assignment and unary operators, however, have right-to-left associativity. The A column
of Table 2-5 specifies the associativity of each operator or group of operators. The value L means l€eft to right, and R means

right to left.

The additive operators are all |eft-to-right associative, so the expression a+b- ¢ is evaluated from left to right: (a+b) - c.
Unary operators and assignment operators are evaluated from right to left. Consider this complex expression:

a=Db+=c =-~d
Thisis evaluated as follows:
a= (b +=(c =-(~d)))

Aswith operator precedence, operator associativity establishes a default order of evaluation for an expression. This default
order can be overridden through the use of parentheses. However, the default operator associativity in Java has been chosen
to yield anatural expression syntax, and you rarely need to alter it.

2.5.1.3. Operand number and type

The fourth column of Table 2-5 specifies the number and type of the operands expected by each operator. Some operators
operate on only one operand; these are called unary operators. For example, the unary minus operator changes the sign of a
single number:

-n /1l The unary m nus operator

Most operators, however, are binary operators that operate on two operand values. The — operator actually comes in both
forms:

a-»>b /1 The subtraction operator is a binary operator
Java aso defines one ternary operator, often called the conditional operator. Itislikeani f statement inside an expression.
Its three operands are separated by a question mark and a colon; the second and third operators must both be of the same

type:

X >y ?x:y [l Ternary expression; evaluates to the larger of x and y

file:/lIC|/orielly/jnut/ch02_05.htm (4 of 15) [2/5/2003 7:46:24 PM]

Expressions and Operators (Javain aNutshell)
In addition to expecting a certain number of operands, each operator also expects particular types of operands. Column four
of the table lists the operand types. Some of the codes used in that column require further explanation:
number

An integer, floating-point value, or character (i.e., any primitive type except bool ean)
integer

A byt e,short,int,l ong,orchar vaue (I ong values are not allowed for the array access operator [])
reference

An object or array

variable

A variable or anything else, such as an array element, to which a value can be assigned

2.5.1.4. Return type

Just as every operator expects its operands to be of specific types, each operator produces avalue of a specific type. The
arithmetic, increment and decrement, bitwise, and shift operators return adoubl e if at least one of the operandsisa
doubl e. Otherwise, they return af | oat if at least one of the operandsisaf | oat . Otherwise, they return al ong if at
least one of the operandsisal ong. Otherwise, they return ani nt , even if both operands are byt e, short, or char
typesthat are narrower thani nt .

The comparison, equality, and boolean operators aways return bool ean values. Each assignment operator returns
whatever value it assigned, which is of atype compatible with the variable on the | eft side of the expression. The
conditional operator returns the value of its second or third argument (which must both be of the same type).

2.5.1.5. Side effects

Every operator computes a value based on one or more operand values. Some operators, however, have side effectsin
addition to their basic evaluation. If an expression contains side effects, evaluating it changes the state of a Java programin
such away that evaluating the expression again may yield a different result. For example, the ++ increment operator has
the side effect of incrementing a variable. The expression ++a increments the variable a and returns the newly incremented
value. If this expression is evaluated again, the value will be different. The various assignment operators also have side
effects. For example, the expression a* =2 can also be written asa=a* 2. The value of the expression is the value of a
multiplied by 2, but the expression also has the side effect of storing that value back into a. The method invocation operator
() hasside effectsif the invoked method has side effects. Some methods, such asMat h. sqrt (), simply compute and
return a value without side effects of any kind. Typically, however, methods do have side effects. Finally, the new operator
has the profound side effect of creating a new object.

2.5.1.6. Order of evaluation

When the Javainterpreter evaluates an expression, it performs the various operations in an order specified by the
parentheses in the expression, the precedence of the operators, and the associativity of the operators. Before any operation

file:/lIC|/orielly/jnut/ch02_05.htm (5 of 15) [2/5/2003 7:46:24 PM]

Expressions and Operators (Javain a Nutshell)

is performed, however, the interpreter first evaluates the operands of the operator. (The exceptions arethe &&, | | , and ?:
operators, which do not always evaluate all their operands.) The interpreter always evaluates operands in order from left to
right. This mattersif any of the operands are expressions that contain side effects. Consider this code, for example:

int a
int v

2;
++a + ++a * ++a;

Although the multiplication is performed before the addition, the operands of the + operator are evaluated first. Thus, the
expression evaluates to 3+4*5, or 23.

2.5.2. Arithmetic Operators

Since most programs operate primarily on numbers, the most commonly used operators are often those that perform
arithmetic operations. The arithmetic operators can be used with integers, floating-point numbers, and even characters (i.e.,
they can be used with any primitive type other than bool ean). If either of the operands is a floating-point number,
floating-point arithmetic is used; otherwise, integer arithmetic is used. This matters because integer arithmetic and floating-
point arithmetic differ in the way division is performed and in the way underflows and overflows are handled, for example.
The arithmetic operators are:

Addition (+)

The + operator adds two numbers. Aswe'll see shortly, the + operator can also be used to concatenate strings. If
either operand of + isastring, the other one is converted to a string as well. Be sure to use parentheses when you
want to combine addition with concatenation. For example:

Systemout.println("Total: " + 3 + 4); /1l Prints "Total: 34", not 7!
Subtraction (-)

When — is used as a binary operator, it subtracts its second operand from itsfirst. For example, 7-3 evaluatesto 4.
The - operator can perform unary negation.

Multiplication (*)
The* operator multipliesits two operands. For example, 7* 3 evaluatesto 21.
Division (/)

The/ operator dividesitsfirst operand by its second. If both operands are integers, the result is an integer, and any
remainder islost. If either operand is a floating-point value, however, the result is a floating-point value. When
dividing two integers, division by zero throwsan Ar i t hnmet i cExcept i on. For floating-point calculations,
however, division by zero simply yields an infinite result or NaN:

7/ 3 /| Evaluates to 2

7/ 3. Of /'l Evaluates to 2.333333f

7/ 0 /1 Throws an ArithneticException
7/0.0 /'l Evaluates to positive infinity
0.0/0.0 /| Evaluates to NaN

file:/lIC|/orielly/jnut/ch02_05.htm (6 of 15) [2/5/2003 7:46:24 PM]

Expressions and Operators (Javain a Nutshell)

Modulo (%

The %operator computes the first operand modulo the second operand (i.e., it returns the remainder when the first
operand is divided by the second operand an integral number of times). For example, 7%3 is 1. The sign of the result
is the same as the sign of the first operand. While the modulo operator is typically used with integer operands, it also
works for floating-point values. For example, 4.3%2.1 evaluates to 0.1. When operating with integers, trying to
compute avalue modulo zero causesan Ar i t hnmet i cExcept i on. When working with floating-point values,
anything modulo 0.0 evaluates to NaN, as does infinity modulo anything.

Unary Minus(-)

When — is used as aunary operator, before a single operand, it performs unary negation. In other words, it converts a
positive value to an equivaently negative value, and vice versa.

2.5.3. String Concatenation Operator

In addition to adding numbers, the + operator (and the related += operator) also concatenates, or joins, strings. If either of
the operands to + isa string, the operator converts the other operand to a string. For example:

Systemout.println("Quotient: " + 7/3.0f); // Prints "Quotient: 2.3333333"

Asaresult, you must be careful to put any addition expressionsin parentheses when combining them with string
concatenation. If you do not, the addition operator is interpreted as a concatenation operator.

The Java interpreter has built-in string conversions for al primitive types. An object is converted to a string by invoking its
t oSt ri ng() method. Some classes define customt oSt ri ng() methods, so that objects of that class can easily be
converted to stringsin thisway. An array is converted to a string by invoking the built-int oSt ri ng() method, which,
unfortunately, does not return a useful string representation of the array contents.

2.5.4. Increment and Decrement Operators

The ++ operator increments its single operand, which must be a variable, an element of an array, or afield of an object, by
one. The behavior of this operator depends on its position relative to the operand. When used before the operand, whereit is
known as the pre-increment operator, it increments the operand and evaluates to the incremented value of that operand.
When used after the operand, where it is known as the post-increment operator, it increments its operand, but evaluates to
the value of that operand before it was incremented.

For example, the following code setsbothi andj to 2:

i
j

1;
++i ;

But theselinesseti to2andj to 1

1;
| ++;

file:/lIC|/orielly/jnut/ch02_05.htm (7 of 15) [2/5/2003 7:46:25 PM]

Expressions and Operators (Javain a Nutshell)

Similarly, the — — operator decrements its single numeric operand, which must be a variable, an element of an array, or a
field of an object, by one. Like the ++ operator, the behavior of — — depends on its position relative to the operand. When
used before the operand, it decrements the operand and returns the decremented value. When used after the operand, it
decrements the operand, but returns the un-decremented value.

The expressions x++ and x— — are equivalent to x=x+1 and x=x-1, respectively, except that when using the increment
and decrement operators, x isonly evaluated once. If x isitself an expression with side effects, this makes a big difference.
For example, these two expressions are not equival ent:

al i ++] ++; /'l Increments an el enment of an array
a[i++] = a[i++] + 1; [// Adds one to an array elenent and stores it in another

These operators, in both prefix and postfix forms, are most commonly used to increment or decrement the counter that
controls aloop.

2.5.5. Comparison Operators

The comparison operators consist of the equality operators that test values for equality or inequality and the relational
operators used with ordered types (numbers and characters) to test for greater than and less than relationships. Both types of
operatorsyield abool ean result, so they are typically used with i f statementsand whi | e and f or loopsto make
branching and looping decisions. For example:

if (o!'=null) ...; /'l The not equal s operator
while(i < a.length) ...; /1 The | ess than operator

Java provides the following equality operators:
Equals(= =

The = = operator evaluatestot r ue if itstwo operands are equal and f al se otherwise. With primitive operands,
it tests whether the operand values themselves are identical. For operands of reference types, however, it tests
whether the operands refer to the same object or array. In other words, it does not test the equality of two distinct
objects or arrays. In particular, note that you cannot test two distinct strings for equality with this operator.

If = =isused to compare two numeric or character operands that are not of the same type, the narrower operand is
converted to the type of the wider operand before the comparison is done. For example, when comparing ashor t
toafl oat,theshort isfirst convertedto af | oat before the comparison is performed. For floating-point
numbers, the special negative zero value tests equal to the regular, positive zero value. Also, the special NaN (not-a-
number) valueis not equal to any other number, including itself. To test whether a floating-point value is NaN, use
theFl oat . i sNan() or Doubl e. i sNan() method.

Not Equals (! =)

The! = operator is exactly the opposite of the = = operator. It evaluatestot r ue if itstwo primitive operands have
different values or if its two reference operands refer to different objects or arrays. Otherwise, it evaluatesto
fal se.

The relational operators can be used with numbers and characters, but not with bool ean values, objects, or arrays because

file:///C|/orielly/jnut/ch02_05.htm (8 of 15) [2/5/2003 7:46:25 PM]

Expressions and Operators (Javain a Nutshell)

those types are not ordered. Java provides the following relational operators:
Less Than (<)

Evaluatestot r ue if thefirst operand is less than the second.
Less Than or Equal (<=)

Evaluatestot r ue if thefirst operand is less than or equal to the second.
Greater Than (>)

Evaluatestot r ue if thefirst operand is greater than the second.
Greater Than or Equal (>=)

Evaluatestot r ue if thefirst operand is greater than or equal to the second.

2.5.6. Boolean Operators

Aswe've just seen, the comparison operators compare their operands and yield abool ean result, which is often used in
branching and looping statements. In order to make branching and looping decisions based on conditions more interesting
than a single comparison, you can use the Boolean (or logical) operators to combine multiple comparison expressionsinto a
single, more complex, expression. The Boolean operators require their operands to be bool ean values and they evaluate
tobool ean values. The operators are:

Conditional AND (&&)

This operator performs a Boolean AND operation on its operands. It evaluatestot r ue if and only if both its
operandsaret r ue. If either or both operands aref al se, it evaluatesto f al se. For example:

If (x <10 & y > 3) ... // If both conparisons are true

This operator (and all the Boolean operators except the unary ! operator) have alower precedence than the comparison
operators. Thus, it is perfectly legal to write aline of code like the one above. However, some programmers prefer to use
parentheses to make the order of evaluation explicit:

if ((x <10) && (y > 3))
Y ou should use whichever style you find easier to read.
This operator is called a conditional AND because it conditionally evaluates its second operand. If the first operand
evauatestof al se, thevalue of the expressionisf al se, regardless of the value of the second operand. Therefore, to
increase efficiency, the Javainterpreter takes a shortcut and skips the second operand. Since the second operand is not

guaranteed to be evaluated, you must use caution when using this operator with expressions that have side effects. On the
other hand, the conditional nature of this operator alows us to write Java expressions such as the following:

If (data !'= null & i < data.length & data[i] !'= -1)

file:/lIC|/orielly/jnut/ch02_05.htm (9 of 15) [2/5/2003 7:46:25 PM]

Expressions and Operators (Javain a Nutshell)

The second and third comparisonsin this expression would cause errorsif the first or second comparisons evaluated to
f al se. Fortunately, we don't have to worry about this because of the conditional behavior of the && operator.

Conditional OR (| |)

This operator performs a Boolean OR operation on itstwo bool ean operands. It evaluatestot r ue if either or
both of its operands aret r ue. If both operands aref al se, it evaluatestof al se. Like the && operator, | | does
not always evaluate its second operand. If the first operand evaluatestot r ue, the value of the expressionist r ue,
regardless of the value of the second operand. Thus, the operator simply skips that second operand in that case.

Boolean NOT (!)

This unary operator changesthe bool ean value of its operand. If appliedto at r ue value, it evaluatestof al se,
and if appliedto af al se value, it evaluatestot r ue. It isuseful in expressions like these:

if (!found) ... /1 found is a bool ean vari abl e decl ared sonmewhere
while (!'c.isEmpty()) ... // The isEnpty() nethod returns a bool ean val ue

Because! isaunary operator, it has a high precedence and often must be used with parentheses:
if ('(x >y & vy > 2))
Boolean AND (&)

When used with bool ean operands, the & operator behaves like the && operator, except that it aways evaluates
both operands, regardless of the value of the first operand. This operator is almost always used as a bitwise operator
with integer operands, however, and many Java programmers would not even recognize its use with bool ean
operands as legal Java code.

Boolean OR (|)

This operator performs a Boolean OR operation on itstwo bool ean operands. Itislikethe| | operator, except
that it always evaluates both operands, even if thefirst oneist r ue. The| operator isamost aways used asa
bitwise operator on integer operands; its use with bool ean operandsisvery rare.

Boolean XOR ()

When used with bool ean operands, this operator computes the Exclusive OR (XOR) of its operands. It evaluates
tot r ue if exactly one of the two operandsist r ue. In other words, it evaluatesto f al se if both operands are

f al se orif both operandsaret r ue. Unlikethe & and | | operators, this one must always eval uate both operands.
The” operator is much more commonly used as a bitwise operator on integer operands. With bool ean operands,
this operator is equivalent to the ! = operator.

2.5.7. Bitwise and Shift Operators

The bitwise and shift operators are low-level operators that manipulate the individual bits that make up an integer value.
The bitwise operators are most commonly used for testing and setting individual flag bitsin avalue. In order to understand
their behavior, you must understand binary (base-2) numbers and the twos-complement format used to represent negative

file://IC|/orielly/jnut/ch02_05.htm (10 of 15) [2/5/2003 7:46:25 PM]

Expressions and Operators (Javain a Nutshell)

integers. Y ou cannot use these operators with floating-point, bool ean, array, or object operands. When used with
bool ean operands, the &, | , and ™ operators perform a different operation, as described in the previous section.

If either of the argumentsto a bitwise operator isal ong, theresultisal ong. Otherwise, theresultisani nt . If the left
operand of ashift operator isal ong, theresultisal ong; otherwise, theresultisani nt . The operators are:

Bitwise Complement (~)

The unary ~ operator is known as the bitwise complement, or bitwise NOT, operator. It inverts each bit of itssingle
operand, converting ones to zeros and zeros to ones. For example:

byte b = ~12; // ~00000110 ==> 11111001 or -13 deci nal
flags = flags & ~f; /[l Clear flag f in a set of flags

Bitwise AND (&)

This operator combines its two integer operands by performing a Boolean AND operation on their individual bits.
Theresult has a bit set only if the corresponding bit is set in both operands. For example:

10 & 7 // 00001010 & 00000111 ==> 00000010 or 2
If ((flags & f) !'=0) [l Test whether flag f is set

When used with bool ean operands, & is the infrequently used Boolean AND operator described earlier.

Bitwise OR (|)

This operator combines its two integer operands by performing a Boolean OR operation on their individual bits. The
result has a bit set if the corresponding bit is set in either or both of the operands. It has a zero bit only where both
corresponding operand bits are zero. For example:

10 | 7 /1 00001010 | 00000111 ==> 00001111 or 15
flags = flags | f; /'l Set flag f

When used with bool ean operands, | istheinfrequently used Boolean OR operator described earlier.
Bitwise XOR (")

This operator combines its two integer operands by performing a Boolean XOR (Exclusive OR) operation on their
individual bits. The result has a bit set if the corresponding bits in the two operands are different. If the
corresponding operand bits are both ones or both zeros, the result bit is a zero. For example:

10 & 7 // 00001010 ~ 00000111 ==> 00001101 or 13
When used with bool ean operands, ~ isthe infrequently used Boolean XOR operator.

L eft Shift (<<)

The << operator shifts the bits of the left operand left by the number of places specified by the right operand. High-

file://IC|/orielly/jnut/ch02_05.htm (11 of 15) [2/5/2003 7:46:25 PM]

Expressions and Operators (Javain a Nutshell)

order bits of the left operand are lost, and zero bits are shifted in from the right. Shifting an integer left by n placesis
equivalent to multiplying that number by 2". For example:

10 << 1 // 00001010 << 1 = 00010100 = 20 = 10*2
7 << 3 // 00000111 << 3 = 00111000 = 56 = 7*8
-1 << 2 |/ OXFFFFFFFF << 2 = OXFFFFFFFC = -4 = -1*4

If the left operand isal ong, the right operand should be between 0 and 63. Otherwise, the left operand is taken to be an
I nt, and the right operand should be between 0 and 31.

Signed Right Shift (>>)

The >> operator shifts the bits of the left operand to the right by the number of places specified by the right operand.
The low-order bits of the left operand are shifted away and are lost. The high-order bits shifted in are the same as the
original high-order bit of the left operand. In other words, if the |left operand is positive, zeros are shifted into the
high-order bits. If the |eft operand is negative, ones are shifted in instead. This technique is known as sign extension;
it is used to preserve the sign of the left operand. For example:

10 >> 1 // 00001010 >> 1 = 00000101 = 5 = 10/2
27 >> 3 // 00011011 >> 3 = 00000011 = 3 = 27/8
-50 >> 2 // 11001110 >> 2 = 11110011 = -13 I= -50/4

If the left operand is positive and the right operand is n, the >> operator is the same as integer division by 2n.

Unsigned Right Shift (>>>)
This operator is like the >> operator, except that it always shifts zeros into the high-order bits of the result,
regardless of the sign of the left-hand operand. Thistechnique is called zero extensione; it is appropriate when the

left operand is being treated as an unsigned value (despite the fact that Javainteger types are all signed). Examples:

-50 >>> 2 /] 11001110 >>> 2
Oxff >>> 4 [11111111 >>> 4

00110011
00001111

51
15 = 255/16

2.5.8. Assignment Operators

The assignment operators store, or assign, a value into some kind of variable. The left operand must evaluate to an
appropriate local variable, array element, or object field. The right side can be any value of atype compatible with the
variable. An assignment expression evaluates to the value that is assigned to the variable. More importantly, however, the
expression has the side effect of actually performing the assignment. Unlike all other binary operators, the assignment
operators are right-associative, which means that the assignmentsin a=b=c are performed right-to-left, as follows:
a=(b=c).

The basic assignment operator is =. Do not confuse it with the equality operator, = =. In order to keep these two operators
distinct, | recommend that you read = as "is assigned the value."

In addition to this simple assignment operator, Java also defines 11 other operators that combine assignment with the 5
arithmetic operators and the 6 bitwise and shift operators. For example, the += operator reads the value of the left variable,
adds the value of the right operand to it, stores the sum back into the left variable as a side effect, and returns the sum as the

file://IC|/orielly/jnut/ch02_05.htm (12 of 15) [2/5/2003 7:46:25 PM]

Expressions and Operators (Javain a Nutshell)

value of the expression. Thus, the expression x+=2 is almost the same x=x+2. The difference between these two
expressionsis that when you use the += operator, the left operand is evaluated only once. This makes a difference when
that operand has a side effect. Consider the following two expressions, which are not equival ent:

a[i ++] += 2;
a[i++] = a[i++] + 2;

The general form of these combination assignment operatorsis.
var op= val ue

Thisisequivalent (unlessthere are side effectsinvar) to:
var = var op val ue

The available operators are:

+= —= *= /= % [l Arithmetic operators plus assignnent
&= = A= /1 Bitw se operators plus assignnment
<<= >>= >>>= /1 Shift operators plus assignnent
The most commonly used operators are += and — =, although &= and | = can aso be useful when working with bool ean

flags. For example:

I += 2; /'l Increnent a | oop counter by 2

c —= 5; /| Decrenent a counter by 5

flags | = f; /Il Set a flag f in an integer set of flags
flags &= ~f; /Il Clear a flag f in an integer set of flags

2.5.9. The Conditional Operator

The conditional operator ?: isasomewhat obscure ternary (three-operand) operator inherited from C. It allows you to
embed a conditional within an expression. Y ou can think of it as the operator version of thei f / el se statement. The first
and second operands of the conditional operator are separated by a question mark (?), while the second and third operands
are separated by acolon (:). The first operand must evaluate to abool ean value. The second and third operands can be of
any type, but they must both be of the same type.

The conditional operator starts by evaluating itsfirst operand. If itist r ue, the operator evaluates its second operand and
uses that as the value of the expression. On the other hand, if thefirst operandisf al se, the conditional operator evaluates
and returns its third operand. The conditional operator never evaluates both its second and third operand, so be careful
when using expressions with side effects with this operator. Examples of this operator are:

int max = (x >y) ? X : vV,
String nane = (nanme != null) ? nane : "unknown";

Note that the ?: operator has lower precedence than all other operators except the assignment operators, so parentheses are
not usually necessary around the operands of this operator. Many programmers find conditional expressions easier to read if
the first operand is placed within parentheses, however. Thisis especialy true because the conditional i f statement always

file://IC|/orielly/jnut/ch02_05.htm (13 of 15) [2/5/2003 7:46:25 PM]

Expressions and Operators (Javain a Nutshell)

hasits conditional expression written within parentheses.

2.5.10. The instanceof Operator

Thei nst anceof operator requires an object or array value as its |eft operand and the name of areference type asitsright
operand. It evaluatesto t r ue if the object or array is an instance of the specified type; it returnsf al se otherwise. If the
left operandisnul | ,i nst anceof alwaysevauatestof al se. If ani nst anceof expression evaluatestot r ue, it
means that you can safely cast and assign the left operand to a variable of the type of the right operand.

Thei nst anceof operator can be used only with array and object types and values, not primitive types and values. Object
and array types are discussed in detail later in this chapter. Examplesof i nst anceof are:

"string" instanceof String /1 True: all strings are instances of String
"" instanceof bject /1l True: strings are also instances of (bject
new int[] {1} instanceof int[] // True: the array value is an int array

new int[] {1} instanceof byte[] // False: the array value is not a byte array
new int[] {1} instanceof Object // True: all arrays are instances of bject
nul | instanceof String /'l False: null is never instanceof anything

/'l Use instanceof to nake sure that it is safe to cast an object
i f (object instanceof Point) ({

Point p = (Point) object;
}

2.5.11. Special Operators

There are five language constructs in Java that are sometimes considered operators and sometimes considered ssimply part
of the basic language syntax. These "operators' are listed in Table 2-5 in order to show their precedence relative to the
other true operators. The use of these language constructsis detailed el sewhere in this chapter, but is described briefly here,
so that you can recognize these constructs when you encounter them in code examples:

Object member access (.)

An object isacollection of data and methods that operate on that data; the data fields and methods of an object are
called its members. The dot (.) operator accesses these members. If 0 is an expression that eval uates to an object
reference, and f isthe name of afield of the object, 0. f evaluates to the value contained in that field. If misthe
name of amethod, 0. mrefers to that method and allows it to be invoked using the () operator shown later.

Array element access ([])

An array isanumbered list of values. Each element of an array can be referred to by its number, or index. The[]
operator allows you to refer to the individual elements of an array. If a isan array, and i isan expression that
evaluatestoani nt, a[i | refersto one of the elements of a. Unlike other operators that work with integer values,
this operator restricts array index values to be of typei nt or narrower.

Method invocation (())

A method is anamed collection of Java code that can be run, or invoked, by following the name of the method with
Zero or more comma-separated expressions contained within parentheses. The values of these expressions are the

file://IC|/orielly/jnut/ch02_05.htm (14 of 15) [2/5/2003 7:46:25 PM]

Expressions and Operators (Javain a Nutshell)

arguments to the method. The method processes the arguments and optionally returns a value that becomes the value
of the method invocation expression. If 0. misamethod that expects no arguments, the method can be invoked with
o. m() . If the method expects three arguments, for example, it can be invoked with an expression such as

0. m(X, Y, z) . Before the Javainterpreter invokes a method, it evaluates each of the arguments to be passed to the
method. These expressions are guaranteed to be evaluated in order from left to right (which matters if any of the
arguments have side effects).

Object creation (new)

In Java, objects are created with the new operator, which is followed by the type of the object to be created and a
parenthesized list of arguments to be passed to the object constructor. A constructor is a special method that
initializes a newly created object, so the object creation syntax is similar to the Java method invocation syntax. For
example:

new ArraylList();
new Poi nt (1, 2)

Type conversion or casting (())

Aswe've aready seen, parentheses can also be used as an operator to perform narrowing type conversions, or casts.
Thefirst operand of this operator is the type to be converted to; it is placed between the parentheses. The second
operand is the value to be converted; it follows the parentheses. For example:

(byte) 28 /1 An integer literal cast to a byte type
(int) (x + 3.14f) // A floating-point sumvalue cast to an integer val ue
(String)h. get (k) /'l A generic object cast to a nore specific string type

4 PREVIOUS HOME NEXT »
2.4. Primitive Data Types BOOK INDEX 2.6. Statements

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch02_05.htm (15 of 15) [2/5/2003 7:46:25 PM]

file:///C|/orielly/jnut/copyrght.htm

Statements (Javain a Nutshell)

41 PREVIQUS

Chapter 2: Java Syntax from HEXT
the Ground Up

2.6. Statements

A statement isasingle "command" that is executed by the Javainterpreter. By default, the Javainterpreter runs one
statement after another, in the order they are written. Many of the statements defined by Java, however, are flow-control
statements, such as conditionals and loops, that alter this default order of execution in well-defined ways. Table 2-6

summarizes the statements defined by Java.

Table 2-6. Java Statements

Statement
expression

compound
empty
labeled
variable

i f

swi tch

whi | e
do
for
br eak

conti nue

return

synchroni zed

t hr ow

try

Purpose Syntax

sde effects var=expr; expr++; method() ; newType() ;

group statements { statements}

do nothing ;

name a statement |label : statement

declareavariable |[f i nal] type name [= value] [, name[= valug]] ...;

conditional I f (expr) statement [el se statement]

conditional switch (expr) { [caseexpr: statements] ... [def aul t : statements] }
loop whi | e (expr) statement

loop do statementwhi |l e (expr);

smplifiedloop [for (init; test; increment) statement

exit block break [label | ;
restart loop conti nue[label];
end method return|expr];

critical section |synchroni zed (expr) { statements}
throw exception |t hr owexpr ;

try {statements} [catch (typename) {statements}]|..[finally
handle exception |{ statements}]

2.6.1. Expression Statements

Aswe saw earlier in the chapter, certain types of Java expressions have side effects. In other words, they do not simply
evaluate to some value, but also change the program state in some way. Any expression with side effects can be used as a
statement simply by following it with a semicolon. The legal types of expression statements are assignments, increments and

file:/lIC|/orielly/jnut/ch02_06.htm (1 of 16) [2/5/2003 7:46:30 PM]

Statements (Javain a Nutshell)

decrements, method calls, and object creation. For example:

a =1, /'l Assi gnnent

X *= 2; /'l Assignnent with operation
I ++; [l Post-increnent

--C; /1 Pre-decrenent
Systemout.println("statenment”); /1 Method invocation

2.6.2. Compound Statements

A compound statement is any number and kind of statements grouped together within curly braces. Y ou can use a compound
statement anywhere a statement is required by Java syntax:

for(int i =0; i < 10; i++) {
a[i]++; /1 Body of this loop is a conpound
statenment. b[i]--; /1 1t consists of two expression statenents
} /1 within curly braces.

2.6.3. The Empty Statement

An empty statement in Javais written as a single semicolon. The empty statement doesn't do anything, but the syntax is
occasionally useful. For example, you can useit to indicate an empty loop body of af or loop:

for(int i =0; i < 10; a[i++]++) [// Increnent array el enents
/* enpty */; /'l Loop body is enpty statenent

2.6.4. Labeled Statements

A labeled statement is simply a statement that has been given a name by prepending aidentifier and acolon to it. Labels are
used by the br eak and cont i nue statements. For example:

rowLoop: for(int r = 0; r <rows.length; r++) { /'l A label ed | oop
col Loop: for(int ¢ = 0; ¢ < columms.length; c++) { /'l Anot her one
break rowLoop; /1l Use a | abel

}
}

2.6.5. Local Variable Declaration Statements

A local variable, often simply called avariable, is a symbolic name for alocation where avalue can be stored that is defined
within amethod or compound statement. All variables must be declared before they can be used; thisis done with avariable
declaration statement. Because Javais astrongly typed language, a variable declaration specifies the type of the variable, and
only values of that type can be stored in the variable.

Inits ssimplest form, a variable declaration specifies avariable's type and name:

int counter;
String s;

file:/lIC|/orielly/jnut/ch02_06.htm (2 of 16) [2/5/2003 7:46:30 PM]

Statements (Javain a Nutshell)

A variable declaration can also include an initializer : an expression that specifies an initial value for the variable. For
example:

int i =0;
String s = readLi ne();
int[] data = {x+1, x+2, x+3}; [// Array initializers are docunented |ater

The Java compiler does not alow you to use avariable that has not been initialized, so it is usually convenient to combine
variable declaration and initialization into a single statement. The initializer expression need not be aliteral value or a
constant expression that can be evaluated by the compiler; it can be an arbitrarily complex expression whose valueis
computed when the program is run.

A single variable declaration statement can declare and initialize more than one variable, but al variables must be of the
same type. Variable names and optional initializers are separated from each other with commas:

int i, j, k;
float x = 1.0, y = 1.0;
String question = "Really Quit?", response,;

In Java 1.1 and later, variable declaration statements can begin with thef i nal keyword. This modifier specifies that once
an initial valueis specified for the variable, that value is never alowed to change:

final String greeting = getlLocal LanguageG eeting();

C programmers should note that Java variable declaration statements can appear anywhere in Java code; they are not
restricted to the beginning of a method or block of code. Local variable declarations can also be integrated with the initialize
portion of af or loop, aswell discuss shortly.

Local variables can be used only within the method or block of code in which they are defined. Thisis called their scope or
lexical scope:

void nmethod() { /'l A generic nethod
int i = 0; /'l Declare variable i
while (i < 10) { /1 i is in scope here
int j = 0; /'l Declare j; i and j are in scope here
} /1 j is no longer in scope; can't use it anynore
Systemout.printin(i); // i is still in scope here
} /1 The scope of i ends here

2.6.6. The if/else Statement

Thei f statement isthe fundamental control statement that allows Javato make decisions or, more precisely, to execute
statements conditionally. Thei f statement has an associated expression and statement. If the expression evaluatestot r ue,
the interpreter executes the statement. If the expression evaluatesto f al se, however, the interpreter skips the statement. For
example:

if (usernane == null) [l 1f usernane is null,
user nane = "John Doe"; /1 define it.

file:/lIC|/orielly/jnut/ch02_06.htm (3 of 16) [2/5/2003 7:46:30 PM]

Statements (Javain a Nutshell)

Although they ook extraneous, the parentheses around the expression are arequired part of the syntax for thei f statement.

As| aready mentioned, ablock of statements enclosed in curly bracesisitself a statement, so we can also writei f
statements that ook as follows:

if ((address == null) || (address.equals(""))) {
address = "[undefined]";
Systemout.println("WARNI NG no address specified.");

}

Ani f statement can include an optional el se keyword that isfollowed by a second statement. In this form of the
statement, the expression is evaluated, and, if itist r ue, the first statement is executed. Otherwise, the second statement is
executed. For example:

if (usernane !'= null)
Systemout.printin("Hello " + usernane);
el se {
user nanme = askQuestion("Wat is your nanme?");
Systemout.printin("Hello " + usernane + ". Wl cone!");
}

When you use nested i f / el se statements, some caution is required to ensure that the el se clause goes with the
appropriatei f statement. Consider the following lines:

if (i ==1j)
if (j ==k
Systemout.println("i equals k");
el se
Systemout.printIn("i doesn't equal j"); /1 WRONG !

In thisexample, theinner i f statement forms the single statement allowed by the syntax of the outer i f statement.
Unfortunately, it is not clear (except from the hint given by the indentation) whichi f the el se goeswith. And in this
example, the indentation hint iswrong. Theruleisthat an el se clause like thisis associated with the nearest i f statement.
Properly indented, this code looks like this:

if (i ==j)
if (j == k)
Systemout.println("i equals k");
el se
Systemout.println("i doesn't equal j"); /1 V\RONG !

Thisislegal code, but it is clearly not what the programmer had in mind. When working with nested i f statements, you
should use curly braces to make your code easier to read. Here is a better way to write the code:

ifo(io==17) {
if (j == Kk)
Systemout.println("i equals k");
}
el se {

Systemout.println("i doesn't equal j");

file:/lIC|/orielly/jnut/ch02_06.htm (4 of 16) [2/5/2003 7:46:30 PM]

Statements (Javain a Nutshell)

}
2.6.6.1. The else if clause

Thei f / el se statement is useful for testing a condition and choosing between two statements or blocks of code to execute.
But what about when you need to choose between several blocks of code? Thisistypically donewith an el sei f clause,
which is not really new syntax, but a common idiomatic usage of the standard i f / el se statement. It looks like this:

if (n==1) {
/] Execute code bl ock #1
}

elseif (n == 2) {
/] Execute code bl ock #2

}
else if (n == 3) {
/'l Execute code bl ock #3
}
el se {
/1 1f all else fails, execute bl ock #4
}

Thereis nothing special about thiscode. It isjust aseriesof i f statements, whereeachi f is part of the el se clause of the
previous statement. Using the el sei f idiomis preferable to, and more legible than, writing these statements out in their
fully nested form:

if (n==1) {
/| Execute code bl ock #1
}
el se {
if (n==2) {
/'l Execute code bl ock #2
}
el se {
if (n==23) {
/'l Execute code bl ock #3
}
el se {
/1 1f all else fails, execute bl ock #4
}

}
}

2.6.7. The switch Statement

Ani f statement causes a branch in the flow of a program's execution. Y ou can use multiplei f statements, as shown in the
previous section, to perform a multiway branch. Thisis not always the best solution, however, especially when all of the
branches depend on the value of asingle variable. In this case, it isinefficient to repeatedly check the value of the same
variable in multiplei f statements.

A better solution isto useasw t ch statement, which isinherited from the C programming language. Although the syntax

file:/lIC|/orielly/jnut/ch02_06.htm (5 of 16) [2/5/2003 7:46:30 PM]

Statements (Javain a Nutshell)

of this statement is not nearly as elegant as other parts of Java, the brute practicality of the construct makes it worthwhile. 1f
you are not familiar with the swi t ch statement itself, you may at least be familiar with the basic concept, under the name
computed goto or jump table. A swi t ch statement has an integer expression and a body that contains various numbered
entry points. The expression is evaluated, and control jumps to the entry point specified by that value. For example, the
following swi t ch statement is equivalent to therepeated i f and el se/ i f statements shown in the previous section:

switch(n) {
case 1: [/ Start here if n ==1
/| Execute code bl ock #1
br eak; /'l Stop here
case 2: /[l Start here if n == 2
/] Execute code bl ock #2
br eak; /'l Stop here
case 3: /[l Start here if n == 3
/| Execute code bl ock #3
br eak; /'l Stop here
defaul t: [/ 1f all else fails...
/'l Execute code bl ock #4
br eak; /'l Stop here
}

Asyou can see from the example, the various entry pointsinto aswi t ch statement are labeled either with the keyword
case, followed by an integer value and a colon, or with the special def aul t keyword, followed by a colon. When a

SW t ch statement executes, the interpreter computes the value of the expression in parentheses and then looks for acase
label that matches that value. If it finds one, the interpreter starts executing the block of code at the first statement following
the case label. If it doesnot find acase label with a matching value, the interpreter starts execution at the first statement
following a special-case def aul t : label. Or, if thereisno def aul t : label, the interpreter skips the body of theswi t ch
statement altogether.

Note the use of the br eak keyword at the end of each case in the previous code. The br eak statement is described |ater
in this chapter, but, in this case, it causes the interpreter to exit the body of theswi t ch statement. The case clausesin a
swi t ch statement specify only the starting point of the desired code. The individual cases are not independent blocks of
code, and they do not have any implicit ending point. Therefore, you must explicitly specify the end of each case with a

br eak or related statement. In the absence of br eak statements, aswi t ch statement begins executing code at the first
statement after the matching case label and continues executing statements until it reaches the end of the block. On rare
occasions, it isuseful to write code like thisthat falls through from one case label to the next, but 99% of the time you
should be careful to end every case and def aul t section with a statement that causes the swi t ch statement to stop
executing. Normally you use abr eak statement, but r et ur n andt hr ow also work.

A swi t ch statement can have more than one case clause labeling the same statement. Consider the swi t ch statement in
the following method:

bool ean parseYesOr NoResponse(char response) {
switch(response) {

case 'y':

case 'Y': return true;

case 'n':

case 'N : return false;

default: throw new ||| egal Argunent Excepti on("Response nust be Y or N');

}
}

file:/lIC|/orielly/jnut/ch02_06.htm (6 of 16) [2/5/2003 7:46:30 PM]

Statements (Javain a Nutshell)

There are some important restrictions on the swi t ch statement and itscase labels. First, the expression associated with a
swi t ch statement must haveabyt e, char,short, ori nt value. Thefloating-point and bool ean types are not
supported, and neither is| ong, eventhough | ong is an integer type. Second, the value associated with each case |abel
must be a constant value or a constant expression the compiler can evaluate. A case label cannot contain aruntime
expressions involving variables or method calls, for example. Third, the case label values must be within the range of the
datatype used for theswi t ch expression. And finaly, it is obviously not legal to have two or more case labelswith the
same value or more than onedef aul t label.

2.6.8. The while Statement

Just asthei f statement is the basic control statement that allows Java to make decisions, the whi | e statement is the basic
statement that allows Java to perform repetitive actions. It has the following syntax:

whi | e (expression)
st at ement

Thewhi | e statement works by first evaluating the expression. If itisf al se, theinterpreter skips the statement associated
with the loop and moves to the next statement in the program. If itist r ue, however, the statement that forms the body of
the loop is executed, and the expression is reevaluated. Again, if the value of expressionisf al se, the interpreter moves on
to the next statement in the program; otherwise it executes the statement again. This cycle continues while the expression
remainst r ue (i.e., until it evaluatesto f al se), at which point thewhi | e statement ends, and the interpreter moves on to
the next statement. Y ou can create an infinite loop with the syntax whi | e(t r ue) .

Hereisan examplewhi | e loop that prints the numbers 0 to 9:

int count = O;

while (count < 10) {
Systemout. println(count);
count ++;

}

Asyou can see, the variable count starts off at O in this example and is incremented each time the body of the loop runs.
Once the loop has executed 10 times, the expression becomesf al se (i.e, count isno longer lessthan 10), thewhi | e
statement finishes, and the Java interpreter can move to the next statement in the program. Most loops have a counter
variable like count . The variable namesi , j , and k are commonly used as aloop counters, although you should use more
descriptive namesiif it makes your code easier to understand.

2.6.9. The do Statement

A do loop is much like awhi | e loop, except that the loop expression is tested at the bottom of the loop, rather than at the
top. This means that the body of the loop is always executed at |east once. The syntax is:

do
st at enent
while (expression) ;

There are a couple of differences to notice between the do loop and the more ordinary whi | e loop. First, the do loop
requires both the do keyword to mark the beginning of the loop and the whi | e keyword to mark the end and introduce the

file:/lIC|/orielly/jnut/ch02_06.htm (7 of 16) [2/5/2003 7:46:30 PM]

Statements (Javain a Nutshell)

loop condition. Also, unlike thewhi | e loop, the do loop is terminated with a semicolon. Thisis because the do loop ends
with the loop condition, rather than simply ending with a curly brace that marks the end of the loop body. The following do
loop prints the same output as the whi | e loop shown above:

int count = O;

do {
Systemout. println(count);
count ++;

} while(count < 10);

Note that the do loop is much less commonly used than itswhi | e cousin. Thisis because, in practice, it isunusual to
encounter a situation where you are sure you always want aloop to execute at least once.

2.6.10. The for Statement

Thef or statement provides alooping construct that is often more convenient than thewhi | e and do loops. Thef or
statement takes advantage of a common looping pattern. Most loops have a counter, or state variable of somekind, that is
initialized before the loop starts, tested to determine whether to execute the loop body, and then incremented, or updated
somehow, at the end of the loop body before the test expression is evaluated again. The initialization, test, and update steps
are the three crucial manipulations of aloop variable, and the f or statement makes these three steps an explicit part of the
loop syntax:

for(initialize ; test ; increnent)
st at ement

Thisf or loop isbasically equivalent to the following whi | e loop:[2]

[2] Asyou'll see when we consider the cont i nue statement, thiswhi | e loop is not exactly equivalent to the
f or loop. Well discuss how to write the true equivalent when we talk about thet ry/ cat ch/ final | y
statement.

initialize;

while(test) {
st at enent ;
i ncrenent ;

}

Placing theinitialize, test, and increment expressions at the top of af or loop makesit especially easy to understand what
the loop is doing, and it prevents mistakes such as forgetting to initialize or increment the loop variable. The interpreter
discards the values of the initialize and increment expressions, so in order to be useful, these expressions must have side
effects. initialize istypically an assignment expression, while increment is usually an increment, decrement, or some other

assignment.

Thefollowing f or loop prints the numbers 0 to 9, just as the previouswhi | e and do loops have done:

i nt count;
for(count = 0 ; count < 10 ; count ++)
System out. println(count);

file:/lIC|/orielly/jnut/ch02_06.htm (8 of 16) [2/5/2003 7:46:30 PM]

Statements (Javain a Nutshell)

Notice how this syntax places all the important information about the loop variable on asingle line, making it very clear how
the loop executes. Placing the increment expression in the f or statement itself also ssimplifies the body of the loop to a
single statement; we don't even need to use curly braces to produce a statement block.

Thef or loop supports some additional syntax that makes it even more convenient to use. Because many loops use their loop
variables only within the loop, thef or loop allowstheinitialize expression to be afull variable declaration, so that the
variableis scoped to the body of the loop and is not visible outside of it. For example:

for(int count = 0 ; count < 10 ; count ++)
Systemout. println(count);

Furthermore, the f or loop syntax does not restrict you to writing loops that use only a single variable. Both the initialize and
increment expressions of af or loop can use acommato separate multiple initializations and increment expressions. For
example:

for(int i =0, j =10 ; i <10 ; i++, j--)
sum+=1i * j;

Even though all the examples so far have counted numbers, f or loops are not restricted to loops that count numbers. For
example, you might use af or loop to iterate through the elements of alinked list:

for(Node n = listHead; n != null; n = n.nextNode())
process(n);

Theinitialize, test, and increment expressions of af or loop are all optional; only the semicolons that separate the
expressions are required. If the test expression is omitted, it isassumed to bet r ue. Thus, you can write an infinite loop as
for(;;).

2.6.11. The break Statement

A br eak statement causes the Java interpreter to skip immediately to the end of a containing statement. We have already
seen the br eak statement used with the swi t ch statement. The br eak statement is most often written as simply the
keyword br eak followed by a semicolon:

br eak;

When used in thisform, it causes the Javainterpreter to immediately exit the innermost containing whi | e, do, f or, or
swi t ch statement. For example:

for(int i =0; i < data.length; i++) { // Loop through the data array.
If (data[i] == target) { /1 When we find what we're | ooking for,
i ndex = i; [l remenber where we found it
br eak; /1 and stop | ooki ng!
}

} /'l The Java interpreter goes here after executing break

The br eak statement can also be followed by the name of a containing labeled statement. When used in thisform, br eak
causes the Java interpreter to immediately exit from the named block, which can be any kind of statement, not just aloop or
swi t ch. For example:

file:/lIC|/orielly/jnut/ch02_06.htm (9 of 16) [2/5/2003 7:46:30 PM]

Statements (Javain a Nutshell)

testfornull: if (data !'= null) { /1 1f the array is defined,
for(int row = 0; row < nunrows; row++) { /1 1oop through one di nension,
for(int col = 0; col < nunctols; col++) { // then | oop through the other.
if (data[rowj[col] == null) /1 1f the array is m ssing data,
break testfornull; /'l treat the array as undefi ned.
}
}

} [/ Java interpreter goes here after executing break testfornull

2.6.12. The continue Statement

Whileabr eak statement exitsaloop, acont i nue statement quits the current iteration of aloop and starts the next one.
cont i nue, in both its unlabeled and labeled forms, can be used only within awhi | e, do, or f or loop. When used without
alabel, cont i nue causesthe innermost loop to start a new iteration. When used with alabel that isthe name of a
containing loop, it causes the named loop to start a new iteration. For example:

for(int i =0; i < data.length; i++) { // Loop through data.
I f (data[i] == -1) /1 1f a data value is m ssing,
conti nue; /1l skip to the next iteration.
process(datal[i]); /1l Process the data val ue.
}

whi | e, do, and f or loopsdiffer dightly in the way that cont i nue starts anew iteration:

. Withawhi | e loop, the Javainterpreter smply returns to the top of the loop, tests the loop condition again, and, if it
evaluatestot r ue, executes the body of the loop again.

. Withado loop, theinterpreter jumps to the bottom of the loop, where it tests the loop condition to decide whether to
perform another iteration of the loop.

. Withaf or loop, the interpreter jumps to the top of the loop, where it first evaluates the increment expression and
then evaluates the test expression to decide whether to loop again. Asyou can see, the behavior of af or loop witha
cont i nue statement is different from the behavior of the "basically equivalent” whi | e loop | presented earlier;
increment gets evaluated inthe f or loop, but not in the equivalent whi | e loop.

2.6.13. The return Statement

A r et ur n statement tells the Java interpreter to stop executing the current method. If the method is declared to return a
value, ther et ur n statement is followed by an expression. The value of the expression becomes the return value of the
method. For example, the following method computes and returns the square of a number:

doubl e square(doubl e x) { /1 A nmethod to conmpute x squared
return x * x; /1 Conpute and return a val ue

}

Some methods are declared voi d to indicate they do not return any value. The Javainterpreter runs methods like this by
executing its statements one by one until it reaches the end of the method. After executing the last statement, the interpreter
returns implicitly. Sometimes, however, avoi d method has to return explicitly before reaching the last statement. In this
case, it can usether et ur n statement by itself, without any expression. For example, the following method prints, but does

file://IC|/orielly/jnut/ch02_06.htm (10 of 16) [2/5/2003 7:46:30 PM]

Statements (Javain a Nutshell)

not return, the square root of its argument. If the argument is a negative number, it returns without printing anything:

voi d print Squar eRoot (doubl e x) { /1l A nmethod to print square root of x
if (x <0) return; /1 1If x is negative, return explicitly
Systemout.println(Math.sqrt(x)); // Print the square root of x

} /1 End of nethod: return inplicitly

2.6.14. The synchronized Statement

Since Javais a multithreaded system, you must often take care to prevent multiple threads from modifying an object
simultaneously in away that might corrupt the object's state. Sections of code that must not be executed simultaneously are
known as critical sections. Java providesthe synchr oni zed statement to protect these critical sections. The syntax is:

synchroni zed (expression) {
statenents

}

expression is an expression that must evaluate to an object or an array. The statements constitute the code of the critical
section and must be enclosed in curly braces. Before executing the critical section, the Java interpreter first obtains an
exclusive lock on the object or array specified by expression. It holds the lock until it is finished running the critical section,
then releases it. While athread holds the lock on an object, no other thread can obtain that lock. Therefore, no other thread
can execute this or any other critical sections that require alock on the same object. If athread cannot immediately obtain the
lock required to execute a critical section, it simply waits until the lock becomes available.

Note that you do not have to usethe synchr oni zed statement unless your program creates multiple threads that share
data. If only one thread ever accesses a data structure, there is no need to protect it with synchr oni zed. When you do
haveto usesynchr oni zed, it might be in code like the following:

public static void SortlintArray(int[] a) {
/1l Sort the array a. This is synchronized so that sone other thread
/| cannot change el enents of the array while we're sorting it (at
/1 least not other threads that protect their changes to the array
/1 with synchronized).
synchroni zed (a) {
/1 Do the array sort here...

}
}

Thesynchr oni zed keyword is also available as amodifier in Javaand is more commonly used in this form than asa
statement. When applied to amethod, the synchr oni zed keyword indicates that the entire method is a critical section. For
asynchr oni zed class method (a static method), Java obtains an exclusive lock on the class before executing the method.
For asynchr oni zed instance method, Java obtains an exclusive lock on the class instance. (Class and instance methods
are discussed in Chapter 3, "Object-Oriented Programming in Java'.)

2.6.15. The throw Statement

An exception isasignal that indicates some sort of exceptional condition or error has occurred. To throw an exception isto
signal an exceptional condition. To catch an exception is to handle it--to take whatever actions are necessary to recover from
it.

file://IC|/orielly/jnut/ch02_06.htm (11 of 16) [2/5/2003 7:46:30 PM]

Statements (Javain a Nutshell)
In Java, thet hr ow statement is used to throw an exception:
t hrow expression ;

The expression must eval uate to an exception object that describes the exception or error that has occurred. Wel'll talk more
about types of exceptions shortly; for now, all you need to know isthat an exception is represented by an object. Hereis
some example code that throws an exception:

public static double factorial (int x) {
if (x <0)
throw new I 1| egal Argunment Exception("x nust be >= 0"));
doubl e fact;
for(fact=1.0; x > 1; fact *= x, Xx--)
/* enpty */ ; /'l Note use of the enpty statenent
return fact;

}

When the Javainterpreter executesat hr ow statement, it immediately stops normal program execution and starts looking

for an exception handler that can catch, or handle, the exception. Exception handlers are written with the

try/ catch/finally statement, which isdescribed in the next section. The Javainterpreter first looks at the enclosing
block of codeto seeif it has an associated exception handler. If so, it exits that block of code and starts running the exception-
handling code associated with the block. After running the exception handler, the interpreter continues execution at the
statement immediately following the handler code.

If the enclosing block of code does not have an appropriate exception handler, the interpreter checks the next higher
enclosing block of code in the method. This continues until a handler isfound. If the method does not contain an exception
handler that can handle the exception thrown by thet hr ow statement, the interpreter stops running the current method and
returnsto the caller. Now the interpreter starts looking for an exception handler in the blocks of code of the calling method.
In this way, exceptions propagate up through the lexical structure of Java methods, up the call stack of the Java interpreter. If
the exception is never caught, it propagates all the way up to the mai n() method of the program. If it is not handled in that
method, the Javainterpreter prints an error message, prints a stack trace to indicate where the exception occurred, and then
exits.

2.6.15.1. Exception types

An exception in Javais an object. The type of thisobjectisj ava. | angThr owabl e, or more commonly, some subclass of
Thr owabl e that more specifically describes the type of exception that occurred.[3] Thr owabl e hastwo standard
subclasses. j ava. | ang. Error andj ava. | ang. Except i on. Exceptionsthat are subclasses of Er r or generally
indicate unrecoverable problems: the virtual machine has run out of memory, or aclassfileis corrupted and cannot be read,
for example. Exceptions of this sort can be caught and handled, but it is rare to do so. Exceptions that are subclasses of
Except i on, on the other hand, indicate less severe conditions. These are exceptions that can be reasonably caught and
handled. They include such exceptionsasj ava. i 0. EOFExcept i on, which signals the end of afile, and

java. |l ang. Arrayl ndexQut O BoundsExcept i on, which indicates that a program has tried to read past the end of
an array. In this book, | use the term "exception” to refer to any exception object, regardless of whether the type of that
exceptionisExcepti onorError.

[3]We haven't talked about subclasses yet; they are covered in detail in Chapter 3, "Object-Oriented
Programming in Java’'.

file://IC|/orielly/jnut/ch02_06.htm (12 of 16) [2/5/2003 7:46:30 PM]

Statements (Javain a Nutshell)

Since an exception is an object, it can contain data, and its class can define methods that operate on that data. The

Thr owabl e classand all its subclassesincludea St r i ng field that stores a human-readable error message that describes
the exceptional condition. It's set when the exception object is created and can be read from the exception with the

get Message() method. Most exceptions contain only this single message, but afew add other data. The
java.io.Interruptedl OExcepti on, for example, adds afield named byt esTr ansf er r ed that specifies how
much input or output was completed before the exceptional condition interrupted it.

2.6.15.2. Declaring exceptions

In addition to making a distinction between Er r or and Except i on classes, the Java exception-handling scheme also
makes a distinction between checked and unchecked exceptions. Any exception object that isan Er r or isunchecked. Any
exception object that isan Except i on ischecked, unlessitisasubclassof | ava. | ang. Runt i meExcepti on,in
which caseit is unchecked. (Runt i meExcept i on isasubclassof Except i on.) The reason for this distinction is that
virtually any method can throw an unchecked exception, at essentially any time. There is no way to predict an

Qut O Menor yEr r or , for example, and any method that uses objects or arrays can throw aNul | Poi nt er Excepti on
if itispassed aninvalid nul | argument. Checked exceptions, on the other hand, arise only in specific, well-defined
circumstances. If you try to read data from afile, for example, you must at |east consider the possibility that a

Fi | eNot FoundExcept i on will be thrown if the specified file cannot be found.

Java has different rules for working with checked and unchecked exceptions. If you write a method that throws a checked
exception, you must use at hr ows clause to declare the exception in the method signature. The reason these types of
exceptions are called checked exceptionsis that the Java compiler checks to make sure you have declared them in method
signatures and produces a compilation error if you have not. Thef act ori al () method shown earlier throws an exception
of typej ava. | ang. | | | egal Argunent Excepti on. Thisisasubclassof Runt i neExcepti on, soitisan
unchecked exception, and we do not have to declare it with at hr ows clause (although we can if we want to be explicit).

Even if you never t hr ow an exception yourself, there are times when you must useat hr ows clause to declare an
exception. If your method calls a method that can throw a checked exception, you must either include exception-handling
code to handle that exception or uset hr ows to declare that your method can also throw that exception.

How do you know if the method you are calling can throw a checked exception? Y ou can look at its method signature to find
out. Or, failing that, the Java compiler will tell you (by reporting a compilation error) if you've called a method whose
exceptions you must handle or declare. The following method reads the first line of text from a named file. It uses methods
that can throw varioustypesof j ava. i 0. | OExcept i on objects, so it declares thisfact with at hr ows clause:

public static String readFirstLine(String filenane) throws | OException {
Buf f eredReader in = new BufferedReader(new Fi |l eReader (fil enane));
return in.readLine();

}

We'll talk more about method declarations and method signatures later in this chapter.

2.6.16. The try/catch/finally Statement

Thetry/ catch/final |y statement is Java's exception-handling mechanism. Thet r y clause of this statement
establishes a block of code for exception handling. Thist r y block isfollowed by zero or more cat ch clauses, each of
which isablock of statements designed to handle a specific type of exception. The cat ch clauses are followed by an
optional f i nal | y block that contains cleanup code guaranteed to be executed regardless of what happensin thet ry block.
Boththecat ch andfi nal | y clauses are optional, but every t r y block must be accompanied by at |east one or the other.

file:///C|/orielly/jnut/ch02_06.htm (13 of 16) [2/5/2003 7:46:30 PM]

Statements (Javain a Nutshell)

Thetry,catch,andfi nal | y blocksall begin and end with curly braces. These are arequired part of the syntax and
cannot be omitted, even if the clause contains only a single statement.

The following code illustrates the syntax and purpose of thet ry/ cat ch/ fi nal | y statement:

try {
/1 Normally this code runs fromthe top of the block to the bottom

/'l without problenms. But it can sometinmes throw an exception,
/1l either directly with a throw statenent or indirectly by calling
/1 a nmethod that throws an exception.

}

catch (SoneException el) {
/1 This block contains statenments that handl e an excepti on obj ect
/'l of type SomeException or a subclass of that type. Statenments in
/1l this block can refer to that exception object by the nanme el.

}

catch (Anot her Exception e2) {
/1 This block contains statenments that handl e an excepti on obj ect
/1 of type Anot her Exception or a subclass of that type. Statenents
/1 in this block can refer to that exception object by the nane e2.

finally {
/'l This block contains statenents that are always executed
/'l after we |leave the try clause, regardl ess of whether we |eave it:
/1 1) normally, after reaching the bottom of the bl ock
/1 2) because of a break, continue, or return statenent;
/1 3) with an exception that is handled by a catch cl ause above; or
I 4) with an uncaught exception that has not been handl ed.
/1 1f the try clause calls Systemexit(), however, the interpreter
/'l exits before the finally clause can be run.

}
2.6.16.1. try

Thet ry clause smply establishes ablock of code that either has its exceptions handled or needs special cleanup code to be
run when it terminates for any reason. Thet r y clause by itself doesn't do anything interesting; it isthe cat ch and
final |y clausesthat do the exception-handling and cleanup operations.

2.6.16.2. catch

At ry block can be followed by zero or more cat ch clauses that specify code to handle various types of exceptions. Each
cat ch clauseis declared with a single argument that specifies the type of exceptions the clause can handle and also
provides a name the clause can use to refer to the exception object it is currently handling. The type and name of an
exception handled by acat ch clause are exactly like the type and name of an argument passed to a method, except that for
acat ch clause, the argument type must be Thr owabl e or one of its subclasses.

When an exception is thrown, the Java interpreter looks for acat ch clause with an argument of the same type as the
exception object or a superclass of that type. The interpreter invokes the first such cat ch clause it finds. The code within a

file://IC|/orielly/jnut/ch02_06.htm (14 of 16) [2/5/2003 7:46:30 PM]

Statements (Javain a Nutshell)

cat ch block should take whatever action is necessary to cope with the exceptional condition. If the exceptionisa
java.i o. Fi | eNot FoundExcept i on exception, for example, you might handle it by asking the user to check his
spelling and try again. It is not required to have acat ch clause for every possible exception; in some cases the correct
response isto allow the exception to propagate up and be caught by the invoking method. In other cases, such asa
programming error signaled by Nul | Poi nt er Except i on, the correct response is probably not to catch the exception at
al, but allow it to propagate and have the Java interpreter exit with a stack trace and an error message.

2.6.16.3. finally

Thefi nal | y clauseis generally used to clean up after the codeinthet r y clause (e.g., close files, shut down network
connections). What is useful about thef i nal | y clauseisthat it is guaranteed to be executed if any portion of thet ry
block is executed, regardless of how the codeinthet r y block completes. In fact, the only way at r y clause can exit
without allowing thef i nal | y clause to be executed is by invoking the Syst em exi t () method, which causes the Java
Interpreter to stop running.

In the normal case, control reaches the end of thet r y block and then proceedsto thef i nal | y block, which performs any
necessary cleanup. If control leavesthet r y block because of ar et ur n, cont i nue, or br eak statement, thefi nal | y
block is executed before control transfers to its new destination.

If an exception occursinthet ry block, and there is an associated cat ch block to handle the exception, control transfers
first tothe cat ch block and then to thef i nal | y block. If thereisno local cat ch block to handle the exception, control
transfersfirst tothef i nal | y block, and then propagates up to the nearest containing cat ch clause that can handle the
exception.

If afi nal | y block itself transfers control with ar et ur n, cont i nue, br eak, or t hr ow statement or by calling a
method that throws an exception, the pending control transfer is abandoned, and this new transfer is processed. For example,
if af i nal | y clause throws an exception, that exception replaces any exception that was in the process of being thrown. If a
final |y clauseissuesar et ur n statement, the method returns normally, even if an exception has been thrown and has
not been handled yet.

try andfi nal | y can be used together without exceptions or any cat ch clauses. Inthiscase, thef i nal | y block is
simply cleanup code that is guaranteed to be executed, regardliess of any br eak, cont i nue, or r et ur n statements within
thet ry clause.

In previous discussions of thef or and cont i nue statements, we've seenthat af or loop cannot be naively translated into
awhi | e loop because the cont i nue statement behaves dlightly differently when used in af or loop than it does when
used inawhi | e loop. Thefi nal | y clause givesusaway to writeawhi | e loop that istruly equivalent to af or loop.
Consider the following generalized f or loop:

for(initialize ; test ; increment)
st at ement

The following whi | e loop behaves the same, even if the st at enent block containsacont i nue statement:

initialize ;

while (test) {
try { statenent }
finally { increnment ; }

}

file://IC|/orielly/jnut/ch02_06.htm (15 of 16) [2/5/2003 7:46:30 PM]

Statements (Javain a Nutshell)

4 PREVIOUS HOME NEXT B
2.5. Expressions and BOOK INDEX 2.7. Methods
Operators

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch02_06.htm (16 of 16) [2/5/2003 7:46:30 PM]

file:///C|/orielly/jnut/copyrght.htm

Methods (Javain a Nutshell)

41 PREVIOUS Chapter 2: Java Syntax from HEXT
the Ground Up

2.7. Methods

A method is a named collection of Java statements that can be invoked by other Java code. When a method is invoked, it
is passed zero or more values known as arguments. The method performs some computations and, optionally, returns a
value. A method invocation is an expression that is evaluated by the Javainterpreter. Because method invocations can
have side effects, however, they can also be used as expression statements.

Y ou already know how to define the body of a method; it is simply an arbitrary sequence of statements enclosed within
curly braces. What is more interesting about a method is its signature. The signature specifies:

« The name of the method

. Thetype and name of each of the parameters used by the method

. Thetype of the value returned by the method

. The exception types the method can throw

. Various method modifiers that provide additional information about the method

A method signature defines everything you need to know about a method before calling it. It is the method specification
and defines the API for the method. The reference section of this book is essentially alist of method signatures for al
publicly accessible methods of all publicly accessible classes of the Java platform. In order to use the reference section of
this book, you need to know how to read a method signature. And, in order to write Java programs, you need to know how
to define your own methods, each of which begins with a method signature.

A method signature looks like this:
nodi fiers type name (paramlist) [throws exceptions]
The signature (the method specification) is followed by the method body (the method implementation), which issimply a

sequence of Java statements enclosed in curly braces. In certain cases (described in Chapter 3, "Object-Oriented
Programming in Java'), the implementation is omitted, and the method body is replaced with a single semicolon.

Here are some example method definitions. The method bodies have been omitted, so we can focus on the signatures:

public static void main(String[] args) { ... }

public final synchronized int indexO(Object elenent, int startlindex) { ... }
doubl e di stanceFromOrigin() { ... }

stati c doubl e squareRoot (double x) throws |11l egal Argunent Exception { ... }

protected abstract String readText(File f, String encoding)

file://IC|/orielly/jnut/ch02_07.htm (1 of 2) [2/5/2003 7:46:33 PM]

Methods (Javain a Nutshell)

throws Fil eNot FoundExcepti on, UnsupportedEncodi ngExcepti on;

modifiersis zero or more special modifier keywords, separated from each other by spaces. A method might be declared
with the publ i ¢ and st at i ¢ modifiers, for example. Other valid method modifiersareabst ract ,fi nal ,nati ve,
privat e, prot ect ed, and synchr oni zed. The meanings of these modifiers are not important here; they are
discussed in Chapter 3, "Object-Oriented Programming in Java''.

The type in amethod signature specifies the return type of the method. If the method returns a value, this is the name of a
primitive type, an array type, or aclass. If the method does not return a value, type must bevoi d. A constructor isa
special type of method used to initialize newly created objects. Aswe'll seein Chapter 3, "Object-Oriented Programming

in Java', constructors are defined just like methods, except that their signatures do not include this type specification.

The name of a method follows the specification of its modifiers and type. Method names, like variable names, are Java
identifiers and, like all Javaidentifiers, can use any characters of the Unicode character set. It islegal (and sometimes
useful) to define more than one method with the same name, as long as each version of the method has a different
parameter list. Defining multiple methods with the same name is called method overloading. The

System out. pri ntl n() method we've seen so much of is an overloaded method. There is one method by this name
that prints a string and other methods by the same name that print the values of the various primitive types. The Java
compiler decides which method to call based on the type of the argument passed to the method.

When you are defining a method, the name of the method is always followed by the method's parameter list, which must
be enclosed in parentheses. The parameter list defines zero or more arguments that are passed to the method. The
parameter specifications, if there are any, each consist of atype and a name and are separated from each other by commas
(if there are multiple parameters). When a method is invoked, the argument values it is passed must match the number,
type, and order of the parameters specified in this method signature line. The values passed need not have exactly the
same type as specified in the signature, but they must be convertible to those types without casting. C and C++
programmers should note that when a Java method expects no arguments, its parameter listissimply (), not (voi d) .

Thefinal part of amethod signatureisthet hr ows clause, which | first described when we discussed thet hr ow
statement. If a method usesthe t hr ow statement to throw a checked exception, or if it calls some other method that
throws a checked exception and does not catch or handle that exception, the method must declare that it can throw that
exception. If amethod can throw one or more checked exceptions, it specifies this by placing thet hr ows keyword after
the argument list and following it by the name of the exception class or classesit can throw. If a method does not throw
any exceptions, it does not usethet hr ows keyword. If a method throws more than one type of exception, separate the
names of the exception classes from each other with commas.

4 PREVIOUS HOME MEXT B
2.6. Statements BOOK INDEX 2.8. Classes and Objects

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch02_07.htm (2 of 2) [2/5/2003 7:46:33 PM]

file:///C|/orielly/jnut/copyrght.htm

Classes and Objects (Javain a Nutshell)

41 PREVIOUS Chapter 2: Java Syntax from HEXT mp
the Ground Up

2.8. Classes and Objects

Now that we have introduced operators, expressions, statements, and methods, we can finally talk about classes. A classis
anamed collection of fields that hold data values and methods that operate on those values. Some classes also contain
nested inner classes. Classes are the most fundamental structural element of al Java programs. Y ou cannot write Java code
without defining a class. All Java statements appear within methods, and all methods are defined within classes.

Classes are more than just another structural level of Java syntax. Just asa cell isthe smallest unit of life that can survive
and reproduce on its own, a classisthe smallest unit of Java code that can stand alone. The Java compiler and interpreter do
not recognize fragments of Java code that are smaller than aclass. A classisthe basic unit of execution for Java, which
makes classes very important. Java actually defines another construct, called an interface, that is quite smilar to aclass.
The distinction between classes and interfaces will become clear in Chapter 3, "Object-Oriented Programming in Java', but

for now I'll usetheterm "class' to mean either a class or an interface.

Classes are important for another reason: every class defines a new datatype. For example, you can define a class named
Poi nt to represent adata point in the two-dimensional Cartesian coordinate system. This class can define fields (each of
typedoubl e) to hold the X and Y coordinates of a point and methods to manipulate and operate on the point. The Poi nt
classisanew datatype.

When discussing data types, it isimportant to distinguish between the data type itself and the values the data type
represents. char isadatatype: it represents Unicode characters. But achar value represents a single specific character. A
classis adatatype; the value of aclasstypeis caled an object. We use the name class because each class defines a type (or
kind, or species, or class) of objects. The Poi nt classis adatatype that represents X,Y points, while aPoi nt object
represents a single specific X,Y point. Asyou might imagine, classes and their objects are closely linked. In the sections
that follow, we will be discussing both.

2.8.1. Defining a Class
Hereisapossible definition of the Poi nt class we have been discussing:

/** Represents a Cartesian (x,y) point */
public class Point {

public double x, vy; /1 The coordi nates of the point.

public Point(double x, double y) { /1 A constructor that
this.x = x; this.y =vy; /1l initializes the fields.

}

publ i ¢ doubl e distanceFromOrigin() { /1 A nmethod that operates on
return Math.sqgrt(x*x + y*y); /1l the x and y fields.

}

}

file://IC|/orielly/jnut/ch02_08.htm (1 of 4) [2/5/2003 7:46:37 PM]

Classes and Objects (Javain a Nutshell)

This class definition is stored in afile named Point.java and compiled to afile named Point.class, at which point it is
available for use by Java programs and other classes. This class definition is provided here for completeness and to provide
context, but don't expect to understand all the details just yet; most of Chapter 3, "Object-Oriented Programming in Java' is
devoted to the topic of defining classes. Do pay extra attention to the first (non-comment) line of the class definition,
however. Just as the first line of a method definition--the method signature--defines the API for the method, thisline
defines the basic API for a class (as described in the next chapter).

Keep in mind that you don't have to define every class you want to use in a Java program. The Java platform consists of
over 1500 predefined classes that are guaranteed to be available on every computer that runs Java.

2.8.2. Creating an Object

Now that we have defined the Poi nt class as a new data type, we can use the following line to declare a variable that
holds a Poi nt object:

Poi nt p;

Declaring avariable to hold a Poi nt object does not create the object itself, however. To actually create an object, you
must use the new operator. This keyword is followed by the object's class (i.e., itstype) and an optional argument list in
parentheses. These arguments are passed to the constructor method for the class, which initializes internal fieldsin the new
object:

/'l Create a Point object representing (2,-3.5) and store it in variable p
Point p = new Point(2.0, -3.5);

/'l Create sonme other objects as well
Date d = new Date(); /'l A Date object that represents the current tine
Vector list = new Vector(); // A Vector object to hold a |list of objects

The newkeyword is by far the most common way to create objects in Java. There are afew other ways that are worth
mentioning, however. First, there are a couple of classes that are so important that the Java language defines special literal
syntax for creating objects of those types (as we'll discussin the next section). Second, Java supports a dynamic loading
mechanism that allows programs to load classes and create instances of those classes dynamically. This dynamic
instantiation is done with the newl nst ance() methodsof j ava. | ang. Cl ass andj ava. | ang. Const ruct or.
Finally, in Java 1.1 and later, objects can also be created by deserializing them. In other words, an object that has had its
state saved, or serialized, usually to afile, can berecreated using thej ava. i 0. Qbj ect | nput St r eamclass.

2.8.3. Object Literals

Asl just said, Java defines specia syntax for creating instances of two very important classes. Thefirst classisSt ri ng,
which represents text as a string of characters. Since programs usually communicate with their users through the written
word, the ability to manipulate strings of text is quite important in any programming language. In some languages, strings
are aprimitive type, on a par with integers and characters. In Java, however, strings are objects; the data type used to
represent text isthe St r i ng class.

Because strings are such a fundamental data type, Java allows you to include text literaly in programs by placing it
between double-quote (") characters. For example:

String nane = "David";

file://IC|/orielly/jnut/ch02_08.htm (2 of 4) [2/5/2003 7:46:37 PM]

Classes and Objects (Javain a Nutshell)

System out. println("Hell o, + name) ;

Don't confuse the double-gquote characters that surround string literals with the single-quote (or apostrophe) characters that
surround char literals. String literals can contain any of the escape sequences char literals can (see Table 2-3). Escape

sequences are particularly useful for embedding double-quote characters within double-quoted string literals. For example:
String story = "\t\"How can you stand it?\" he asked sarcastically.\n";

String literals can be only asingle line long. Java does not support any kind of continuation-character syntax that allows
two separate lines to be treated as a single line. If you need to represent along string of text that does not fit on asingle
line, break it into independent string literals and use the + operator to concatenate the literals. For example:

String s = "This is a test of the /1l This is illegal; string literals
energency broadcast system'; [// cannot be broken across lines.
String s ="This is a test of the " + /1 Do this instead.

"enmergency broadcast systent;

This concatenation of literalsis done when your program is compiled, not when it is run, so you do not need to worry about
any kind of performance penalty.

The second class that supports its own specia object literal syntax isthe classnamed Cl ass. O ass isa(self-referential)
data type that represents all Java data types, including primitive types and array types, not just class types. To include a
Cl ass object literally in a Java program, follow the name of any datatypewith. cl ass. For example:

Class typelnt = int.type;
Class typelntArray = int[].type;
Cl ass typePoint = Point.cl ass;

Thisfeature is supported by Java 1.1 and later.

The Javareserved word nul | isaspecial literal that can be used with any class. Instead of representing aliteral object, it
represents the absence of an object. For example:

String s = null;
Point p = null;

Finally, objects can also be included literally in a Java program through the use of a construct known as an anonymous
inner class. Anonymous classes are discussed in Chapter 3, "Object-Oriented Programming in Java''.

2.8.4. Using an Object

Now that we've seen how to define classes and instantiate them by creating objects, we need to look at the Java syntax that
allows us to use those objects. Recall that a class defines a collection of fields and methods. Each object has its own copies
of those fields and has access to those methods. We use the dot character (.) to access the named fields and methods of an
object. For example:

Point p = new Point(2, 3); /'l Create an object

file://IC|/orielly/jnut/ch02_08.htm (3 of 4) [2/5/2003 7:46:37 PM]

Classes and Objects (Javain a Nutshell)

double x = p.x; /! Read a field of the object
p.y = p.X * p.X; /'l Set the value of a field
doubl e d = p.distanceFronOrigin(); // Access a nethod of the object

This syntax is central to object-oriented programming in Java, so you'll seeit alot. Note, in particular, the expression
p. di stanceFromOri gi n() . Thistellsthe Java compiler to look up a method named di st anceFr ontOri gi n()
defined by the class Poi nt and use that method to perform a computation on the fields of the object p. Wel'll cover the
details of this operation in Chapter 3, "Object-Oriented Programming in Java'.

4 PREVIOUS HOME HEXT »
2.7. Methods BOOK INDEX 2.9. Array Types

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch02_08.htm (4 of 4) [2/5/2003 7:46:37 PM]

file:///C|/orielly/jnut/copyrght.htm

Array Types (Javain a Nutshell)

41 PREVIOUS Chapter 2: Java Syntax from HEXT mp
the Ground Up

2.9. Array Types

Array types are the second kind of reference typesin Java. An array is an ordered collection, or numbered list, of values.
The values can be primitive values, objects, or even other arrays, but all of the values in an array must be of the same type.
Thetype of the array is the type of the valuesit holds, followed by the characters|] . For example:

byte b; /'l byte is a primtive type

byte[] arrayO Bytes; /'l byte[] is an array type: array of byte
byte[][] arrayO ArrayOrBytes; // byte[][] is another type: array of byte[]
Point[] points; /1 Point[] is an array of Point objects

For compatibility with C and C++, Java a so supports another syntax for declaring variables of array type. In this syntax,
one or more pairs of square brackets follow the name of the variable, rather than the name of the type:

byte arrayOrBytes|[]; /1 Sanme as byte[] arrayO Bytes
byte arrayOf ArrayOf Bytes[]][]; /1 Sanme as byte[][] arrayOf ArrayOr Bytes
byte[] arrayOf ArrayOf Bytes[]; /1 Ugh! Sanme as byte[][] arrayOf ArrayOf Bytes

Thisisamost always a confusing syntax, however, and it is not recommended.

With classes and objects, we have separate terms for the type and the values of that type. With arrays, the single word array
does double duty as the name of both the type and the value. Thus, we can speak of the array typei nt [] (atype) and an
array of i nt (aparticular array value). In practice, it isusually clear from context whether atype or avalueis being
discussed.

2.9.1. Creating Arrays

To create an array value in Java, you use the new keyword, just as you do to create an object. Arrays don't need to be
initialized like objects do, however, so you don't pass alist of arguments between parentheses. What you must specify,
though, is how big you want the array to be. If you are creating abyt e[| , for example, you must specify how many byt e
values you want it to hold. Array values have afixed size in Java. Once an array is created, it can never grow or shrink.
Specify the desired size of your array as a non-negative integer between square brackets:

byte[] buffer = new byte[1024];
String[] lines = new String[50];

When you create an array with this syntax, each of the values held in the array is automatically initialized to its default
value. Thisisf al se for bool ean values,' \ u0O000' for char values, O for integer values, 0.0 for floating-point
values, and nul | for objects or array values.

2.9.2. Using Arrays

file://IC|/orielly/jnut/ch02_09.htm (1 of 6) [2/5/2003 7:46:40 PM]

Array Types (Javain a Nutshell)

Once you've created an array with the new operator and the square-bracket syntax, you also use square brackets to access
theindividual values contained in the array. Remember that an array is an ordered collection of values. The elements of an
array are numbered sequentialy, starting with 0. The number of an array element refers to the element. This number is
often called the index, and the process of looking up a numbered value in an array is sometimes called indexing the array.

To refer to aparticular element of an array, simply place the index of the desired element in square brackets after the name
of the array. For example:

String[] responses = new String[2]; /Il Create an array of two strings
responses[0] = "Yes"; /1l Set the first elenent of the array
responses[1] = "No"; /'l Set the second elenment of the array

/'l Now read these array el enents
Systemout.println(question + " (" + responses[0] + "/" +
responses[1] + "): ");

In some programming languages, such as C and C++, it isacommon bug to write code that tries to read or write array
elements that are past the end of the array. Java does not allow this. Every time you access an array element, the Java
interpreter automatically checks that the index you have specified is valid. If you specify a negative index or an index that
is greater than the last index of the array, the interpreter throws an exception of type

Arrayl ndexQut O BoundsExcept i on. This prevents you from reading or writing nonexistent array elements.

Array index values are integers; you cannot index an array with a floating-point value, abool ean, an object, or another
array. char values can be converted to i nt values, so you can use characters as array indexes. Although | ong isan
integer datatype, | ong values cannot be used as array indexes. This may seem surprising at first, but consider that ani nt
index supports arrays with over two billion elements. Ani nt [] with this many elements would require eight gigabytes of
memory. When you think of it thisway, it is not surprising that | ong values are not allowed as array indexes.

Besides setting and reading the value of array elements, there is one other thing you can do with an array value. Recall that
whenever we create an array, we must specify the number of elements the array holds. This valueisreferred to as the length
of the array; itisanintrinsic property of the array. If you need to know the length of the array, append . | engt h to the
array hame:

I f (errorCode < errorMessages. | ength)
System out. println(errorMessages|[errorCode]);

. | engt h isspecial Java syntax for arrays. An expression likea. | engt h looks as though it refersto afield of an object
a, but thisis not actually the case. The . | engt h syntax can be used only to read the length of an array. It cannot be used
to set the length of an array (because, in Java, an array has afixed length that can never change).

In the previous example, the array index within square bracketsis avariable, not an integer literal. In fact, arrays are most
often used with loops, particularly f or loops, where they are indexed using a variable that isincremented or decremented
each time through the loop:

int[] val ues; Il Array elenments initialized el sewhere
int total = 0; /] Store sum of elenents here
for(int i =0; i < values.length; i++) // Loop through array elenents

total += val ues[i]; /1 Add them up

file://IC|/orielly/jnut/ch02_09.htm (2 of 6) [2/5/2003 7:46:40 PM]

Array Types (Javain a Nutshell)

In Java, thefirst element of an array is always element number O. If you are accustomed to a programming language that
numbers array elements beginning with 1, thiswill take some getting used to. For an array a, the first element isa[0] , the
second element isa[1] , and the last element is:

a[a.length - 1] /1 The last elenent of any array naned a

2.9.3. Array Literals

Thenul | literal used to represent the absence of an object can aso be used to represent the absence of an array. For
example:

char[] password = null;

In additionto thenul | literal, Java aso defines special syntax that allows you to specify array values literally in your
programs. There are actually two different syntaxes for array literals. The first, and more commonly used, syntax can be
used only when declaring a variable of array type. It combines the creation of the array object with the initialization of the
array elements:

int[] powersOTwo = {1, 2, 4, 8, 16, 32, 64, 128};

This creates an array that containsthe eight i nt elements listed within the curly braces. Note that we don't use the new
keyword or specify the type of the array in this array literal syntax. The type isimplicit in the variable declaration of which
theinitializer isapart. Also, the array length is not specified explicitly with this syntax; it is determined implicitly by
counting the number of elements listed between the curly braces. There is a semicolon following the close curly bracein
thisarray literal. Thisisone of the fine points of Java syntax. When curly braces delimit classes, methods, and compound
statements, they are not followed by semicolons. However, for this array literal syntax, the semicolon is required to
terminate the variable declaration statement.

The problem with this array literal syntax isthat it works only when you are declaring avariable of array type. Sometimes
you need to do something with an array value (such as passit to a method) but are going to use the array only once, so you
don't want to bother assigning it to avariable. In Java 1.1 and later, thereis an array literal syntax that supports this kind of
anonymous arrays (so called because they are not assigned to variables, so they don't have names). Thiskind of array literal
looks as follows:

/1 Call a nethod, passing an anonynous array literal that contains two strings
String response = askQuestion("Do you want to quit?",
new String[] {"Yes", "No"});

/1 Call another nmethod with an anonynous array (of anonynous objects)
doubl e d = comput eAread Tri angl e(new Point[] { new Point(1,2),

new Poi nt (3, 4),

new Point(3,2) });

With this syntax, you use the new keyword and specify the type of the array, but the length of the array is not explicitly
specified.

It isimportant to understand that the Java Virtual Machine architecture does not support any kind of efficient array
initialization. In other words, array literals are created and initialized when the program is run, not when the program is
compiled. Consider the following array literal:

file://IC|/orielly/jnut/ch02_09.htm (3 of 6) [2/5/2003 7:46:40 PM]

Array Types (Javain a Nutshell)

int[] perfectNunbers = {6, 28};
Thisis compiled into Java byte codes that are equivalent to:

int[] perfectNunbers = new int[2];
per fect Nunber s[0] 6;
perfect Nunber s[1] 28;

Thus, if you want to include alarge amount of datain a Java program, it may not be a good idea to include that data
literally in an array, since the Java compiler has to create lots of Java byte codes to initialize the array, and then the Java
interpreter hasto laboriously execute all that initialization code. In cases like this, it is better to store your datain an
external file and read it into the program at runtime.

The fact that Java does dl array initiaization explicitly at runtime has an important corollary, however. It means that the
elements of an array literal can be arbitrary expressions that are computed at runtime, rather than constant expressions that
are resolved by the compiler. For example:

Point[] points = { circlel.getCenterPoint(), circle2.getCenterPoint() };
2.9.4. Multidimensional Arrays

Aswe've seen, an array typeis simply the element type followed by a pair of square brackets. An array of char is
char[],and an array of arraysof char ischar[][] . When the elements of an array are themselves arrays, we say that
the array is multidimensional. In order to work with multidimensional arrays, there are afew additional details you must
understand.

Imagine that you want to use a multidimensional array to represent a multiplication table:
int[][] products; /1 Amultiplication table

Each of the pairs of square brackets represents one dimension, so thisis atwo-dimensional array. To accessasinglei nt
element of this two-dimensional array, you must specify two index values, one for each dimension. Assuming that this
array was actually initialized as a multiplication table, thei nt value stored at any given element would be the product of
thetwo indexes. That is, pr oduct s[2] [4] would be 8, and pr oduct s[3] [7] would be 21.

To create anew multidimensional array, use the new keyword and specify the size of both dimensions of the array. For
example:

int[][] products = new int[10][10];

In some languages, an array like thiswould be created as asingle block of 100i nt values. Java does not work this way.
Thisline of code does three things:

. Declares avariable named pr oduct s to hold an array of arraysof i nt .
. Createsa10-element array to hold 10 arraysof i nt .
. Creates 10 more arrays, each of which isa 10-element array of i nt . It assigns each of these 10 new arrays to the

file://IC|/orielly/jnut/ch02_09.htm (4 of 6) [2/5/2003 7:46:40 PM]

Array Types (Javain a Nutshell)

elements of theinitial array. The default value of every i nt element of each of these 10 new arraysisO.

To put this another way, the previous single line of code is equivalent to the following code:

int[][] products = new int[10][]; /'l An array to hold ten int[] val ues.
for(int i =0; i < 10; i++) /1l Loop ten tines...
products[i] = new int[10]; /1l ...and create ten arrays.

The newkeyword performs this additional initialization automatically for you. It works with arrays with more than two
dimensions as well:

float[][][] gl obal TenperatureData = new fl oat[360][180][100];

When using new with multidimensional arrays, you do not have to specify asize for all dimensions of the array, only the
leftmost dimension or dimensions. For example, the following two lines are legal:

fl oat
fl oat

gl obal TenperaturebData = new float[360][][];
gl obal TenperatureData = new fl oat[360][180][];

— p—

1011
11T

—_

Thefirst line creates a single-dimensional array, where each element of the array can hold af | oat [][] . The second line
creates atwo-dimensional array, where each element of thearray isaf | oat [] . If you specify asize for only some of the
dimensions of an array, however, those dimensions must be the leftmost ones. The following lines are not legal:

fl oat
fl oat

gl obal Tenper at ur eDat a
gl obal Tenper at ur eDat a

new float[360][][100]; // Error!
new float[][180][100]; // Error!

[1011] =
[T011] =
Like aone-dimensional array, a multidimensional array can beinitialized using an array literal. Simply use nested sets of

curly bracesto nest arrays within arrays. For example, we can declare, create, and initialize a 5x5 multiplication table like
this:

int[][] products = { {0, O, 0, 0O, 0O},
{0, 1, 2, 3, 4},
{0, 2, 4, 6, 8},
{0, 3, 6, 9, 12},
{0, 4, 8, 12, 16} };

Or, if you want to use a multidimensional array without declaring a variable, you can use the anonymous initializer syntax:

bool ean response = bilingual Question(question, new String[][] {
{ "Yes", "No" },
{ "Qui, "Non" }});

When you create a multidimensional array using the new keyword, you always get arectangular array: one in which all the
array values for agiven dimension have the same size. Thisis perfect for rectangular data structures, such as matrixes.
However, because multidimensional arrays are implemented as arrays of arraysin Java, instead of as a single rectangular
block of elements, you arein no way constrained to use rectangular arrays. For example, since our multiplication tableis
symmetrical about the diagonal from top left to bottom right, we can represent the same information in a nonrectangular
array with fewer elements:

file://IC|/orielly/jnut/ch02_09.htm (5 of 6) [2/5/2003 7:46:40 PM]

Array Types (Javain a Nutshell)

int[][] products = { {0},

{0, 1},
{0, 2, 4},
{0, 3, 6, 9},

{o, 4, 8, 12, 16} },

When working with multidimensional arrays, you'll often find yourself using nested loops to create or initialize them. For
example, you can create and initialize alarge triangular multiplication table as follows:

int[][] products = new int[12][]; /1l An array of 12 arrays of int.
for(int row = 0; row < 12; rowt+) { /'l For each elenent of that array,
products[row] = new int[rowtl]; /1 allocate an array of int.
for(int col = 0; col < rowtl; col ++) /1 For each elenent of the int[],
products[rowj[col] = row * col; /[l initialize it to the product.
}
41 PREVIOUS HOME NEXT o
2.8. Classes and Objects BOOK INDEX 2.10. Reference Types

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch02_09.htm (6 of 6) [2/5/2003 7:46:40 PM]

file:///C|/orielly/jnut/copyrght.htm

Reference Types (Javain a Nutshell)

41 PREVIOUS Chapter 2: Java Syntax from HEXT B
the Ground Up

2.10. Reference Types

Now that we have discussed the syntax for working with objects and arrays, we can return to the issue of why classes and
array types are known as reference types. Aswe saw in Table 2-2, al the Java primitive types have well-defined standard
sizes, so al primitive values can be stored in afixed amount of memory (between one and eight bytes, depending on the
type). But classes and array types are composite types; objects and arrays contain other values, so they do not have a
standard size, and they often require quite a bit more memory than eight bytes. For this reason, Java does not manipulate
objects and arrays directly. Instead, it manipulates references to objects and arrays. Because Java handles objects and arrays
by reference, classes and array types are known as reference types. In contrast, Java handles values of the primitive types
directly, or by value.

A reference to an object or an array is simply some fixed-size value that refers to the object or array in some way.[4] When
you assign an object or array to a variable, you are actually setting the variable to hold a reference to that object or array.
Similarly, when you pass an object or array to a method, what really happensis that the method is given areference to the
object or array through which it can manipulate the object or array.

[4] Typically, areference is the memory address at which the object or array is stored. However, since Java
references are opaque and cannot be manipulated in any way, thisis an implementation detail.

C and C++ programmers should note that Java does not support the & address-of operator or the* and —> dereference
operators. In Java, primitive types are aways handled exclusively by value, and objects and arrays are always handled
exclusively by reference. Furthermore, unlike pointersin C and C++, referencesin Java are entirely opaque: they cannot be
converted to or from integers, and they cannot be incremented or decremented.

Although references are an important part of how Java works, Java programs cannot manipulate references in any way.
Despite this, there are significant differences between the behavior of primitive types and reference types in two important
areas. the way values are copied and the way they are compared for equality.

2.10.1. Copying Objects and Arrays
Consider the following code that manipulate a primitivei nt value:

42:
X,

int x
int y

After these lines execute, the variable y contains a copy of the value held in the variable x. Inside the Java VM, there are
two independent copies of the 32-bit integer 42.

Now think about what happens if we run the same basic code but use a reference type instead of a primitive type:

Point p

new Point (1.0, 2.0);
Poi nt ¢ ;

P;

file://IC|/orielly/jnut/ch02_10.htm (1 of 6) [2/5/2003 7:46:43 PM]

Reference Types (Javain a Nutshell)

After this code runs, the variable q holds a copy of the reference held in the variable p. Thereis still only one copy of the
Poi nt object inthe VM, but there are now two copies of the reference to that object. This has some important implications.
Suppose the two previous lines of code are followed by this code:

Systemout.printin(p.x); [// Print out the X coordinate of p: 1.0
g.x = 13.0; /'l Now change the X coordinate of q
Systemout.println(p.x); [// Print out p.x again; this tinme it is 13.0

Since the variables p and g hold references to the same object, either variable can be used to make changes to the object, and
those changes are visible through the other variable as well.

This behavior is not specific to objects; the same thing happens with arrays, as illustrated by the following code:

char[] greet = { "h","e" ,"I","I","0" }; [/l greet holds an array reference
char[] cuss = greet; /'l cuss holds the same reference
cuss[4] ="1"; /'l Use reference to change an el enent
System out. println(greet); /[l Prints "hell!"

A similar difference in behavior between primitive types and reference types occurs when arguments are passed to methods.
Consider the following method:

voi d changePrimtive(int x) {
while(x > 0)
Systemout.println(x--);

}

When this method is invoked, the method is given a copy of the argument used to invoke the method in the parameter x. The
code in the method uses x as aloop counter and decrements it to zero. Since x is a primitive type, the method has its own
private copy of thisvalue, so thisis a perfectly reasonable thing to do.

On the other hand, consider what happens if we modify the method so that the parameter is a reference type:

voi d changeRef erence(Point p) {
while(p.x > 0)
Systemout.println(p.x--);
}

When this method isinvoked, it is passed a private copy of areferenceto aPoi nt object and can use this reference to
change the Poi nt object. Consider the following:

Point q = new Point(3.0, 4.5); // A point with an X coordinate of 3
changeRef erence(q) ; /1 Prints 3,2,1 and nodifies the Point
Systemout. println(qg.x); /'l The X coordinate of g is now 0!

When the changeRef er ence() method isinvoked, it is passed a copy of the reference held in variable g. Now both the
variable q and the method parameter p hold references to the same object. The method can use its reference to change the
contents of the object. Note, however, that it cannot change the contents of the variable g. In other words, the method can
change the Poi nt object beyond recognition, but it cannot change the fact that the variable g refersto that object.

file://IC|/orielly/jnut/ch02_10.htm (2 of 6) [2/5/2003 7:46:43 PM]

Reference Types (Javain a Nutshell)

Thetitle of this section is " Copying Objects and Arrays," but, so far, we've only seen copies of references to objects and
arrays, not copies of the objects and arrays themselves. To make an actual copy of an object or an array, you must use the
specia cl one() method (inherited by all objectsfromj ava. | ang. Cbj ect):

Point p = new Point(1, 2); /Il p refers to one object

Point q = (Point) p.clone(); // q refers to a copy of that object

g.y = 42; /1 Modify the copied object, but not the original
int[] data = {1, 2, 3, 4, 5}; /1 An array

int[] copy = (int[]) data.clone(); // A copy of the array

Note that a cast is hecessary to coerce the return value of thecl one() method to the correct type. The reason for this will
become clear later in this chapter. There are a couple of points you should be aware of when using cl one() . First, not all
objects can be cloned. Java only alows an object to be cloned if the object's class has explicitly declared itself to be
cloneable by implementing the Cl oneabl e interface. (We haven't discussed interfaces or how they are implemented yet;
that is covered in Chapter 3, "Object-Oriented Programming in Java'.) The definition of Poi nt that we showed earlier does
not actually implement this interface, so our Poi nt type, asimplemented, is not cloneable. Note, however, that arrays are
always cloneable. If you call thecl one() method for a non-cloneable object, it throws a

Cl oneNot Support edExcepti on, sowhenyou usethecl one() method, you may want to useit withinat r y block
to catch this exception.

The second thing you need to understand about cl one() isthat, by default, it isimplemented to create a shallow copy of
an object or array. The copied object or array contains copies of all the primitive values and references in the original object
or array. In other words, any references in the object or array are copied, not cloned; cl one() does not recursively make
copies of the objects or arrays referred to by those references. A class may need to override this shallow copy behavior by
defining its own version of thecl one() method that explicitly performs a deeper copy where needed. To understand the
shallow copy behavior of cl one(), consider cloning atwo-dimensional array of arrays:

int[][] data = {{1, 2,3}, {4,5}}; /1l An array of 2 references
int[][] copy (int[][]) data.clone(); // Copy the 2 refs to a new array
copy[O0][0] = 99; /'l This changes data[0][0] too!
copy[1l] = newint[] {7,8,9}; /1 This does not change data[1]

If you want to make a deep copy of this multidimensional array, you have to copy each dimension explicitly:

int[][] data = {{1,2,3}, {4,5}}; /1 An array of 2 references
int[][] copy = new int[data.length][]; // A new array to hold copied arrays
for(int i = 0; i < data.length; i++)

copy[i] = (int[]) data[i].clone();
2.10.2. Comparing Objects and Arrays

We've seen that primitive types and reference types differ significantly in the way they are assigned to variables, passed to
methods, and copied. The types aso differ in the way they are compared for equality. When used with primitive values, the
equality operator (= =) simply tests whether two values are identical (i.e., whether they have exactly the same bits). With
reference types, however, = = compares references, not actual objects or arrays. In other words, = = tests whether two
references refer to the same object or array; it does not test whether two objects or arrays have the same content. For
example:

file://IC|/orielly/jnut/ch02_10.htm (3 of 6) [2/5/2003 7:46:43 PM]

Reference Types (Javain a Nutshell)

String letter = "0";
String s = "hell 0o"; /'l These two String objects
Stringt = "hell"” + letter; /'l contain exactly the sane text.

if (s ==1t) Systemout.println("equal"); // But they are not equal'

byte[] a ={ 1, 2, 3}, /1 An array.
byte[] b = (byte[]) a.clone(); /'l A copy with identical content.
if (a ==Db) Systemout.println("equal"); // But they are not equal'

When working with reference types, there are two kinds of equality: equality of reference and equality of object. It is
important to distinguish between these two kinds of equality. One way to do thisisto use the word "equals" when talking
about equality of references and the word "equivalent" when talking about two distinct object or arrays that have the same
contents. Unfortunately, the designers of Java didn't use this nomenclature, as the method for testing whether one object is
equivalent to another isnamed equal s() . To test two objects for equivalence, pass one of them to the equal s() method
of the other:

String letter = "o";

String s = "hell 0o"; /1 These two String objects

Stringt = "hell" + letter; /'l contain exactly the sane text.

if (s.equals(t)) /1 And the equal s() nethod
System out. println("equival ent”); /1l tells us so.

All objectsinherit an equal s() method (from Obj ect , but the default implementation ssmply uses= = to test for
equality of references, not equivalence of content. A class that wants to allow objects to be compared for equivalence can
define its own version of the equal s() method. Our Poi nt class does not do this, but the St r i ng class does, as
indicated by the code above. Y ou can call theequal s() method on an array, but it is the same as using the = = operator,
because arrays always inherit the default equal s() method that compares references rather than array content. Starting in
Java 1.2, you can compare arrays for equivalence with the convenience method j ava. ut il . Arrays. equal s() . Prior
to Java 1.2, however, you must loop through the elements of the arrays and compare them yourself.

2.10.3. The null Reference

We've seen the nul | keyword in our discussions of objects and arrays. Now that we have described references, it is worth
revisiting nul | to point out that it is a special value that is areference to nothing, or an absence of areference. The default
valuefor al referencetypesisnul | . Thenul | valueisuniquein that it can be assigned to a variable of any reference type
whatsoever.

2.10.4. Terminology: Pass by Value

I've said that Java handles arrays and objects "by reference." Don't confuse this with the phrase "pass by reference."[5] "Pass
by reference” is aterm used to describe the method-calling conventions of some programming languages. In a pass-by-
reference language, values--even primitive values--are not passed directly to methods. Instead, methods are aways passed
references to values. Thus, if the method modifies its parameters, those modifications are visible when the method returns,
even for primitive types.

[S]Unfortunately, previous editions of this book may have contributed to the confusion!

Javadoes not do this; it isa"pass by value" language. However, when areference type isinvolved, the value that is passed is
areference. But thisis not the same as pass-by-reference. If Java were a pass-by-reference language, when a reference type

file://IC|/orielly/jnut/ch02_10.htm (4 of 6) [2/5/2003 7:46:43 PM]

Reference Types (Javain a Nutshell)

was passed to amethod, it would be passed as a reference to the reference.

2.10.5. Memory Allocation and Garbage Collection

Asweve aready noted, objects and arrays are composite values that can contain a number of other values and may require a
substantial amount of memory. When you use the new keyword to create a new object or array or use an object or array
literal in your program, Java automatically creates the object for you, alocating whatever amount of memory is necessary.

Y ou don't need to do anything to make this happen.

In addition, Java also automatically reclaims that memory for reuse when it is no longer needed. It does this through a
process called garbage collection. An object is considered garbage when there are no longer any referencesto it stored in
any variables, the fields of any objects, or the elements of any arrays. For example:

Point p = new Point(1,2); /| Create an object
double d = p.distanceFronOigin(); // Use it for sonething
p = new Point(2,3); /'l Create a new object

After the Javainterpreter executes the third line, areference to the new Poi nt object has replaced the reference to the first
one. There are now no remaining referencesto the first object, so it is garbage. At some point, the garbage collector will
discover this and reclaim the memory used by the object.

C programmers, who areused tousingmal | oc() andf ree() to manage memory, and C++ programmers, who are used
to explicitly deleting their objects with del et e, may find it alittle hard to relinquish control and trust the garbage collector.
Even though it seems like magic, it really works! Thereis adlight performance penalty due to the use of garbage collection,
and Java programs may sometimes slow down noticeably while the garbage collector is actively reclaiming memory.
However, having garbage collection built into the language dramatically reduces the occurrence of memory leaks and related
bugs and almost always improves programmer productivity.

2.10.6. Reference Type Conversions

When we discussed primitive types earlier in this chapter, we saw that values of certain types can be converted to values of
other types. Widening conversions are performed automatically by the Java interpreter, as necessary. Narrowing
conversions, however, can result in lost data, so the interpreter does not perform them unless explicitly directed to do so with
acast.

Java does not allow any kind of conversion from primitive types to reference types or vice versa. Java does allow widening
and narrowing conversions among certain reference types, however. As we've seen, there are an infinite number of potential
reference types. In order to understand the conversions that can be performed among these types, you need to understand
that the types form a hierarchy, usually called the class hierarchy.

Every Java class extends some other class, known asits superclass. A classinherits the fields and methods of its superclass
and then defines its own additional fields and methods. There is a special class named Obj ect that serves asthe root of the
class hierarchy in Java. It does not extend any class, but all other Java classes extend Cbj ect or some other class that has
hj ect asoneof itsancestors. The Cbj ect class defines a number of special methods that are inherited (or overridden)
by all classes. Theseincludethet oSt ri ng(),cl one(), andequal s() methods described earlier.

The predefined St r i ng class and the Poi nt class we defined earlier in this chapter both extend Qbj ect . Thus, we can
say that al St ri ng objects are also Cbj ect objects. We can also say that all Poi nt objects are Qbj ect objects. The
oppositeis not true, however. We cannot say that every Qbj ect isa St ri ng because, aswe've just seen, some Cbj ect

file:///C]/orielly/jnut/ch02_10.htm (5 of 6) [2/5/2003 7:46:43 PM]

Reference Types (Javain a Nutshell)

objects are Poi nt objects.
With this ssmple understanding of the class hierarchy, we can return to the rules of reference type conversion:

. An object cannot be converted to an unrelated type. The Java compiler does not allow you to convertaStri ng toa
Poi nt , for example, even if you use a cast operator.

. An object can be converted to the type of a superclass. Thisis awidening conversion, so no cast is required. For
example, aSt r i ng value can be assigned to a variable of type Obj ect or passed to a method where an Cbj ect
parameter is expected. Note that no conversion is actually performed; the object is simply treated asif it were an
instance of the superclass.

. An object can be converted to the type of a subclass, but thisis a narrowing conversion and requires a cast. The Java
compiler provisionally alows this kind of conversion, but the Java interpreter checks at runtime to make sureit is
valid. Only cast an object to the type of asubclass if you are sure, based on the logic of your program, that the object
isactually an instance of the subclass. If it is not, the interpreter throwsa Cl assCast Except i on. For example, if
weassign aSt r i ng object to avariable of type Obj ect , we can later cast the value of that variable back to type
String:

(bject o = "string"; /'l Wdening conversion fromString to Object
/1l Later in the program..
String s = (String) o; // Narrow ng conversion from Cbject to String

. All array types are distinct, so an array of one type cannot be converted to an array of another type, even if the
individual elements could be converted. For example, although abyt e can bewidenedtoani nt , abyt e[] cannot
be converted to ani nt [] , even with an explicit cast.

. Arraysdo not have atype hierarchy, but all arrays are considered instances of Chj ect , so any array can be
converted to an OGbj ect value through awidening conversion. A narrowing conversion with a cast can convert such
an object value back to an array. For example:

hject o =newint[] {1,2,3}; [// Wdening conversion fromarray to Object
[

/[l Later in the program..

int[] a=(int[]) o; /1 Narrow ng conversion back to array type
4 PREVIOUS HOME HEXT
2.9. Array Types BOOK INDEX 2.11. Packages and the Java

Namespace

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch02_10.htm (6 of 6) [2/5/2003 7:46:43 PM]

file:///C|/orielly/jnut/copyrght.htm

Packages and the Java Namespace (Javain a Nutshell)

41 PREVIOUS Chapter 2: Java Syntax from HEXT
the Ground Up

2.11. Packages and the Java Namespace

A package is a named collection of classes (and possibly subpackages). Packages serve to group related classes and define
a namespace for the classes they contain.

The Java platform includes packages with names that begin with j ava, j avax, and or g. ong. (Sun aso defines
standard extensions to the Java platform in packages whose names begin with j avax.) The most fundamental classes of
the language are in the packagej ava. | ang. Various utility classesareinj ava. ut i | . Classesfor input and output are
inj ava. i 0, and classes for networking areinj ava. net . Some of these packages contain subpackages. For example,

j ava. | ang contains two more specialized packages, named j ava. | ang. refl ect andj ava. | ang. ref,and

j ava. uti | containsasubpackage, j ava. util . zi p, that contains classes for working with compressed ZIP
archives.

Every class has both a simple name, which is the name given to it in its definition, and afully qualified name, which
includes the name of the package of whichitisapart. The St r i ng class, for example, ispart of thej ava. | ang
package, so itsfully qualified nameisj ava. | ang. Stri ng.

2.11.1. Defining a Package

To specify the package a classisto be part of, you use apackage directive. The package keyword, if it appears, must
be the first token of Java code (i.e., the first thing other than comments and space) in the Java file. The keyword should be
followed by the name of the desired package and a semicolon. Consider afile of Java code that begins with this directive:

package com davi df | anagan. j ude;
All classes defined by thisfile are part of the package named com davi df | anagan. j ude.

If no package directive appearsin afile of Javacode, all classes defined in that file are part of a default unnamed
package. Aswelll see in Chapter 3, "Object-Oriented Programming in Java', classes in the same package have special
access to each other. Thus, except when you are writing simple example programs, you should always use the package
directive to prevent access to your classes from totally unrelated classes that also just happen to be stored in the unnamed
package.

2.11.2. Importing Classes and Packages

A classin apackage p can refer to any other classin p by its simple name. And, since the classesinthej ava. | ang
package are so fundamental to the Javalanguage, any Java code can refer to any classin this package by its simple name.
Thus, you can alwaystype St ri ng, instead of j ava. | ang. St ri ng. By default, however, you must use the fully
gualified name of al other classes. So, if you want to usethe Fi | e classof thej ava. i o package, you must type
java.io.File.

file://IC|/orielly/jnut/ch02_11.htm (1 of 2) [2/5/2003 7:46:46 PM]

Packages and the Java Namespace (Javain a Nutshell)

Specifying package names explicitly al the time quickly getstiring, so Javaincludesani nport directive you can useto
save sometyping. i nport isused to specify classes and packages of classes that can be referred to by their simple names
instead of by their fully qualified names. Thei npor t keyword can be used any number of timesin a Javafile, but all
uses must be at the top of the file, immediately after the package directive, if there is one. There can be comments
between the package directive and thei npor t directives, of course, but there cannot be any other Java code.

Thei nport directiveisavailablein two forms. To specify asingle class that can be referred to by its simple name,
follow thei nport keyword with the name of the class and a semicolon:

i mport java.io.File; /'l Now we can type File instead of java.io.File

To import an entire package of classes, follow i npor t with the name of the package, the characters. *, and a
semicolon. Thus, if you want to use several other classesfrom thej ava. i o packagein additiontotheFi | e class, you
can simply import the entire package:

i mport java.io.*; /'l Now we can use sinple nanes for all classes in java.io

Thispackagei nport syntax does not apply to subpackages. If | import thej ava. uti | package, | must still refer to
thej ava. util . zi p. Zi pl nput St r eamclass by itsfully qualified name. If two classes with the same name are both
imported from different packages, neither one can be referred to by its simple name; to resolve this naming conflict
unambiguously, you must use the fully qualified name of both classes.

2.11.3. Globally Unigue Package Names

One of the important functions of packagesisto partition the Java namespace and prevent name collisions between
classes. It isonly their package namesthat keepthej ava. uti | . Li st andj ava. awt . Li st classesdistinct, for
example. In order for thisto work, however, package names must themselves be distinct. As the developer of Java, Sun
controls all package namesthat begin withj ava, j avax, and sun.

For the rest of us, Sun proposes a package-naming scheme, which, if followed correctly, guarantees globally unique
package names. The scheme isto use your Internet domain name, with its elements reversed, as the prefix for all your
package names. My web site is davidflanagan.com, so al my Java packages begin with com davi df | anagan. Itisup
to me to decide how to partition the namespace below com davi df | anagan, but since | own that domain name, no
other person or organization who is playing by the rules can define a package with the same name as any of mine.

41 PREVIOUS HOME NEXT B
2.10. Reference Types BOOK INDEX 2.12. JavaFile Structure

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch02_11.htm (2 of 2) [2/5/2003 7:46:46 PM]

file:///C|/orielly/jnut/copyrght.htm

Java File Structure (Javain a Nutshell)

41 PREVIOUS Chapter 2: Java Syntax from HEXT »
the Ground Up

2.12. Java File Structure

This chapter has taken us from the smallest to the largest elements of Java syntax, from individual
characters and tokens to operators, expressions, statements, and methods, and on up to classes and
packages. From a practical standpoint, the unit of Java program structure you will be dealing with most
often isthe Javafile. A Javafileisthe smallest unit of Java code that can be compiled by the Java
compiler. A Javafile consists of:

. Anoptional package directive
. Zeroor morei nport directives
« One or more class definitions

These elements can be interspersed with comments, of course, but they must appear in thisorder. Thisis
al thereisto aJavafile. All Java statements (except the package andi nport directives, which are
not true statements) must appear within methods, and all methods must appear within a class definition.

There are a couple of other important restrictions on Javafiles. First, each file can contain at most one
classthat isdeclared publ i c. A publ i c classisonethat is designed for use by other classesin other
packages. We'll talk more about publ i ¢ and related modifiersin Chapter 3, "Object-Oriented

Programming in Java'. This restriction on public classes only appliesto top-level classes; a class can
contain any number of nested or inner classes that are declared publ i ¢, aswe'll seein Chapter 3,
"Object-Oriented Programming in Java'.

The second restriction concerns the filename of a Javafile. If aJavafile containsapubl i ¢ class, the
name of the file must be the same as the name of the class, with the extension .java appended. Thus, if
Poi nt isdefined asapubl i ¢ class, its source code must appear in afile named Point.java. Regardless
of whether your classes are publ i ¢ or not, it is good programming practice to define only one per file
and to give the file the same name as the class.

When a Javafileis compiled, each of the classesit definesis compiled into a separate class file that
contains Java byte codes to be interpreted by the Java Virtual Machine. A classfile has the same name as
the class it defines, with the extension .class appended. Thus, if the file Point.java defines a class hamed

file://IC|/orielly/jnut/ch02_12.htm (1 of 2) [2/5/2003 7:46:49 PM]

Java File Structure (Javain a Nutshell)

Poi nt , aJava compiler compilesit to afile named Point.class. On most systems, classfiles are stored in
directories that correspond to their package names. Thus, the class

com davi df | anagan. j ude. Dat aFi | e isdefined by the classfile
conm/davidflanagan/jude/DataFile.class.

The Javainterpreter knows where the class files for the standard system classes are located and can load
them as needed. When the interpreter runs a program that wants to use a class named

com davi df | anagan. j ude. Dat aFi | e, it knowsthat the code for that classislocated in a
directory named convdavidflanagan/jude and, by default, it “looks" in the current directory for a
subdirectory of that name. In order to tell the interpreter to look in locations other than the current
directory, you must use the - cl asspat h option when invoking the interpreter or set the CLASSPATH
environment variable. For details, see the documentation for the Java interpreter, java, in Chapter 8,

"Java Development Tools'.

41 PREVIOUS HOME HEXT »
2.11. Packages and the Java BOOK INDEX 2.13. Defining and Running
Namespace Java Programs

Copyright © 2001 O'Rellly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch02_12.htm (2 of 2) [2/5/2003 7:46:49 PM]

file:///C|/orielly/jnut/copyrght.htm

Defining and Running Java Programs (Javain a Nutshell)

41 PREVIOUS Chapter 2: Java Syntax from HEXT mp
the Ground Up

2.13. Defining and Running Java Programs

A Java program consists of a set of interacting class definitions. But not every Java class or Javafile defines a program. To
create a program, you must define a class that has a special method with the following signature:

public static void main(String args[])

Thismai n() method isthe main entry point for your program. It is where the Javainterpreter starts running. This method
is passed an array of strings and returns no value. When mai n() returns, the Javainterpreter exits (unlessmai n() has
created separate threads, in which case the interpreter waits for al those threads to exit).

To run a Java program, you run the Javainterpreter, java, specifying the fully qualified name of the class that contains the
mai n() method. Note that you specify the name of the class, not the name of the classfile that contains the class. Any
additional arguments you specify on the command line are passed to the mai n() method asitsSt ri ng[] parameter.

Y ou may also need to specify the - cl asspat h option to tell the interpreter to look for the classes needed by the program.
Consider the following command:

C.\> java -classpath /usr/local/Jude com davi df | anagan. j ude. Jude datafil e.jude

java is the command to run the Javainterpreter. -classpath /usr/local/Jude tells the interpreter where to look for .classfiles.
com davi df | anagan. j ude. Jude isthe name of the program to run (i.e., the name of the class that defines the

mai n() method). Finally, datafile.jude is a string that is passed to that mai n() method as the single element of an array
of St ri ng objects.

InJaval.2, thereisan easier way to run programs. If a program and al its auxiliary classes (except those that are part of
the Java platform) have been properly bundled in a Java archive (JAR) file, you can run the program simply by specifying
the name of the JAR file:

C\> java -jar /usr/local/Jude/jude.jar datafile.jude
Some operating systems make JAR files automatically executable. On those systems, you can simply say:
C.\> /usr/local /Jude/jude.jar datafile.jude

See Chapter 8, "Java Development Tools' for details.

41 PREVIOUS HOME HEXT &
2.12. Java File Structure BOOK INDEX 2.14. Differences Between C
and Java

file://IC|/orielly/jnut/ch02_13.htm (1 of 2) [2/5/2003 7:46:52 PM]

Defining and Running Java Programs (Javain a Nutshell)

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch02_13.htm (2 of 2) [2/5/2003 7:46:52 PM]

file:///C|/orielly/jnut/copyrght.htm

Differences Between C and Java (Javain a Nutshell)

41 PREVIOUS Chapter 2: Java Syntax from HEXT »
the Ground Up

2.14. Differences Between C and Java

If you are a C or C++ programmer, you should have found much of the syntax of Java--particularly at the
level of operators and statements--to be familiar. Because Javaand C are so similar in some ways, it is
important for C and C++ programmers to understand where the similarities end. There are a number of
important differences between C and Java, which are summarized in the following list:

NO preprocessor

Java does not include a preprocessor and does not define any analogs of the #def i ne,

#i ncl ude, and #i f def directives. Constant definitions are replaced with st at i cf i nal
fieldsin Java. (Seethej ava. | ang. Mat h. PI field for an example.) Macro definitions are not
available in Java, but advanced compiler technology and inlining has made them less useful. Java
does not require an #i ncl ude directive because Java has no header files. Java class files contain
both the class API and the class implementation, and the compiler reads API information from
classfiles as necessary. Java lacks any form of conditional compilation, but its cross-platform
portability means that this feature is very rarely needed.

No global variables

Java defines a very clean namespace. Packages contain classes, classes contain fields and
methods, and methods contain local variables. But there are no global variablesin Java, and, thus,
there is no possibility of namespace collisions among those variables.

Weéll-defined primitivetype sizes

All the primitive types in Java have well-defined sizes. In C, thesizeof short ,i nt,and| ong
types is platform-dependent, which hampers portability.

No pointers

Java classes and arrays are reference types, and references to objects and arrays are akin to
pointersin C. Unlike C pointers, however, referencesin Java are entirely opaque. There is no way
to convert areference to a primitive type, and a reference cannot be incremented or decremented.

file:///C]/orielly/jnut/ch02_14.htm (1 of 3) [2/5/2003 7:46:55 PM]

Differences Between C and Java (Javain a Nutshell)

There is no address-of operator like &, dereference operator like* or —>, or si zeof operator.
Pointers are a notorious source of bugs. Eliminating them simplifies the language and makes Java
programs more robust and secure.

Garbage collection

The Java Virtual Machine performs garbage collection so that Java programmers do not have to
explicitly manage the memory used by all objects and arrays. This feature eliminates another
entire category of common bugs and all but eliminates memory leaks from Java programs.

No goto statement

Java doesn't support agot o statement. Use of got o except in certain well-defined circumstances
Isregarded as poor programming practice. Java adds exception handling and labeled br eak and
cont i nue statements to the flow-control statements offered by C. These are a good substitute
for got o.

Variable declarations anywhere

C requires local variable declarations to be made at the beginning of a method or block, while
Java allows them anywhere in a method or block. Many programmers prefer to keep al their
variable declarations grouped together at the top of a method, however.

Forward references

The Java compiler is smarter than the C compiler, in that it allows methods to be invoked before
they are defined. This eliminates the need to declare functions in a header file before defining
them in aprogram file, asisdonein C.

Method overloading

Java programs can define multiple methods with the same name, as long as the methods have
different parameter lists.

No struct and union types

Java doesn't support C st ruct and uni on types. A Javacl ass can be thought of asan
enhanced st r uct , however.

No enumer ated types

file:///C]/orielly/jnut/ch02_14.htm (2 of 3) [2/5/2003 7:46:55 PM]

Differences Between C and Java (Javain a Nutshell)

Java doesn't support the enumkeyword used in C to define types that consist of fixed sets of
named values. Thisis surprising for a strongly typed language like Java, but there are waysto
simulate this feature with object constants.

No bitfields

Java doesn't support the (infrequently used) ability of C to specify the number of individual bits
occupied by fieldsof ast r uct .

No typedef

Java doesn't support thet ypedef keyword used in C to define aliases for type names. Javas lack
of pointers makes its type-naming scheme simpler and more consistent than C's, however, so
many of the common usesof t ypedef arenot really necessary in Java.

No method pointers

C alowsyou to store the address of afunction in avariable and pass this function pointer to other
functions. Y ou cannot do this with Java methods, but you can often achieve similar results by
passing an object that implements a particular interface. Also, a Java method can be represented
and invoked through aj ava. | ang. r ef | ect . Met hod object.

No variable-length argument lists

Java doesn't alow you to define methods such asC'spri nt f () that take a variable number of
arguments. Method overloading allows you to ssmulate C varargs functions for ssmple cases, but
there's no general replacement for this feature.

41 PREVIOUS HOME HEXT »
2.13. Defining and Running BOOK INDEX 3. Object-Oriented
Java Programs Programming in Java

Copyright © 2001 O'Rellly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch02_14.htm (3 of 3) [2/5/2003 7:46:55 PM]

file:///C|/orielly/jnut/copyrght.htm

Object-Oriented Programming in Java (Javain a Nutshell)

41 PREVIOUS Part 1: Introducing Java HEXT mp

Chapter 3. Object-Oriented Programming in Java

Contents:

The Members of aClass
Creating and Initializing Objects
Destroying and Finalizing Objects
Subclasses and Inheritance

Data Hiding and Encapsulation
Abstract Classes and Methods
Interfaces

Inner Class Overview

Static Member Classes

Member Classes

Local Classes

Anonymous Classes

How Inner Classes Work
Modifier Summary

C++ Features Not Found in Java

Javais an object-oriented programming language. As we discussed in Chapter 2, "Java Syntax from the Ground Up", all
Java programs use objects, and every Java program is defined as a class. The previous chapter explained the basic syntax of
the Java programming language, including data types, operators, and expressions, and even showed how to define simple
classes and work with objects. This chapter continues where that one |eft off, explaining the details of object-oriented
programming in Java.

If you do not have any object-oriented (OO) programming background, don't worry; this chapter does not assume any prior
experience. If you do have experience with OO programming, however, be careful. The term "object-oriented" has different
meanings in different languages. Don't assume that Java works the same way as your favorite OO language. Thisis
particularly true for C++ programmers. We saw in the last chapter that close analogies can be drawn between Javaand C.
The sameis not true for Java and C++, however. Java uses object-oriented programming concepts that are familiar to C++
programmers and even borrows C++ syntax in a number of places, but the similarities between Java and C++ are not nearly
as strong as those between Javaand C. Don't let your experience with C++ lull you into afalse familiarity with Java.

3.1. The Members of a Class

Aswe discussed in Chapter 2, "Java Syntax from the Ground Up", aclassis a collection of data, stored in named fields, and
code, organized into named methods, that operates on that data. The fields and methods are called members of aclass. In
Java 1.1 and later, classes can also contain other classes. These member classes, or inner classes, are an advanced feature
that is discussed later in the chapter. For now, we are going to discuss only fields and methods. The members of a class

file://IC|/orielly/jnut/ch03_01.htm (1 of 7) [2/5/2003 7:46:59 PM]

Object-Oriented Programming in Java (Javain a Nutshell)

come in two distinct types: class, or static, members are associated with the classitself, while instance members are
associated with individual instances of the class (i.e., with objects). Ignoring member classes for now, this gives us four
types of members:

. Classfields

. Class methods

. Instancefields

. Instance methods

The simple class definition for the class Ci r ¢l e, shown in Example 3-1, contains all four types of members.

Example 3-1. A Simple Class and its Members

public class Circle {
/[l A class field
public static final double PI= 3.14159; /1 A useful constant

/1 A class nethod: just conpute a value based on the argunents
public static doubl e radi ansToDegrees(doubl e rads) {
return rads * 180 / PI;

}
/1l An instance field
public double r; /1 The radius of the circle

/1 Two instance methods: they operate on the instance fields of an object
public double area() { /'l Conpute the area of the circle
return Pl * r * r;

}

public double circunference() { /'l Conpute the circunference of the circle
return 2 * Pl * r;

}
}

3.1.1. Class Fields

A classfield is associated with the class in which it is defined, rather than with an instance of the class. The following line
declaresaclassfield:

public static final double PI = 3.14159;
Thisline declares afield of type doubl e named Pl and assignsit avalue of 3.14159. Asyou can see, afield declaration

looks quite a bit like the local variable declarations we discussed in Chapter 2, "Java Syntax from the Ground Up". The
difference, of course, isthat variables are defined within methods, while fields are members of classes.

Thest at i ¢ modifier saysthat thefieldisaclassfield. Class fields are sometimes called static fields because of this

file://IC|/orielly/jnut/ch03_01.htm (2 of 7) [2/5/2003 7:46:59 PM]

Object-Oriented Programming in Java (Javain a Nutshell)

st at i ¢ modifier. Thef i nal modifier saysthat the value of the field does not change. Since thefield Pl represents a
constant, we declareit f i nal sothat it cannot be changed. It is a convention in Java (and many other languages) that
constants are named with capital letters, which iswhy our field isnamed PI , not pi . Defining constants like thisisa
common use for classfields, meaning that thest at i ¢ and f i nal modifiers are often used together. Not all classfields
are constants, however. In other words, afield can be declared st at i ¢ without declaring it f i nal . Finally, the publ i c
modifier says that anyone can use the field. Thisisavisibility modifier, and we'll discussit and related modifiersin more
detail later in this chapter.

The key point to understand about a static field is that thereis only asingle copy of it. Thisfield is associated with the class
itself, not with instances of the class. If you look at the various methods of the G r cl e class, you'll see that they use this
field. Frominsidethe Ci r cl e class, the field can be referred to ssmply as Pl . Outside the class, however, both class and
field names are required to uniquely specify the field. Methods that are not part of Ci r cl e accessthisfield as
Crcle.Pl.

A classfield isessentially aglobal variable. The names of class fields are qualified by the unique names of the classes that
contain them, however. Thus, Java does not suffer from the name collisions that can affect other languages when different
modules of code define global variables with the same name.

3.1.2. Class Methods
Aswith classfields, classmethods are declared with the st at i ¢ modifier:
public static double radi ansToDegrees(double rads) { return rads * 180 / PI; }

This line declares a class method named r adi ansToDegr ees() . It hasasingle parameter of type doubl e and returns
adoubl e value. The body of the method is quite short; it performs a simple computation and returns the result.

Like classfields, class methods are associated with a class, rather than with an object. When invoking a class method from
code that exists outside the class, you must specify both the name of the class and the method. For example:

/1 How many degrees is 2.0 radians?
double d = Circle.radi ansToDegrees(2.0);

If you want to invoke a class method from inside the class in which it is defined, you don't have to specify the class name.
However, it is often good style to specify the class name anyway, to make it clear that a class method is being invoked.

Note that the body of our Ci r cl e. r adi ansToDegr ees() method usesthe classfield PI . A class method can use any
class fields and class methods of its own class (or of any other class). But it cannot use any instance fields or instance
methods because class methods are not associated with an instance of the class. In other words, although the

radi ansToDegr ees() method isdefinedintheCi r cl e class, it does not use any Gi r cl e objects. Theinstance
fields and instance methods of the class are associated with Ci r ¢l e objects, not with the classitself. Since a class method
is not associated with an instance of its class, it cannot use any instance methods or fields.

Aswe discussed earlier, aclassfield is essentially aglobal variable. In asimilar way, a class method is a global method, or
global function. Although r adi ansToDegr ees() doesnot operateon Ci r cl e objects, it is defined within the

G rcl e class because it isautility method that is sometimes useful when working with circles. In many non-object-
oriented programming languages, all methods, or functions, are global. Y ou can write complex Java programs using only
class methods. Thisis not object-oriented programming, however, and does not take advantage of the power of the Java
language. To do true object-oriented programming, we need to add instance fields and instance methods to our repertoire.

file:///C]/orielly/jnut/ch03_01.htm (3 of 7) [2/5/2003 7:46:59 PM]

Object-Oriented Programming in Java (Javain a Nutshell)

3.1.3. Instance Fields
Any field declared without the st at i ¢ modifier is an instancefiel de:
public double r; /1l The radius of the circle

Instance fields are associated with instances of the class, rather than with the classitself. Thus, every Ci r cl e object we
create has its own copy of thedoubl e field r . In our example, r represents the radius of acircle. Thus,each Ci r cl e
object can have aradius independent of all other Ci r cl e objects.

Inside a class definition, instance fields are referred to by name alone. Y ou can see an example of thisif you look at the
method body of theci r cunf er ence() instance method. In code outside the class, the name of an instance method must
be prepended by a reference to the object that containsit. For example, if we haveaCi r cl e object named ¢, we can refer
toitsinstancefieldr asc. r:

Circlec =newCrcle(); // Ceate a new Circle object; store it in variable c

c.r = 2.0; /'l Assign a value to its instance field r
Circled =new Crcle(); // Create a different G rcle object
d.r =c.r * 2; /1 Make this one twice as big

Instance fields are key to object-oriented programming. Instance fields define an object; the values of those fields make one
object distinct from another.

3.1.4. Instance Methods

Any method not declared with the st at i ¢ keyword is an instance method. An instancemethod operates on an instance of
aclass (an object) instead of operating on the classitself. It is with instance methods that object-oriented programming
startsto get interesting. The G r cl e class defined in Example 3-1 contains two instance methods, ar ea() and

ci rcunf erence(), that compute and return the area and circumference of the circle represented by agivenCi rcl e
object.

To use an instance method from outside the class in which it is defined, we must prepend a reference to the instance that is
to be operated on. For example:

Circle c =new Crcle(); /Il Create a Circle object; store in variable c
c.r = 2.0; /1l Set an instance field of the object
double a = c.area(); /'l 1 nvoke an instance nmethod of the object

If you're new to object-oriented programming, that last line of code may look alittle strange. | did not write:
a = area(c);

Instead, | wrote:
a = c.area();

Thisiswhy it is called object-oriented programming; the object is the focus here, not the function call. This small syntactic

file://IC|/orielly/jnut/ch03_01.htm (4 of 7) [2/5/2003 7:46:59 PM]

Object-Oriented Programming in Java (Javain a Nutshell)

difference is perhaps the single most important feature of the object-oriented paradigm.

The point here is that we don't have to pass an argument to c. ar ea() . The object we are operating on, ¢, isimplicit in the
syntax. Take alook at Example 3-1 again. Y ou'll notice the same thing in the signature of the ar ea() method: it doesn't
have a parameter. Now look at the body of thear ea() method: it usesthe instancefield r . Becausethe ar ea() method
is part of the same class that defines this instance field, the method can use the unqualified namer . It is understood that this
refers to the radius of whatever Ci r cl e instance invokes the method.

Another important thing to notice about the bodies of thear ea() and ci r cunf er ence() methodsisthat they both use
the classfield Pl . We saw earlier that class methods can use only class fields and class methods, not instance fields or
methods. Instance methods are not restricted in this way: they can use any member of aclass, whether it is declared

stati c or not.

3.1.4.1. How instance methods work
Consider this line of code again:
a = c.area();

What's going on here? How can a method that has no parameters know what data to operate on? In fact, the ar ea()
method does have a parameter. All instance methods are implemented with an implicit parameter not shown in the method
signature. The implicit argument isnamed t hi s; it holds a reference to the object through which the method isinvoked. In
our example, that objectisaCi rcl e.

Theimplicit t hi s parameter is not shown in method signatures because it is usually not needed; whenever a Java method
accessesthefieldsinitsclass, itisimplied that it is accessing fields in the object referred to by thet hi s parameter. The
same is true when an instance method invokes another instance method in the same class. | said earlier that to invoke an
instance method you must prepend a reference to the object to be operated on. When an instance method is invoked within
another instance method in the same class, however, you don't need to specify an object. In this case, it isimplicit that the
method is being invoked on thet hi s object.

You can usethet hi s keyword explicitly when you want to make it clear that a method is accessing its own fields and/or
methods. For example, we can rewritethe ar ea() method to uset hi s explicitly to refer to instance fields:

publ ic double area() {
return Crcle.Pl * this.r * this.r;

}

This code also uses the class name explicitly to refer to classfield PI . In amethod this simple, it is not necessary to be
explicit. In more complicated cases, however, you may find that it increases the clarity of your code to use an explicit
t hi s whereitisnot strictly required.

There are some casesin which thet hi s keyword is required, however. For example, when a method parameter or local
variable in amethod has the same name as one of the fields of the class, you must uset hi s to refer to the field, since the
field name used alone refers to the method parameter or local variable. For example, we can add the following method to
theCircl e class:

public void setRadi us(double r) {
this.r =r; /1 Assign the argunment (r) to the field (this.r)

file://IC|/orielly/jnut/ch03_01.htm (5 of 7) [2/5/2003 7:46:59 PM]

Object-Oriented Programming in Java (Javain a Nutshell)

/1l Note that we cannot just say r =r

}

Finally, note that while instance methods can usethet hi s keyword, class methods cannot. This is because class methods
are not associated with objects.

3.1.4.2. Instance methods or class methods?

Instance methods are one of the key features of object-oriented programming. That doesn't mean, however, that you should
shun class methods. There are many casesin which isis perfectly reasonable to define class methods. When working with
the G r cl e class, for example, you might find there are many times you want to compute the area of a circle with agiven
radius, but don't want to bother creatingaCi r cl e object to represent that circle. In this case, a class method is more
convenient:

public static double area(double r) { return Pl * r * r; }

It is perfectly legal for aclass to define more than one method with the same name, as long as the methods have different
parameters. Since this version of the ar ea() method is a class method, it does not have an implicitt hi s parameter and
must have a parameter that specifies the radius of the circle. This parameter keepsit distinct from the instance method of
the same name.

As another example of the choice between instance methods and class methods, consider defining a method named
bi gger () that examinestwo Ci r ¢l e objects and returns whichever has the larger radius. We can write bi gger () as
an instance method as follows:

[/l Conpare the inplicit "this" circle to the "that" circle passed
/1l explicitly as an argunment and return the bigger one.
public Circle bigger(Crcle that) {

if (this.r >that.r) return this;

el se return that;

}

We can also implement bi gger () asaclass method as follows:

/'l Conpare circle a to circle b and return the one with the |arger radius
public static Crcle bigger(Crcle a, Crcle b) {

if (a.r > Db.r) return a;

el se return b;

}

Giventwo G r ¢l e objects, x and y, we can use either the instance method or the class method to determine which is
bigger. Theinvocation syntax differs significantly for the two methods, however:

Circle biggest = x.bigger(y); /'l I nstance nethod: al so y. bi gger(x)
Circle biggest = Circle.bigger(x, y); [// Static method

Neither option isthe correct choice. The instance method is more formally object-oriented, but its invocation syntax suffers
from akind of asymmetry. In a case like this, the choice between an instance method and a class method is simply adesign
decision. Depending on the circumstances, one or the other will likely be the more natural choice.

file://IC|/orielly/jnut/ch03_01.htm (6 of 7) [2/5/2003 7:46:59 PM]

Object-Oriented Programming in Java (Javain a Nutshell)

3.1.5. A Mystery Solved

Aswe saw in Chapter 1, "Introduction” and Chapter 2, "Java Syntax from the Ground Up", the way to display textual
output to the terminal in Javaiswith a method named Syst em out . pri nt | n() . Those chapters never explained why
this method has such an long, awkward name or what those two periods are doing in it. Now that you understand class and
instance fields and class and instance methods, it is easier to understand what is going on. Here'sthe story: Syst emisa
class. It hasaclassfield named out . Thefield Syst em out refersto an object. The object Syst em out hasan
instance method named pri nt | n() . Mystery solved! If you want to explore thisin more detail, you can look up the

j ava. | ang. Syst emclassin Chapter 12, "The java.lang Package". The class synopsis there tells you that the field out
isof typej ava. i 0. Pri nt St r eam which you can look up in Chapter 11, "The java.io Package".

4 PREVIOUS HOME HEXT B
2.14. Differences Between C BOOK INDEX 3.2. Creating and Initializing
and Java Objects

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch03_01.htm (7 of 7) [2/5/2003 7:46:59 PM]

file:///C|/orielly/jnut/copyrght.htm

Creating and Initializing Objects (Javain a Nutshell)

41 PREVIOUS Chapter 3: Object-Oriented HEXT
Programming in Java

3.2. Creating and Initializing Objects

Take another look at how we've been creating Gi r cl e objects:
Circle c = new Circle();

What are those parentheses doing there? They make it look like we're calling a method. In fact, that is exactly what we're
doing. Every classin Java has at least one constructor, which isamethod that has the same name as the class and whose
purpose is to perform any necessary initialization for a new object. Since we didn't explicitly define a constructor for our
G rcl e classin Example 3-1, Java gave us a default constructor that takes no arguments and performs no special
initialization.

Here's how a constructor works. The new operator creates a new, but uninitialized, instance of the class. The constructor
method is then called, with the new object passed implicitly (at hi s reference, as we saw earlier), and whatever arguments
that are specified between parentheses passed explicitly. The constructor can use these arguments to do whatever
initialization is necessary.

3.2.1. Defining a Constructor

Thereis some obvious initialization we could do for our circle objects, so let's define a constructor. Example 3-2 shows a

new definition for Ci r ¢l e that contains a constructor that lets us specify the radius of anew Ci r cl e object. The
constructor also usesthet hi s reference to distinguish between a method parameter and an instance field that have the same
name.

Example 3-2. A Constructor for the Circle Class

public class Crcle {
public static final double PI = 3.14159; // A constant
publ i c double r; /1 An instance field that holds the radius of the circle

[/ The constructor nethod: initialize the radius field
public Crcle(double r) { this.r =7r1; }

/'l The instance nethods: conpute val ues based on the radius
public double circunference() { return 2 * Pl * r; }
public double area() { return Pl * r*r; }

}

When we relied on the default constructor supplied by the compiler, we had to write code like thisto initialize the radius
explicitly:

Crcle c =newCrcle();

file://IC|/orielly/jnut/ch03_02.htm (1 of 5) [2/5/2003 7:47:26 PM]

Creating and Initializing Objects (Javain a Nutshell)

c.r = 0.25;
With this new constructor, the initialization becomes part of the object creation step:
Circle c = new Circle(0.25);
Here are some important notes about naming, declaring, and writing constructors:
. The constructor name is dways the same as the class name.
. Unlike all other methods, a constructor is declared without a return type, not even voi d.
. Thebody of aconstructor should initializethet hi s object.

. A constructor should not return t hi s or any other value.

3.2.2. Defining Multiple Constructors

Sometimes you want to initialize an object in a number of different ways, depending on what is most convenient in a
particular circumstance. For example, we might want to initialize the radius of acircle to a specified value or areasonable
default value. Since our Ci r cl e class has only asingle instance field, there aren't too many ways we can initiaize it, of
course. But in more complex classes, it is often convenient to define a variety of constructors. Here's how we can define two
constructorsfor Ci r cl e:

public Grcle() { r = 1.0; }
public Crcle(double r) { this.r =7r1; }

It is perfectly legal to define multiple constructors for a class, aslong as each constructor has a different parameter list. The
compiler determines which constructor you wish based on the number and type of arguments you supply. Thisis simply an
example of method overloading, which we discussed in Chapter 2, "Java Syntax from the Ground Up".

3.2.3. Invoking One Constructor from Another

Thereisaspecialized use of thet hi s keyword that arises when a class has multiple constructors; it can be used from a
constructor to invoke one of the other constructors of the same class. In other words, we can rewrite the two previous
Ci r cl e constructors as follows:

/1 This is the basic constructor: initialize the radius

public Crcle(double r) { this.r =7r; }

/1 This constructor uses this() to invoke the constructor above
public Crcle() { this(1.0); }

Thet hi s() syntax isamethod invocation that calls one of the other constructors of the class. The particular constructor
that isinvoked is determined by the number and type of arguments, of course. Thisis a useful technique when a number of
constructors share a significant amount of initialization code, asit avoids repetition of that code. This would be amore
impressive example, of course, if the one-parameter version of the G r cl e() constructor did moreinitialization than it
does.

file://IC|/orielly/jnut/ch03_02.htm (2 of 5) [2/5/2003 7:47:26 PM]

Creating and Initializing Objects (Javain a Nutshell)

Thereisan important restriction on using t hi s() : it can appear only as the first statement in a constructor. It may, of
course, be followed by any additional initialization a particular version of the constructor needs to do. The reason for this
restriction involves the automatic invocation of superclass constructor methods, which we'll explore later in this chapter.

3.2.4. Field Defaults and Initializers

Not every field of aclass requiresinitiaization. Unlike local variables, which have no default value and cannot be used until
explicitly initialized, the fields of a class are automatically initialized to the default values shown in Table 3-2. Essentially,

every field of aprimitive typeisinitialized to adefault value of f al se or zero, as appropriate. All fields of reference type
are, by default, initialized to nul | . These default values are guaranteed by Java. If the default value of afield is appropriate,
you can simply rely on it without explicitly initializing the field. This default initialization applies to both instance fields and
classfields.

Aswe've seen, the syntax for declaring afield of aclassisalot like the syntax for declaring alocal variable. Both class and
instance field declarations can be followed by an equals sign and an initial value, asin:

public static final double PI = 3.14159;
public double r = 1.0;

Aswe discussed in Chapter 2, "Java Syntax from the Ground Up", a variable declaration is a statement that appears within a
Java method; the variable initialization is performed when the statement is executed. Field declarations, however, are not part
of any method, so they cannot be executed as statements are. Instead, the Java compiler generates instance-field initialization
code automatically and putsit in the constructor or constructors for the class. The initiaization code isinserted into a
constructor in the order it appears in the source code, which meansthat afield initializer can use theinitial values of fields
declared before it. Consider the following code excerpt, which shows a constructor and two instance fields of a hypothetical
class:

public class TestC ass {
public int len 10;
public int[] table new int[len];

public Testd ass() {
for(int i =0; i <len; i++) table[i] =1i;

}

// Rest of the class is omtted...

}

In this case, the code generated for the constructor is actually equivalent to the following:

public Testd ass() {

l en = 10;
table = newint[len];
for(int i =0; i <len; i++) table[i] =1i;

}

If aconstructor beginswith at hi s() call to another constructor, the field initialization code does not appear in the first
constructor. Instead, the initialization is handled in the constructor invoked by thet hi s() call.

So, if instance fields are initialized in constructor methods, where are class fields initialized? These fields are associated with

file://IC|/orielly/jnut/ch03_02.htm (3 of 5) [2/5/2003 7:47:26 PM]

Creating and Initializing Objects (Javain a Nutshell)

the class, even if no instances of the class are ever created, so they need to beinitialized even before a constructor is called.
To support this, the Java compiler generates a class initialization method automatically for every class. Classfields are
initialized in the body of this method, which is guaranteed to be invoked exactly once before the classisfirst used (often
when the classisfirst loaded). Aswith instance field initiaization, class field initialization expressions are inserted into the
classinitialization method in the order they appear in the source code. This means that the initialization expression for a class
field can use the class fields declared before it. The classinitialization method is an internal method that is hidden from Java
programmers. If you disassemble the byte codes in a Java classfile, however, you'll see the classinitialization codein a
method named <cl i ni t >.

3.2.4.1. Initializer blocks

So far, we've seen that objects can be initialized through the initialization expressions for their fields and by arbitrary code in
their constructor methods. A class has a class initialization method, which is like a constructor, but we cannot explicitly
define the body of this method as we can for a constructor. Java does allow us to write arbitrary code for the initialization of
classfields, however, with a construct known as a static initializer. A static initializer issimply the keyword st ati c
followed by ablock of codein curly braces. A static initializer can appear in a class definition anywhere afield or method
definition can appear. For example, consider the following code that performs some nontrivia initialization for two class
fields:

/1 We can draw the outline of a circle using trigononetric functions
[l Trigononetry is slow, though, so we preconpute a bunch of val ues
public class TrigCrcle {
/'l Here are our static |ookup tables and their own sinple initializers
private static final NUWMPTS = 500;
private static double sines[] = new doubl e[NUMPTS] ;
private static double cosines[] = new doubl e[NUMPTS] ;

/'l Here's a static initializer that fills in the arrays
static {

double x = 0.0, delta_ x;

delta x = (Grcle.Pl/2)/ (NUMPTS-1);

for(int i 0, x =0.0; i < NUMPTS; i++, x += delta_x) {
sines[i] = Math.sin(x);
cosines[i] = Math.cos(x);
}
}
/'l The rest of the class is omtted... }

A class can have any number of static initializers. The body of each initializer block isincorporated into the class
initialization method, along with any static field initialization expressions. A static initializer is like a class method in that it
cannot use thet hi s keyword or any instance fields or instance methods of the class.

In Java 1.1 and later, classes are also allowed to have instance initializers. An instance initializer is like a static initializer,
except that it initializes an object, not aclass. A class can have any number of instance initializers, and they can appear
anywhere afield or method definition can appear. The body of each instance initializer isinserted at the beginning of every
constructor for the class, along with any field initialization expressions. An instance initializer looks just like a static
initializer, except that it doesn't usethe st at i ¢ keyword. In other words, an instance initializer isjust a block of arbitrary
Java code that appears within curly braces.

Instance initializers can initialize arrays or other fields that require complex initialization. They are sometimes useful because

file://IC|/orielly/jnut/ch03_02.htm (4 of 5) [2/5/2003 7:47:26 PM]

Creating and Initializing Objects (Javain a Nutshell)
they locate the initialization code right next to the field, instead of separating it off in a constructor method. For example:
private static finale int NUVWPTS = 100;

private int[] data = new i nt[NUMPTS];
{ for(int i =0; i < NUMPTS; i++) data[i] =i, }

In practice, however, this use of instance initializersisfairly rare. Instance initializers were introduced in Java to support
anonymous inner classes, and that is their main utility (we'll discuss anonymous inner classes later in this chapter).

48 PREVIQUS HOME HEXT &

3.1. The Members of a Class BOOK INDEX 3.3. Destroying and
Finalizing Objects

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch03_02.htm (5 of 5) [2/5/2003 7:47:26 PM]

file:///C|/orielly/jnut/copyrght.htm

Destroying and Finalizing Objects (Javain a Nutshell)

41 PREVIOUS Chapter 3: Object-Oriented MEXT B
Programming in Java

3.3. Destroying and Finalizing Objects

Now that we've seen how new objects are created and initialized in Java, we need to study the other end of the object
life cycle and examine how objects are finalized and destroyed. Finalization is the opposite of initialization.

As| mentioned in Chapter 2, "Java Syntax from the Ground Up", the memory occupied by an object is automatically
reclaimed when the object is no longer needed. Thisis done through a process known as gar bagecollection. Garbage
collection is not some newfangled technique; it has been around for years in languages such as Lisp. It just takes
some getting used to for programmers accustomed to such languages as C and C++, in which you must call the
free() method or thedel et e operator to reclaim memory. The fact that you don't need to remember to destroy
every object you create is one of the features that makes Java a pleasant language to work with. It is also one of the
features that makes programs written in Javaless prone to bugs than those written in languages that don't support
automatic garbage collection.

3.3.1. Garbage Collection

The Javainterpreter knows exactly what objects and arrays it has allocated. It can also figure out which local
variables refer to which objects and arrays, and which objects and arrays refer to which other objects and arrays.
Thus, the interpreter is able to determine when an allocated object is no longer referred to by any other object or
variable. When the interpreter finds such an object, it knows it can destroy the object safely and does so. The garbage
collector can also detect and destroy cycles of objects that refer to each other, but are not referenced by any other
active objects. Any such cycles are also reclaimed.

The Java garbage collector runs as a low-priority thread, so it does most of its work when nothing elseis going on,
such as during idle time while waiting for user input. The only time the garbage collector must run while something
high-priority isgoing on (i.e., the only timeit will actually slow down the system) is when available memory has
become dangerously low. This doesn't happen very often because the low-priority thread cleans things up in the
background.

This scheme may sound slow and wasteful of memory. Actually though, modern garbage collectors can be
surprisingly efficient. Garbage collection will never be as efficient as well-written, explicit memory allocation and
deallocation. But it does make programming alot easier and less prone to bugs. And for most real-world programs,
rapid development, lack of bugs, and easy maintenance are more important features than raw speed or memory
efficiency.

3.3.2. Memory Leaks in Java

The fact that Java supports garbage collection dramatically reduces the incidence of a class of bugs known as memory
leaks. A memory leak occurs when memory is allocated and never reclaimed. At first glance, it might seem that

file://IC|/orielly/jnut/ch03_03.htm (1 of 4) [2/5/2003 7:47:29 PM]

Destroying and Finalizing Objects (Javain a Nutshell)

garbage collection prevents all memory leaks because it reclaims all unused objects. A memory leak can still occur in
Java, however, if avalid (but unused) reference to an unused object is left hanging around. For example, when a
method runs for along time (or forever), the local variablesin that method can retain object references much longer
than they are actually required. The following code illustrates:

public static void main(String argso[]) {
int big array[] = new int[100000];

/1 Do sonme conputations with big array and get a result.
int result = conpute(big_array);

/1 W no |onger need big array. It wll get garbage collected when there
/'l are no nore references to it. Since big array is a |ocal variable,

[l it refers to the array until this nethod returns. But this nethod

/1l doesn't return. So we've got to explicitly get rid of the reference
/'l ourselves, so the garbage collector knows it can reclaimthe array.
big _array = null;

/'l Loop forever, handling the user's input
for(;;) handle_input(result);

}

Memory leaks can aso occur when you use a hashtable or similar data structure to associate one object with another.
Even when neither object is required anymore, the association remains in the hashtable, preventing the objects from
being reclaimed until the hashtable itself is reclaimed. If the hashtable has a substantially longer lifetime than the
objects it holds, this can cause memory leaks.

3.3.3. Object Finalization

A finalizer in Javaisthe opposite of a constructor. While a constructor method performsinitialization for an object, a
finalizer method performs finalization for the object. Garbage collection automatically frees up the memory resources
used by objects, but objects can hold other kinds of resources, such as open files and network connections. The
garbage collector cannot free these resources for you, so you need to write afinalizer method for any object that
needs to perform such tasks as closing files, terminating network connections, deleting temporary files, and so on.

A finalizer is an instance method that takes no arguments and returns no value. There can be only one finalizer per
class, and it must benamed f i nal i ze() .[1] A finalizer can throw any kind of exception or error, but when a
finalizer is automatically invoked by the garbage collector, any exception or error it throwsisignored and serves only
to cause the finalizer method to return. Finalizer methods are typically declared pr ot ect ed (which we have not
discussed yet), but can aso be declared publ i c. An example finalizer looks like this:

[1]C++ programmers should note that although Java constructor methods are named like C++
constructors, Java finaization methods are not named like C++ destructor methods. Aswe will see,
they do not behave quite like C++ destructor methods, either.

protected void finalize() throws Throwabl e {
/'l Invoke the finalizer of our superclass

file:///C|/orielly/jnut/ch03_03.htm (2 of 4) [2/5/2003 7:47:29 PM]

Destroying and Finalizing Objects (Javain a Nutshell)

/1 W haven't discussed superclasses or this syntax yet
super.finalize();

/'l Delete a tenporary file we were using

/1 1f the file doesn't exist or tenpfile is null, this can throw
/'l an exception, but that exception is ignored.
tenpfile.delete();

}

Here are some important points about finalizers:

. If an object has afinalizer, the finalizer method is invoked sometime after the object becomes unused (or
unreachable), but before the garbage collector reclaims the object.

. Javamakes no guarantees about when garbage collection will occur or in what order objects will be collected.
Therefore, Java can make no guarantees about when (or even whether) afinalizer will be invoked, in what
order finalizers will be invoked, or what thread will execute finaizers.

. TheJavainterpreter can exit without garbage collecting all outstanding objects, so some finalizers may never
be invoked. In this case, though, any outstanding resources are usually freed by the operating system. In Java
1.1, the Runt i me method r unFi nal i zer sOnExi t () canforce the virtual machine to run finalizers
before exiting. Unfortunately, however, this method can cause deadlock and is inherently unsafe; it has been
deprecated as of Java 1.2. In Java 1.3, the Runt i me method addShut downHook () can safely execute
arbitrary code before the Java interpreter exits.

. After afinalizer isinvoked, objects are not freed right away. Thisis because afinalizer method can resurrect
an object by storing thet hi s pointer somewhere so that the object once again has references. Thus, after
finalize() iscaled, the garbage collector must once again determine that the object is unreferenced
before it can garbage-collect it. However, even if an object is resurrected, the finalizer method is never
invoked more than once. Resurrecting an object is never a useful thing to do--just a strange quirk of object
finalization. Asof Javal.2, thej ava. | ang. r ef . Phant onRef er ence class can implement an
aternative to finalization that does not allow resurrection.

In practice, it isrelatively rare for an application-level classto requireaf i nal i ze() method. Finalizer methods
are more useful, however, when writing Java classes that interface to native platform code with nat i ve methods. In
this case, the native implementation can allocate memory or other resources that are not under the control of the Java
garbage collector and need to be reclaimed explicitly by anat i vefi nal i ze() method.

While Java supports both class and instance initialization through static initializers and constructors, it provides only
afacility for instance finalization. The original Java specification called for acl assFi nal i ze() method that
could finalize a class when the class itself became unused and was unloaded from the VM. This feature was never
implemented, however, and because it has proved to be unnecessary, class finalization has been removed from the
language specification.

4 PREVIOUS HOME NEXT

file://IC|/orielly/jnut/ch03_03.htm (3 of 4) [2/5/2003 7:47:29 PM]

Destroying and Finalizing Objects (Javain a Nutshell)

3.2. Creating and Initializing BOOK INDEX 3.4. Subclasses and
Objects Inheritance

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch03_03.htm (4 of 4) [2/5/2003 7:47:29 PM]

file:///C|/orielly/jnut/copyrght.htm

Subclasses and Inheritance (Javain a Nutshell)

41 PREVIOUS Chapter 3: Object-Oriented HEXT &
Programming in Java

3.4. Subclasses and Inheritance

The Gi r cl e defined earlier isasimple class that distinguishes circle objects only by their radii. Suppose, instead, that we
want to represent circles that have both a size and a position. For example, acircle of radius 1.0 centered at point 0,0 in the
Cartesian plane is different from the circle of radius 1.0 centered at point 1,2. To do this, we need a new class, which we'll
cal Pl aneCi r cl e. We'd like to add the ability to represent the position of a circle without losing any of the existing
functionality of the Ci r cl e class. Thisisdone by defining Pl aneCi r cl e asasubclassof G r cl e, so that

Pl aneCi r cl e inherits the fields and methods of its superclass, Ci r cl e. The ability to add functionality to a class by
subclassing, or extending, it is central to the object-oriented programming paradigm.

3.4.1. Extending a Class
Example 3-3 shows how we can implement Pl aneCi r cl e asasubclassof theCi r cl e class.

Example 3-3. Extending the Circle Class

public class PlaneCircle extends Crcle {
[/ We automatically inherit the fields and nethods of Circle,
/1 so we only have to put the new stuff here.
/1 New instance fields that store the center point of the circle
publ i c double cx, cy;

/1 A new constructor nethod to initialize the new fields
/1l 1t uses a special syntax to invoke the Crcle() constructor
public PlaneC rcle(double r, double x, double y) {

super(r); /'l 1 nvoke the constructor of the superclass, Circle()
this.cx = x; /1l Initialize the instance field cx
this.cy =vy; /1l Initialize the instance field cy

}

/1l The area() and circunference() nethods are inherited fromGircle

/1 A new instance nmethod that checks whether a point is inside the circle
/1l Note that it uses the inherited instance field r

publ i c bool ean islnside(double x, double y) {

double dx = x - ¢x, dy =y - cy; /1 Distance from center
doubl e di stance = Math.sqrt(dx*dx + dy*dy); // Pythagorean theorem
return (distance < r); /'l Returns true or false

}
}

Note the use of the keyword ext ends in thefirst line of Example 3-3. This keyword tells Javathat Pl aneCi r cl e
extends, or subclasses, Ci r cl e, meaning that it inherits the fields and methods of that class.[2] The definition of the

file://IC|/orielly/jnut/ch03_04.htm (1 of 9) [2/5/2003 7:47:33 PM]

Subclasses and Inheritance (Javain a Nutshell)

i sl nsi de() method showsfield inheritance; this method usesthefield r (defined by the Ci r cl e class) asif it were
definedrightin Pl aneCi r cl e itself. Pl aneCi r cl e asoinheritsthe methods of Ci r cl e. Thus, if we have a
Pl aneCi r cl e object referenced by variable pc, we can say:

[2] C++ programmers should note that ext ends isthe Javaequivalent of : in C++; both are used to indicate
the superclass of aclass.

double ratio = pc.circunference() / pc.area();
Thisworksjust asif thear ea() andci r cunf er ence() methodsweredefinedin Pl aneCi r cl e itself.

Another feature of subclassing isthat every Pl aneCi r cl e object isalso aperfectly legal Ci r cl e object. Thus, if pc
referstoaPl aneCi r cl e object, wecan assignittoaCi r cl e variable and forget al about its extra positioning
capabilities:

PlaneCircle pc = new PlaneCrcle(1.0, 0.0, 0.0); // Unit circle at the origin
Circle ¢ = pc; /'l Assigned to a Circle variable w thout casting

Thisassignment of aPl aneCi r cl e objecttoaCi r cl e variable can be done without a cast. As we discussed in Chapter
2, "Java Syntax from the Ground Up", thisis awidening conversion and is awayslegal. ThevalueheldintheCi rcl e

variable c isdtill avalid Pl aneCGi r cl e object, but the compiler cannot know this for sure, so it doesn't allow us to do the
opposite (narrowing) conversion without a cast:

/1 Narrow ng conversions require a cast (and a runtine check by the VM
PlaneCircle pc2 = (PlaneCrcle) c;
bool ean origininside = ((PlaneCircle) c).islnside(0.0, 0.0);

3.4.1.1. Final classes

When aclassis declared with thef i nal modifier, it means that it cannot be extended or subclassed.

j ava. | ang. Syst emisan exampleof af i nal class. Declaringaclassfi nal prevents unwanted extensionsto the
class, and it aso alows the compiler to make some optimizations when invoking the methods of a class. Welll explore this
in more detail later in this chapter, when we talk about method overriding.

3.4.2. Superclasses, Object, and the Class Hierarchy

In our example, Pl aneCi r cl e isasubclassof Ci r cl e. We can aso say that Ci r ¢l e isthe superclass of
Pl aneCi r cl e. The superclass of aclassis specified in itsext ends clause:

public class PlaneCircle extends Circle { ... }

Every class you define has a superclass. If you do not specify the superclass with an ext ends clause, the superclassisthe
classj ava. | ang. Obj ect . Obj ect isaspecia classfor acouple of reasons:

. Itistheonly classin Javathat does not have a superclass.

« All Java classes inherit the methods of Qbj ect .

file://IC|/orielly/jnut/ch03_04.htm (2 of 9) [2/5/2003 7:47:33 PM]

Subclasses and Inheritance (Javain a Nutshell)

Because every class has a superclass, classes in Javaform aclass hierarchy, which can be represented as a tree with
bj ect atitsroot. Figure 3-1 shows a class hierarchy diagram that includesour Ci r cl e and Pl aneCi r cl e classes, as

well as some of the standard classes from the Java API. Every API quick-reference chapter in Part 2, "API Quick
Reference” includes a class-hierarchy diagram for the classes it documents.

Object Circle PlaneCirde
—1 Math
— System
— Reoder InputSireamReader FileReoder
FilterReader
StringReader

Figure 3-1. A class hierarchy diagram
3.4.3. Subclass Constructors
Look again at the Pl aneCi r cl e() constructor method of Example 3-3:

public PlaneCircle(double r, double x, double y) {

super(r); /'l I nvoke the constructor of the superclass, Crcle()
this.cx = x; /1 Initialize the instance field cx
this.cy =vy; /1l Initialize the instance field cy

}

This constructor explicitly initializesthe cx and cy fields newly defined by Pl aneCi r cl e, but it relies on the superclass
Ci rcl e() constructor to initialize the inherited fields of the class. To invoke the superclass constructor, our constructor
calssuper () .super isareserved word in Java. One of its usesis to invoke the constructor method of a superclass from
within the constructor method of a subclass. This useis analogousto the use of t hi s() to invoke one constructor method
of aclass from within another constructor method of the same class. Using super () to invoke a constructor is subject to
the same restrictionsasusing t hi s() to invoke a constructor:

. super () canbeusedinthisway only within a constructor method.

. Thecall to the superclass constructor must appear as the first statement within the constructor method, even before
local variable declarations.

The arguments passed to super () must match the parameters of the superclass constructor. If the superclass defines more
than one constructor, super () can be used to invoke any one of them, depending on the arguments passed.

3.4.4. Constructor Chaining and the Default Constructor

file://IC|/orielly/jnut/ch03_04.htm (3 of 9) [2/5/2003 7:47:33 PM]

Subclasses and Inheritance (Javain a Nutshell)

Java guarantees that the constructor method of aclassis called whenever an instance of that classis created. It also
guarantees that the constructor is called whenever an instance of any subclassis created. In order to guarantee this second
point, Java must ensure that every constructor method calls its superclass constructor method. Thus, if the first statement in
aconstructor does not explicitly invoke another constructor witht hi s() or super () , Javaimplicitly inserts the call
super () ; thatis, it calls the superclass constructor with no arguments. If the superclass does not have a constructor that
takes no arguments, thisimplicit invocation causes a compilation error.

Consider what happens when we create a new instance of the Pl aneGi r cl e class. First, the Pl aneCi r cl e constructor
isinvoked. This constructor explicitly callssuper (r) toinvokeaCi r cl e constructor, and that Ci r cl e() constructor
implicitly callssuper () toinvoke the constructor of its superclass, Cbj ect . The body of the Obj ect constructor runs
first. When it returns, the body of the Ci r cl e()) constructor runs. Finally, when the call to super (r) returns, the
remaining statements of the Pl aneCi r cl e() constructor are executed.

What all this meansisthat constructor calls are chained; any time an object is created, a sequence of constructor methodsis
invoked, from subclass to superclass on up to Cbj ect at the root of the class hierarchy. Because a superclass constructor is
always invoked as the first statement of its subclass constructor, the body of the Cbj ect constructor always runsfirst,
followed by the constructor of its subclass and on down the class hierarchy to the class that is being instantiated. Thereisan
important implication here; when a constructor isinvoked, it can count on the fields of its superclass to beinitialized.

3.4.4.1. The default constructor

There is one missing piece in the previous description of constructor chaining. If a constructor does not invoke a superclass
constructor, Java does so implicitly. But what if a classis declared without a constructor? In this case, Javaimplicitly adds
a constructor to the class. This default constructor does nothing but invoke the superclass constructor. For example, if we
don't declare a constructor for the Pl aneCi r cl e class, Javaimplicitly inserts this constructor:

public PlaneCircle() { super(); }

If the superclass, Ci r cl e, doesn't declare a no-argument constructor, the super () call in thisautomatically inserted
default constructor for Pl aneCi r cl e() causesacompilation error. In general, if aclass does not define a no-argument
constructor, all its subclasses must define constructors that explicitly invoke the superclass constructor with the necessary
arguments.

If aclass does not declare any constructors, it is given a no-argument constructor by default. Classes declared publ i ¢ are
given publ i ¢ constructors. All other classes are given a default constructor that is declared without any visibility
modifier: such aconstructor has default visibility. (The notion of visibility is explained later in this chapter.) If you are
creating apubl i ¢ classthat should not be publicly instantiated, you should declare at least one non-publ i ¢ constructor
to prevent the insertion of adefault publ i ¢ constructor. Classes that should never be instantiated (such as

java.l ang. Mat horj ava. | ang. Syst em) should defineapr i vat e constructor. Such a constructor can never be
invoked from outside of the class, but it prevents the automatic insertion of the default constructor.

3.4.4.2. Finalizer chaining?

Y ou might assume that, since Java chains constructor methods, it also automatically chains the finalizer methods for an
object. In other words, you might assume that the finalizer method of a class automatically invokes the finalizer of its
superclass, and so on. In fact, Java does not do this. When you writeaf i nal i ze() method, you must explicitly invoke
the superclass finalizer. (Y ou should do this even if you know that the superclass does not have a finalizer because a future
implementation of the superclass might add afinalizer.)

file:///C|/orielly/jnut/ch03_04.htm (4 of 9) [2/5/2003 7:47:33 PM]

Subclasses and Inheritance (Javain a Nutshell)

Aswe saw in our example finalizer earlier in the chapter, you can invoke a superclass method with a special syntax that
usesthesuper keyword:

/'l Invoke the finalizer of our superclass. super.finalize();

WEe'll discuss this syntax in more detail when we consider method overriding. In practice, the need for finalizer methods,
and thus finalizer chaining, rarely arises.

3.4.5. Shadowing Superclass Fields

For the sake of example, imagine that our Pl aneCi r cl e class needs to know the distance between the center of the circle
and the origin (0,0). We can add another instance field to hold this value:

public double r;
Adding the following line to the constructor computes the value of the field:
this.r = Math.sqgrt(cx*cx + cy*cy); [/ Pythagorean Theorem

But wait, thisnew field r has the same name asthe radiusfield r inthe G r cl e superclass. When this happens, we say

that thefieldr of Pl aneCi r cl eshadowsthefieldr of G r cl e. (Thisisacontrived example, of course: the new field
should really be called di st anceFr onOr i gi n. Although you should attempt to avoid it, subclass fields do sometimes
shadow fields of their superclass.)

With this new definition of Pl aneCi r cl e, theexpressionsr andt hi s. r both refer to thefield of Pl aneCi rcl e.
How, then, can werefer to thefield r of Ci r cl e that holds the radius of the circle? There is a specia syntax for this that
usesthesuper keyword:

r // Refers to the PlaneCircle field
this.r /! Refers to the PlaneCircle field
super.r // Refers to the GCrcle field

Another way to refer to a shadowed field isto cast t hi s (or any instance of the class) to the appropriate superclass and
then accessthefield:

((Crcle) this).r /Il Refers to fieldr of the Crcle class

This casting technique is particularly useful when you need to refer to a shadowed field defined in aclass that is not the
immediate superclass. Suppose, for example, that classes A, B, and C all define afield named x and that Cis a subclass of
B, which isasubclass of A. Then, in the methods of class C, you can refer to these different fields as follows:

X /Il Field x in class C
this.x /'l Field x in class C
super. X /'l Field x in class B
((B)this).x /'l Field x in class B
((A)this).x /'l Field x in class A
super. super. x /'l 1l1legal; does not refer to x in class A

file://IC|/orielly/jnut/ch03_04.htm (5 of 9) [2/5/2003 7:47:33 PM]

Subclasses and Inheritance (Javain a Nutshell)

Y ou cannot refer to a shadowed field x in the superclass of a superclasswith super . super . x. Thisisnot legal syntax.

Similarly, if you have an instance ¢ of class C, you can refer to the three fields named x like this:

C. X /'l Field x of class C
((B)c).x /'l Field x of class B
((A)c).x /'l Field x of class A

So far, we've been discussing instance fields. Class fields can also be shadowed. Y ou can use the same super syntax to
refer to the shadowed value of the field, but thisis never necessary since you can aways refer to a classfield by prepending
the name of the desired class. Suppose that the implementer of Pl aneCi r cl e decidesthat the Ci r cl e. Pl field does
not express 1tto enough decimal places. She can define her own classfield PI :

public static final double PI = 3.14159265358979323846;

Now, codein Pl aneCi r cl e can use this more accurate value with the expressions Pl or Pl aneCi rcl e. PI . It canaso
refer to the old, less accurate value with the expressionssuper . Pl and G r cl e. PI . Note, however, that the ar ea()
and ci rcunf er ence() methodsinherited by Pl aneCi r cl e aredefinedinthe Ci r cl e class, so they use the value

G rcl e. Pl , even though that value is shadowed now by Pl aneCi rcl e. PI .

3.4.6. Overriding Superclass Methods

When a class defines an instance method using the same name, return type, and parameters as a method in its superclass,
that method overrides the method of the superclass. When the method is invoked for an object of the class, it isthe new
definition of the method that is called, not the superclass's old definition.

Method overriding is an important and useful technique in object-oriented programming. Pl aneCi r cl e does not override
either of the methods defined by Ci r ¢l e, but suppose we define another subclassof G rcl e, named El | i pse.[3] In
this case, it isimportant for El | i pse to overridethear ea() andci rcunf erence() methodsof C r cl e, sincethe
formulas used to compute the area and circumference of a circle do not work for ellipses.

[3]Mathematical purists may argue that since all circlesare ellipses, El | i pse should be the superclass and
Ci r cl e the subclass. A pragmatic engineer might counterargue that circles can be represented with fewer
instance fields, so Ci r ¢l e objects should not be burdened by inheriting unnecessary fieldsfromEl | i pse.
In any case, thisis auseful example here.

The upcoming discussion of method overriding considers only instance methods. Class methods behave quite differently,
and there isn't much to say. Like fields, class methods can be shadowed by a subclass, but not overridden. As| noted earlier
in this chapter, it is good programming style to always prefix a class method invocation with the name of the class in which
it is defined. If you consider the class name part of the class method name, the two methods have different names, so
nothing is actually shadowed at all. It is, however, illegal for a class method to shadow an instance method.

Before we go any further with the discussion of method overriding, you need to be sure you understand the difference
between method overriding and method overloading. As we discussed in Chapter 2, "Java Syntax from the Ground Up",
method overloading refers to the practice of defining multiple methods (in the same class) that have the same name, but
different parameter lists. Thisis very different from method overriding, so don't get them confused.

3.4.6.1. Overriding is not shadowing

file://IC|/orielly/jnut/ch03_04.htm (6 of 9) [2/5/2003 7:47:33 PM]

Subclasses and Inheritance (Javain a Nutshell)

Although Java treats the fields and methods of a class analogously in many ways, method overriding is not like field
shadowing at al. You can refer to shadowed fields simply by casting an object to an instance of the appropriate superclass,
but you cannot invoke overridden instance methods with this technique. The following code illustrates this crucial
difference:

class A { /'l Define a class nanmed A
int i =1; /1 An instance field
int () { returni; } /1l An instance nethod
static char g() { return "A; } [/ A class nethod
}
class B extends A { /'l Define a subclass of A
int i = 2; /'l Shadows field i in class A
int f() { return -i; } /'l Overrides instance nethod f in class A
static char g() { return 'B; } [// Shadows class nethod g() in class A

}

public class OverrideTest {
public static void main(String args[]) {

B b = newB(); /'l Creates a new object of type B
Systemout.printlin(b.i); /! Refers to B.i; prints 2
Systemout.printin(b.f()); /'l Refers to B.f(); prints -2
Systemout.println(b.g()); /! Refers to B.g(); prints B
Systemout.printin(B.g()); I/ This is a better way to invoke B.g()
Aa = (A b /1l Casts b to an instance of class A
Systemout.println(a.i); /'l Now refers to Ali; prints 1
Systemout.printin(a.f()); /[l Still refers to B.f(); prints -2
Systemout.printlin(a.g()); /'l Refers to A .g(); prints A
Systemout.printin(A g()); /1 This is a better way to i nvoke A g()

}
}

While this difference between method overriding and field shadowing may seem surprising at first, alittle thought makes
the purpose clear. Suppose we have abunch of Ci rcl e and El | i pse objects we are manipulating. To keep track of the
circlesand ellipses, we storethem in an array of type Ci r cl e[] . (We can do thisbecause El | i pse isasubclass of
Circle,sodlEllipseobjectsarelegal Ci r cl e objects.) When we loop through the elements of this array, we don't
have to know or care whether the element isactually aCi rcl e oran El | i pse. What we do care about very much,
however, isthat the correct value is computed when we invoke the ar ea() method of any element of the array. In other
words, we don't want to use the formula for the area of a circle when the object is actually an ellipse! Seen in this context, it
isnot surprising at al that method overriding is handled differently by Java than field shadowing.

3.4.6.2. Dynamic method lookup

If wehaveaCircl e[] array that holdsCi rcl e and El | i pse objects, how does the compiler know whether to call the
ar ea() method of theCi r cl e classor theEl | i pse classfor any given item in the array? In fact, the compiler does not
know this because it cannot know it. The compiler knows that it does not know, however, and produces code that uses
dynamic method lookup at runtime. When the interpreter runs the code, it looks up the appropriate ar ea() method to call
for each of the objectsin the array. That is, when the interpreter interprets the expression o. ar ea() , it checks the actual
type of the object referred to by the variable o and then findsthe ar ea() method that is appropriate for that type. It does

file:///C]/orielly/jnut/ch03_04.htm (7 of 9) [2/5/2003 7:47:33 PM]

Subclasses and Inheritance (Javain a Nutshell)

not simply usethe ar ea() method that is statically associated with the type of the variable 0. This process of dynamic
method lookup is sometimes also called virtual method invocation.[4]

[4] C++ programmers should note that dynamic method lookup iswhat C++ doesfor vi rt ual functions.
An important difference between Java and C++ isthat Javadoes not haveavi rt ual keyword. In Java,
methods are virtual by default.

3.4.6.3. Final methods and static method lookup

Virtual method invocation is fast, but method invocation is faster when no dynamic lookup is necessary at runtime.
Fortunately, there are a number of situations in which Java does not need to use dynamic method lookup. In particular, if a
method is declared with the f i nal modifier, it means that the method definition is the final one; it cannot be overridden
by any subclasses. If amethod cannot be overridden, the compiler knows that there is only one version of the method, and
dynamic method lookup is not necessary.[5] In addition, al methods of af i nal class are themselvesimplicitly final and
cannot be overridden. Aswelll discuss later in this chapter, pri vat e methods are not inherited by subclasses and,
therefore, cannot be overridden (i.e., al pri vat e methods areimplicitly f i nal). Finally, class methods behave like
fields (i.e., they can be shadowed by subclasses but not overridden). Taken together, this means that all methods of a class
that isdeclared f i nal , aswell asall methodsthat aref i nal , pri vat e, or st ati c, areinvoked without dynamic
method lookup. These methods are also candidates for inlining at runtime by ajust-in-time compiler (JIT) or smilar
optimization tool.

[S]In thissense, thef i nal modifier isthe opposite of thevi rt ual modifier in C++. All non-f i nal
methods in Javaarevi r t ual .

3.4.6.4. Invoking an overridden method

We've seen the important differences between method overriding and field shadowing. Nevertheless, the Java syntax for
invoking an overridden method is quite similar to the syntax for accessing a shadowed field: both use the super keyword.
The following code illustrates:

class A {
int i =1; /1 An instance field shadowed by subcl ass B
int f() { returni; } /1 An instance nethod overridden by subclass B
}
class B extends A {
int i; [l This field shadows i in A
int f() { /1 This method overrides f() in A
I = super.i + 1; /1l 1t can retrieve Ai like this
return super.f() + i; [l It can invoke A f() like this
}
}

Recall that when you use super to refer to a shadowed field, it isthe same as casting t hi s to the superclass type and
accessing the field through that. Using super to invoke an overridden method, however, is not the same as castingt hi s.
In other words, in the previous code, the expression super . f () isnotthesameas((A)this).f().

When the interpreter invokes an instance method with thissuper syntax, amodified form of dynamic method lookup is
performed. Thefirst step, asin regular dynamic method lookup, is to determine the actual class of the object through which
the method isinvoked. Normally, the dynamic search for an appropriate method definition would begin with this class.

file://IC|/orielly/jnut/ch03_04.htm (8 of 9) [2/5/2003 7:47:33 PM]

Subclasses and Inheritance (Javain a Nutshell)

When a method isinvoked with the super syntax, however, the search begins at the superclass of the class. If the
superclass implements the method directly, that version of the method is invoked. If the superclass inherits the method, the
inherited version of the method is invoked.

Note that the super keyword invokes the most immediately overridden version of a method. Suppose class A hasa
subclass B that has a subclass C, and all three classes define the same method f () . Then the method C. f () can invoke the
method B. f () , which it overrides directly, with super . f () . But thereisno way for C. f () toinvoke A. f () directly:
super . super. f () isnotlega Javasyntax. Of course, if C. f () invokesB. f (), it isreasonable to suppose that

B. f () mightalsoinvokeA. f () . Thiskind of chaining is relatively common when working with overridden methods: it
isaway of augmenting the behavior of a method without replacing the method entirely. We saw this technique in the the
examplef i nal i ze() method shown earlier in the chapter: that method invoked super . fi nal i ze() torunits
superclass finalization method.

Don't confuse the use of super to invoke an overridden method with the super () method call used in constructor
methods to invoke a superclass constructor. Although they both use the same keyword, these are two entirely different
syntaxes. In particular, you can use super to invoke an overridden method anywhere in the overriding method, while you
canusesuper () only to invoke a superclass constructor as the very first statement of a constructor.

It is also important to remember that super can be used only to invoke an overridden method from within the method that
overridesit. Givenan El | i pse object e, there is no way for a program that uses an object (with or without the super
syntax) to invokethe ar ea() method defined by the G r ¢l e class on this object.

I've aready explained that class methods can shadow class methods in superclasses, but cannot override them. The
preferred way to invoke class methods is to include the name of the classin the invocation. If you do not do this, however,
you can usethe super syntax to invoke a shadowed class method, just as you would invoke an instance method or refer to
a shadowed field.

4 PREVIOUS HOME HEXT »
3.3. Destroying and BOOK INDEX 3.5. Data Hiding and
Finalizing Objects Encapsulation

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch03_04.htm (9 of 9) [2/5/2003 7:47:33 PM]

file:///C|/orielly/jnut/copyrght.htm

Data Hiding and Encapsulation (Javain a Nutshell)

41 PREVIOUS Chapter 3: Object-Oriented HEXT &
Programming in Java

3.5. Data Hiding and Encapsulation

We started this chapter by describing a class as "a collection of data and methods." One of the important object-
oriented techniques we haven't discussed so far is hiding the data within the class and making it available only through
the methods. This technique is known as encapsulation because it seals the data (and internal methods) safely inside
the "capsule" of the class, where it can be accessed only by trusted users (i.e., by the methods of the class).

Why would you want to do this? The most important reason is to hide the internal implementation details of your class.
If you prevent programmers from relying on those details, you can safely modify the implementation without worrying
that you will break existing code that uses the class.

Another reason for encapsulation is to protect your class against accidental or willful stupidity. A class often contains a
number of interdependent fields that must be in a consistent state. If you allow a programmer (including yourself) to
manipul ate those fields directly, he may change one field without changing important related fields, thus leaving the
classin an inconsistent state. If, instead, he has to call a method to change the field, that method can be sure to do
everything necessary to keep the state consistent. Similarly, if a class defines certain methods for internal use only,
hiding these methods prevents users of the class from calling them.

Here's another way to think about encapsulation: when al the data for a classis hidden, the methods define the only
possible operations that can be performed on objects of that class. Once you have carefully tested and debugged your
methods, you can be confident that the class will work as expected. On the other hand, if al the fields of the class can
be directly manipulated, the number of possibilities you have to test becomes unmanageable.

There are other reasons to hide fields and methods of a class, as well:

. Internal fields and methods that are visible outside the class just clutter up the API. Keeping visible fieldsto a
minimum keeps your class tidy and therefore easier to use and understand.

. If afield or method is visible to the users of your class, you have to document it. Save yourself time and effort
by hiding it instead.

3.5.1. Access Control

All the fields and methods of a class can always be used within the body of the class itself. Java defines access control
rules that restrict members of a class from being used outside the class. In an number of examplesin this chapter,
you've seen the publ i ¢ modifier used in field and method declarations. Thispubl i ¢ keyword, along with

prot ect ed and pri vat e, are accesscontrolmodifiers ; they specify the access rules for the field or method.

3.5.1.1. Access to packages

file://IC|/orielly/jnut/ch03_05.htm (1 of 6) [2/5/2003 7:47:36 PM]

Data Hiding and Encapsulation (Javain a Nutshell)

A package is aways accessible to code defined within the package. Whether it is accessible to code from other
packages depends on the way the package is deployed on the host system. When the class files that comprise a package
are stored in adirectory, for example, a user must have read access to the directory and the fileswithin it in order to
have access to the package. Package access is not part of the Java language itself. Access control isusually done at the
level of classes and members of classes instead.

3.5.1.2. Access to classes

By default, top-level classes are accessible within the package in which they are defined. However, if atop-level class
isdeclared publ i c, it isaccessible everywhere (or everywhere that the package itself is accessible). The reason that
we've restricted these statements to top-level classesisthat, aswell seelater in this chapter, classes can aso be defined
as members of other classes. Because these inner classes are members of a class, they obey the member access-control
rules.

3.5.1.3. Access to members

Asl've aready said, the members of aclass are always accessible within the body of the class. By default, members
are also accessible throughout the package in which the classis defined. Thisimplies that classes placed in the same
package should trust each other with their internal implementation details.[6] This default level of accessis often called
packageaccess. It is only one of four possible levels of access. The other three levels of access are defined by the

publ i c, protected,andprivat e modifiers. Here is some example code that uses these modifiers:

[6]C++ programmers might say that all classes within a package aref r i end-ly to each other.

public class Laundromat { /'l People can use this class.
private Laundry[] dirty; /'l They cannot use this internal field,
public void wash() { ... } /1 but they can use these public nethods
public void dry() { ... } /1l to mani pulate the internal field.

}

Here are the access rules that apply to members of a class:

. |If amember of aclassis declared with the publ i ¢ modifier, it means that the member is accessible anywhere
the containing classis accessible. Thisisthe least restrictive type of access control.

. If amember of aclassisdeclared pri vat e, the member is never accessible, except within the classitself. This
is the most restrictive type of access control.

. If amember of aclassisdeclared pr ot ect ed, it isaccessible to all classes within the package (the same as
the default package accessibility) and also accessible within the body of any subclass of the class, regardless of
the package in which that subclass is defined. Thisis more restrictive than publ i ¢ access, but less restrictive
than package access.

. If amember of aclassis not declared with any of these modifiers, it has the default package access: it is

accessible to code within all classes that are defined in the same package, but inaccessible outside of the
package.

file:///C|/orielly/jnut/ch03_05.htm (2 of 6) [2/5/2003 7:47:36 PM]

Data Hiding and Encapsulation (Javain a Nutshell)

pr ot ect ed access requires a little more elaboration. Suppose that the field r of our Ci r cl e class had been declared
pr ot ect ed and that our Pl aneCi r cl e class had been defined in a different package. In this case, every

Pl aneCi r cl e object inheritsthefield r , and the Pl aneCi r cl e code can use that field asit currently does. Now
suppose that Pl aneCi r cl e defines the following method to compare the size of aPl aneCi r cl e object to the size
of some other Ci r cl e object:

/'l Return true if this object is bigger than the specified circle
public boolean isBigger(Crcle c) {
return (this.r >c.r); [/ If r is protected, c.r is illegal access!

}

In this scenario, this method does not compile. The expressiont hi s. r isperfectly legal, since it accesses a protected
field inherited by Pl aneCi r cl e. Accessing c. r isnot legal, however, since it is attempting to access a protected
field it does not inherit. To make this method legal, we either have to declare Pl aneCi r cl e in the same package as
Ci rcl e or changethetype of thei sBi gger () parametertobeaPl aneCircl e insteadof aCi rcl e.

3.5.1.4. Access control and inheritance

The Java specification states that a subclass inherits all the instance fields and instance methods of its superclass
accessibleto it. If the subclassis defined in the same package as the superclass, it inherits all non-pr i vat e instance
fields and methods. If the subclassis defined in a different package, however, it inheritsal pr ot ect ed and publ i c
instance fields and methods. pr i vat e fields and methods are never inherited; neither are classfields or class
methods. Finally, constructors are not inherited; they are chained, as described earlier in this chapter.

The statement that a subclass does not inherit the inaccessible fields and methods of its superclass can be a confusing
one. It would seem to imply that when you create an instance of a subclass, no memory isallocated for any pri vat e
fields defined by the superclass. Thisis not the intent of the statement, however. Every instance of a subclass does, in
fact, include a complete instance of the superclass within it, including all inaccessible fields and methods. It issimply a
matter of terminology. Because the inaccessible fields cannot be used in the subclass, we say they are not inherited. |
stated earlier in this section that the members of a class are always accessible within the body of the class. If this
statement is to apply to all members of the class, including inherited members, then we have to define "inherited
members' to include only those members that are accessible. If you don't care for this definition, you can think of it
this way instead:

. A classinherits all instance fields and instance methods (but not constructors) of its superclass.

. Thebody of aclass can always access all the fields and methods it declaresitself. It can also access the
accessible fields and membersit inherits from its superclass.

3.5.1.5. Member access summary

Table 3-1 summarizes the member access rules.

Table 3-1. Class Member Accessibility
Member Visbility

file:///C]/orielly/jnut/ch03_05.htm (3 of 6) [2/5/2003 7:47:36 PM]

Data Hiding and Encapsulation (Javain a Nutshell)

Accessibleto: public protected |package private
Defining class Yes Yes Yes Yes
Class in same package Yes Yes Yes No
Subclassin different package |Yes Yes No No
Non-subclass different package |Y es No No No

Here are some simple rules of thumb for using visibility modifiers:

. Usepubl i ¢ only for methods and constants that form part of the public API of the class. Certain important or
frequently used fields can also be publ i ¢, but it is common practice to make fields non-publ i ¢ and
encapsulate them with publ i ¢ accessor methods.

. Useprot ect ed for fields and methods that aren't required by most programmers using the class, but that may
be of interest to anyone creating a subclass as part of adifferent package. Note that pr ot ect ed members are
technically part of the exported API of aclass. They should be documented and cannot be changed without
potentially breaking code that relies on them.

. Usethe default package visibility for fields and methods that are internal implementation details, but are used
by cooperating classes in the same package. Y ou cannot take real advantage of package visibility unless you use
the package directive to group your cooperating classes into a package.

. Usepri vat e for fields and methods that are used only inside the class and should be hidden everywhere el se.

If you are not sure whether to use pr ot ect ed, package, or pr i vat e accessibility, it is better to start with overly
restrictive member access. Y ou can always relax the access restrictions in future versions of your class, if necessary.
Doing the reverse is not a good idea because increasing access restrictions is not a backwards-compatible change.

3.5.2. Data Accessor Methods

Inthe Ci r cl e example we've been using, we've declared the circleradiusto beapubl i ¢ field. TheGi r cl e classis
onein which it may well be reasonable to keep that field publicly accessible; it is asimple enough class, with no
dependencies between its fields. On the other hand, our current implementation of the classalowsaCi r cl e object to
have a negative radius, and circles with negative radii should ssmply not exist. Aslong astheradiusis stored in a

publ i c field, however, any programmer can set the field to any value she wants, no matter how unreasonable. The
only solution isto restrict the programmer's direct access to the field and define publ 1 ¢ methods that provide indirect
access to the field. Providing publ i ¢ methods to read and write afield is not the same as making the field itself

publ i c. Thecrucial difference isthat methods can perform error checking.

Example 3-4 shows how we might reimplement Ci r cl e to prevent circles with negative radii. This version of
Ci rcl e declaresther field to be pr ot ect ed and defines accessor methods named get Radi us() and

set Radi us() toread and write the field value while enforcing the restriction on negative radius values. Because the
r fieldispr ot ect ed, itisdirectly (and more efficiently) accessible to subclasses.

Example 3-4. The Circle Class Using Data Hiding and Encapsulation

file:///C]/orielly/jnut/ch03_05.htm (4 of 6) [2/5/2003 7:47:36 PM]

Data Hiding and Encapsulation (Javain a Nutshell)

package shapes; /'l Specify a package for the class

public class Grcle { /[l The class is still public
/'l This is a generally useful constant, so we keep it public
public static final double PI = 3.14159;

prot ected double r; /1 Radius is hidden, but visible to subclasses

/1 A nethod to enforce the restriction on the radius
/1 This is an inplenentation detail that may be of interest to subcl asses
prot ect ed checkRadi us(doubl e radi us) {
if (radius < 0.0)
throw new |11 egal Argunent Exception("radi us may not be negative.");

}

[/ The constructor nethod
public Crcle(double r) {
checkRadi us(r);
this.r =r;

}

/'l Public data accessor nethods
public double getRadius() { return r; };
public void setRadi us(double r) {
checkRadi us(r);
this.r =r;

}

/1 Methods to operate on the instance field
public double area() { return Pl * r * r; }
public double circunference() { return 2 * Pl * r; }

}

We have defined the G r cl e class within a package named shapes. Sincer ispr ot ect ed, any other classesin
the shapes package have direct access to that field and can set it however they like. The assumption hereisthat all
classes within the shapes package were written by the same author or a closely cooperating group of authors, and

that the classes all trust each other not to abuse their privileged level of access to each other's implementation details.

Finally, the code that enforces the restriction against negative radius valuesisitself placed withinapr ot ect ed
method, checkRadi us() . Although users of the Ci r cl e class cannot call this method, subclasses of the class can
call it and even overrideit if they want to change the restrictions on the radius.

Note particularly the get Radi us() and set Radi us() methods of Example 3-4. It isamost universal in Java that

data accessor methods begin with the prefixes "get" and "set." If the field being accessed is of type bool ean,
however, theget () method may be replaced with an equivalent method that begins with "is." For example, the
accessor method for abool ean field named r eadabl e istypicaly caledi sReadabl e() instead of

get Readabl e() . In the programming conventions of the JavaBeans component model (covered in Chapter 6,

"JavaBeans'), a hidden field with one or more data accessor methods whose names begin with "get,” "is," or "set" is
called a property. An interesting way to study a complex classisto look at the set of propertiesit defines. Properties

file://IC|/orielly/jnut/ch03_05.htm (5 of 6) [2/5/2003 7:47:36 PM]

Data Hiding and Encapsulation (Javain a Nutshell)

are particularly common in the AWT and Swing APIs, which are covered in Java Foundation Classes in a Nutshell
(O'Relilly).

41 PREVIOUS HOME HEXT
3.4. Subclasses and BOOK INDEX 3.6. Abstract Classes and
Inheritance Methods

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch03_05.htm (6 of 6) [2/5/2003 7:47:36 PM]

file:///C|/orielly/jnut/copyrght.htm

Abstract Classes and Methods (Javain a Nutshell)

41 PREVIOUS Chapter 3: Object-Oriented MEXT o
Programming in Java

3.6. Abstract Classes and Methods

In Example 3-4, we declared our G r ¢l e classto be part of a package named shapes. Suppose we plan to implement
anumber of shape classes: Rect angl e, Squar e, El | i pse, Tri angl e, and so on. We can give these shape classes
our two basicar ea() andci r cunf er ence() methods. Now, to make it easy to work with an array of shapes, it
would be helpful if all our shape classes had a common superclass, Shape. If we structure our class hierarchy this way,
every shape object, regardless of the actual type of shape it represents, can be assigned to variables, fields, or array
elements of type Shape. We want the Shape class to encapsulate whatever features all our shapes have in common
(eg.,thearea() andci rcunference() methods). But our generic Shape class doesn't represent any real kind of
shape, so it cannot define useful implementations of the methods. Java handles this situation with abstract methods.

Java lets us define a method without implementing it by declaring the method with the abst r act modifier. An
abst ract method has no body; it ssmply has a signature definition followed by a semicolon.[7] Here are the rules

about abst r act methods and the abst r act classes that contain them:

[7] Anabst ract method in Javais something like a pure virtual function in C++ (i.e., avirtual function
that isdeclared = 0). In C++, aclassthat contains a pure virtual function is called an abstract class and
cannot be instantiated. The same is true of Java classes that contain abst r act methods.

. Any classwithan abst r act method isautomatically abst r act itself and must be declared as such.
. Anabstract classcannot beinstantiated.

. A subclassof anabst r act class can be instantiated only if it overrides each of theabst r act methods of its
superclass and provides an implementation (i.e., amethod body) for all of them. Such aclassis often caled a
concrete subclass, to emphasize the fact that it isnot abst r act .

. If asubclassof anabst r act classdoesnot implement all theabst r act methods it inherits, that subclassis
itself abst ract .

. Static,private,andfi nal methodscannot beabst r act , since these types of methods cannot be
overridden by a subclass. Similarly, af i nal class cannot contain any abst r act methods.

. A classcan bedeclared abst r act evenif it does not actually have any abst r act methods. Declaring such a
classabst r act indicates that the implementation is somehow incomplete and is meant to serve as a superclass
for one or more subclasses that will complete the implementation. Such a class cannot be instantiated.

There is an important feature of the rules of abst r act methods. If we define the Shape classto have
abstractarea() andci rcunf erence() methods, any subclass of Shape isrequired to provide
implementations of these methods so it can be instantiated. In other words, every Shape object is guaranteed to have

file://IC|/orielly/jnut/ch03_06.htm (1 of 3) [2/5/2003 7:47:38 PM]

Abstract Classes and Methods (Javain a Nutshell)

implementations of these methods defined. Example 3-5 shows how this might work. It definesan abst r act Shape
class and two concrete subclasses of it.

Example 3-5. An Abstract Class and Concrete Subclasses

public abstract class Shape {
publ i c abstract double area(); /1 Abstract nethods: note
publ i ¢ abstract doubl e circunference(); /1 sem col on i nstead of body.

}

class G rcle extends Shape {
public static final double PI = 3.14159265358979323846;

protected double r; /'l 1 nstance data
public Crcle(double r) { this.r =r; } /'l Constructor
public double getRadius() { returnr; } /'l Accessor
public double area() { return Pl*r*r; } /1 1 nplenmentations of
public double circunference() { return 2*Pl*r; } // abstract nethods.
}
cl ass Rectangl e extends Shape {
protected double w, h; /'l Instance data
publ i c Rectangl e(double w, double h) { /| Constructor
this.w=w this.h = h;
}
public double getWdth() { return w } /'l Accessor nethod
public double getHeight() { return h; } /'l Anot her accessor
public double area() { return wh; } /1 1 nplenmentations of
public double circunference() { return 2*(w + h); } // abstract nethods.
}

Each abst r act method in Shape has asemicolon right after its parentheses. There are no curly braces, and no
method body is defined. Using the classes defined in Example 3-5, we can now write code like this:

Shape[] shapes = new Shape[3]; /|l Create an array to hold shapes
shapes[0] = new Gircle(2.0); /1 Fill in the array
shapes[1] = new Rectangle(1.0, 3.0);
shapes[2] = new Rectangl e(4.0, 2.0);
doubl e total area = O;
for(int i = 0; i < shapes.length; i++)
total area += shapes[i].area(); /1l Conpute the area of the shapes

There are two important points to notice here:

. Subclasses of Shape can be assigned to elements of an array of Shape. No cast is necessary. Thisis another
example of awidening reference type conversion (discussed in Chapter 2, "Java Syntax from the Ground Up").

. Youcaninvokethear ea() andci r cunf er ence() methodsfor any Shape object, even though the Shape
class does not define a body for these methods. When you do this, the method to be invoked is found using

file://IC|/orielly/jnut/ch03_06.htm (2 of 3) [2/5/2003 7:47:38 PM]

Abstract Classes and Methods (Javain a Nutshell)

dynamic method lookup, so the area of acircle is computed using the method defined by Gi r cl e, and the area
of arectangle is computed using the method defined by Rect angl e.

41 PREVIOUS HOME MEXT B
3.5. Data Hiding and BOOK INDEX 3.7. Interfaces
Encapsulation

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch03_06.htm (3 of 3) [2/5/2003 7:47:38 PM]

file:///C|/orielly/jnut/copyrght.htm

Interfaces (Javain a Nutshell)

41 PREVIOUS Chapter 3: Object-Oriented MEXT »
Programming in Java

3.7. Interfaces

Let's extend our shapes package further. Suppose we now want to implement a number of shapes that not only know
their sizes, but also know the position of their center point in the Cartesian coordinate plane. One way to do thisisto
define an abstract Cent er edShape class and then implement various subclasses of it, such asCent er edCi rcl e,
Cent er edRect angl e, and so on.

But we also want these positionable shape classes to support thear ea() and ci r cunf er ence() methodsweve
aready defined, without reimplementing these methods. So, for example, we'd like to define Cent er edCi rcl e asa
subclassof Ci r cl e, sothat it inheritsar ea() andci r cunf er ence() . But aclassin Java can have only one
immediate superclass. If Cent er edCi r cl e extends G r cl e, it cannot also extend theabst r act Cent er edShape
class![8]

[8]C++ allows classes to have more than one superclass, using a technique known as multiple inheritance.
Multiple inheritance adds alot of complexity to alanguage; Java supports what many believe isamore
elegant solution.

Java's solution to this problem is called an interface. Although a Java class can extend only a single superclass, it can
implement any number of interfaces.

3.7.1. Defining an Interface

An interface is areference type that is closely related to a class. AlImost everything you've read so far in this book about
classes applies equally to interfaces. Defining an interface isalot like defining an abstract class, except that the keywords
abstract andcl ass arereplaced with the keyword i nt er f ace. When you define an interface, you are creating a
new reference type, just as you are when you define a class. Asits name implies, an interface specifies an interface, or
API, for certain functionality. It does not define any implementation of that API, however. There are a number of
restrictions that apply to the members of an interface:

. Aninterface contains no implementation whatsoever. All methods of an interface are implicitly abst r act , even
if theabst r act modifier is omitted. Interface methods have no implementation; a semicolon appearsin place of
the method body. Because interfaces can contain only abst r act methods, and class methods cannot be abstract,
the methods of an interface must al be instance methods.

. Aninterface defines apublic API. All methods of an interface are implicitly publ i ¢, evenif the publ i c
modifier is omitted. It isan error to defineapr ot ect ed or pri vat e method in an interface.

. Although aclass defines data and methods that operate on that data, an interface cannot define instance fields.
Fields are an implementation detail, and an interface is a pure specification without any implementation. The only
fields alowed in an interface definition are constants that are declared both st at i ¢ andf i nal .

file://IC|/orielly/jnut/ch03_07.htm (1 of 6) [2/5/2003 7:47:41 PM]

Interfaces (Javain a Nutshell)

. Aninterface cannot be instantiated, so it does not define a constructor.

Example 3-6 shows the definition of an interface named Cent er ed. Thisinterface defines the methods a Shape
subclass should implement if it knows the X,y coordinate of its center point.

Example 3-6. An Interface Definition

public interface Centered {
public void setCenter(double x, double y);
publ i c doubl e get Center X();
publ i c doubl e get CenterY();

}
3.7.2. Implementing an Interface

Just as aclass uses ext ends to specify its superclass, it can usei npl enment s to name one or more interfaces it
supports. i npl enent s isaJavakeyword that can appear in a class declaration following the ext ends clause.

i npl enment s should be followed by the name or names of the interface(s) the class implements, with multiple names
separated by commas.

When aclass declares an interfaceinitsi npl erment s clause, it is saying that it provides an implementation (i.e., a
body) for each method of that interface. If a classimplements an interface but does not provide an implementation for
every interface method, it inherits those unimplemented abst r act methods from the interface and must itself be
declared abst r act . If aclassimplements more than one interface, it must implement every method of each interface it
implements (or be declared abst r act).

Example 3-7 shows how we can define aCent er edRect angl e classthat extends our Rect angl e classand
implements the Cent er ed interface we defined in Example 3-6.

Example 3-7. Implementing an Interface

public class CenteredRectangl e extends Rectangle inplenents Centered {
/'l New instance fields
private double cx, cy;

/1 A constructor
publ i c CenteredRect angl e(doubl e cx, double cy, double w, double h) {
super (w, h);
this.cx = cx;
this.cy = cy;
}

/1 W inherit all the methods of Rectangle, but nust

[l provide inplenmentations of all the Centered nethods.
public void setCenter(double x, double y) { cx = x; cy =vy; }
public double getCenterX() { return cx; }

public double getCenterY() { return cy; }

file://IC|/orielly/jnut/ch03_07.htm (2 of 6) [2/5/2003 7:47:41 PM]

Interfaces (Javain a Nutshell)

As| noted earlier, constants can appear in an interface definition. Any class that implements the interface inherits the
constants and can use them as if they were defined directly in the class. There is no need to prefix them with the name of
the interface or provide any kind of implementation of the constants. When you have a set of constants used by more than
one class (e.g., a port number and other protocol constants used by a client and server), it can be convenient to define the
necessary constantsin an interface that contains no methods. Then, any class that wants to use those constants needs only
to declare that it implementsthe interface. j ava. i 0. Qbj ect St r eantConst ant s isjust such an interface.

3.7.3. Using Interfaces

Suppose we implement Cent er edGi r cl e and Cent er edSquar e just as we implemented Cent er edRect angl e
in Example 3-7. Since each class extends Shape, instances of the classes can be treated as instances of the Shape class,

aswe saw earlier. Since each classimplements Cent er ed, instances can also be treated as instances of that type. The
following code demonstrates both techniques:

Shape[] shapes = new Shape[3]; /Il Create an array to hold shapes

/'l Create sone centered shapes, and store themin the Shape[]
/'l No cast necessary: these are all w dening conversions

shapes[0] = new CenteredCircle(1.0, 1.0, 1.0);
shapes[1] = new CenteredSquare(2.5, 2, 3);
shapes[2] = new CenteredRectangle(2.3, 4.5, 3, 4);

/'l Conpute average area of the shapes and average di stance fromthe origin
doubl e total Area = 0O;
doubl e total D stance;
for(int i = 0; I < shapes.length; i++) {
total Area += shapes[i].area(); /1 Conpute the area of the shapes
if (shapes[i] instanceof Centered) { // The shape is a Centered shape
/'l Note the required cast from Shape to Centered (no cast
/1 would be required to go from CenteredSquare to Centered, however).
Centered ¢ = (Centered) shapes[i]; // Assign it to a Centered variable

doubl e cx = c.get Center X(); /| Get coordinates of the center
double cy = c.getCenterY(); /1 Conpute distance fromorigin
total Di stance += Math.sqgrt(cx*cx + cy*cy);
}
}
Systemout.println("Average area: " + total Areal/shapes.|ength);
Systemout. println("Average distance: " + total D stance/ shapes. | ength);

This example demonstrates that interfaces are data types in Java, just like classes. When a class implements an interface,
instances of that class can be assigned to variables of the interface type. Don't interpret this example, however, to imply
that you must assign aCent er edRect angl e object to aCent er ed variable before you can invoke the

set Cent er () method or to aShape variable before you can invokethear ea() method. Cent er edRect angl e
definesset Cent er () andinheritsar ea() fromitsRect angl e superclass, so you can always invoke these methods.

3.7.4. When to Use Interfaces

When defining an abstract type (e.g., Shape) that you expect to have many sub-types (e.g., G r cl e, Rect angl e,
Squar e), you are often faced with a choice between interfaces and abstract classes. Since they have similar features, it is

file:///C]/orielly/jnut/ch03_07.htm (3 of 6) [2/5/2003 7:47:41 PM]

Interfaces (Javain a Nutshell)

not always clear when to use one over the other.

Aninterface is useful because any class can implement it, even if that class extends some entirely unrelated superclass.
But an interface is a pure API specification and contains no implementation. If an interface has numerous methods, it can
become tedious to implement the methods over and over, especially when much of the implementation is duplicated by
each implementing class.

On the other hand, a class that extends an abstract class cannot extend any other class, which can cause design difficulties
in some situations. However, an abstract class does not need to be entirely abstract; it can contain a partial implementation
that subclasses can take advantage of. In some cases, numerous subclasses can rely on default method implementations
provided by an abstract class.

Another important difference between interfaces and abstract classes has to do with compatibility. If you define an
interface as part of apublic APl and then later add a new method to the interface, you break any classes that implemented
the previous version of the interface. If you use an abstract clas, however, you can safely add nonabstract methods to that
class without requiring modifications to existing classes that extend the abstract class.

In some situations, it will be clear that an interface or an abstract class is the right design choice. In other cases, acommon
design pattern is to use both. First, define the type as a totally abstract interface. Then create an abstract class that
implements the interface and provides useful default implementations subclasses can take advantage of. For example:

/'l Here is a basic interface. It represents a shape that fits inside
/1 of a rectangul ar boundi ng box. Any class that wants to serve as a
/'l Rectangul ar Shape can i npl enment these nethods from scratch
public interface Rectangul ar Shape {

public void setSize(double wi dth, double height);

public void setPosition(double x, double y);

public void transl ate(doubl e dx, doubl e dy);

publ i ¢ doubl e area();

publ i c bool ean i slnside();

}

/Il Here is a partial inplenentation of that interface. Mny

/1l inplenmentations may find this a useful starting point.

publ i ¢ abstract class Abstract Rect angul ar Shape i npl enents Rect angul ar Shape {
/1 The position and size of the shape
protected double x, y, w, h;

/1 Default inplenmentations of sone of the interface nethods

public void setSize(double wi dth, double height) { w= wdth; h = height; }
public void setPosition(double x, double y) { this.x = x; this.y =vy; }
public void translate (double dx, double dy) { x += dx; y += dy; }

}
3.7.5. Implementing Multiple Interfaces

Suppose we want shape objects that can be positioned in terms of not only their center points, but also their upper-left
corners. And suppose we also want shapes that can be scaled larger and smaller. Remember that although a class can
extend only asingle superclass, it can implement any number of interfaces. Assuming we have defined appropriate

file://IC|/orielly/jnut/ch03_07.htm (4 of 6) [2/5/2003 7:47:41 PM]

Interfaces (Javain a Nutshell)

Upper Ri ght Cor ner ed and Scal abl e interfaces, we can declare a class asfollows:

publ i c cl ass SuperDuper Square extends Shape
i npl enments Centered, UpperRi ght Cornered, Scal able {
I/ class nenbers omtted here.

}

When a class implements more than one interface, it ssimply means that it must provide implementations for all abstract
methodsin all its interfaces.

3.7.6. Extending Interfaces

Interfaces can have subinterfaces, just as classes can have subclasses. A subinterface inherits all the abstract methods and
constants of its superinterface and can define new abstract methods and constants. Interfaces are different from classes in
one very important way, however: an interface can have an ext ends clause that lists more than one superinterface. For
example, here are some interfaces that extend other interfaces:

public interface Positionable extends Centered {
publ i c set Upper Ri ght Cor ner (doubl e x, double y);
publ i ¢ doubl e get Upper Ri ght X();
publ i ¢ doubl e get Upper Ri ght Y();
}
public interface Transformabl e extends Scal abl e, Transl atabl e, Rotatable {}
public interface SuperShape inplements Positionable, Transformable {}

An interface that extends more than one interface inherits al the abstract methods and constants from each of those
interfaces and can define its own additional abstract methods and constants. A class that implements such an interface
must implement the abstract methods defined directly by the interface, aswell as all the abstract methods inherited from
all the superinterfaces.

3.7.7. Marker Interfaces

Sometimesit is useful to define an interface that is entirely empty. A class can implement thisinterface simply by naming
itinitsi npl enment s clause without having to implement any methods. In this case, any instances of the class become
valid instances of the interface. Java code can check whether an object is an instance of the interface using the

i nst anceof operator, so thistechnique is a useful way to provide additional information about an object. The

Cl oneabl e interfaceinj ava. | ang isan example of thistype of marker interface. It defines no methods, but
identifies the class as one that allows itsinternal state to be cloned by thecl one() method of the Obj ect class. Asof
Javal.l,j ava.i 0. Seri al i zabl e isanother such marker interface. Given an arbitrary object, you can determine
whether it hasaworking cl one() method with code like this:

hj ect o; /'l Initialized el sewhere

hj ect copy;

if (o instanceof C oneable) copy = o.clone();
el se copy = null;

41 PREVIOUS HOME HEXT

file://IC|/orielly/jnut/ch03_07.htm (5 of 6) [2/5/2003 7:47:41 PM]

Interfaces (Javain a Nutshell)

3.6. Abstract Classes and BOOK INDEX 3.8. Inner Class Overview
M ethods

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch03_07.htm (6 of 6) [2/5/2003 7:47:41 PM]

file:///C|/orielly/jnut/copyrght.htm

Inner Class Overview (Javain a Nutshell)

41 PREVIOUS Chapter 3: Object-Oriented HEXT
Programming in Java

3.8. Inner Class Overview

The classes and interfaces we have seen so far in this chapter have all been top-level classes (i.e., they are
direct members of packages, not nested within any other classes). Starting in Java 1.1, however, there are
four other types of classes, loosely known asinner classes, that can be defined in a Java program. Used
correctly, inner classes are an elegant and powerful feature of the Javalanguage. These four types of
classes are summarized here:

Static member classes

A static member classisaclass (or interface) defined asast at i ¢ member of another class. A
st at i ¢ method is called a class method, so, by analogy, we could call thistype of inner class a
"class class," but this terminology would obviously be confusing. A static member class behaves
much like an ordinary top-level class, except that it can accessthe st at i ¢ members of the class
that containsit. Interfaces can be defined as static members of classes.

Member classes

A member classis also defined as a member of an enclosing class, but is not declared with the

st at i ¢ modifier. Thistype of inner class is analogous to an instance method or field. An
instance of amember classis aways associated with an instance of the enclosing class, and the
code of amember class has access to all the fields and methods (both st at i ¢ and non-st ati ¢)
of itsenclosing class. There are several features of Java syntax that exist specifically to work with
the enclosing instance of a member class. Interfaces can only be defined as static members of a
class, not asnon-st at i ¢ members.

L ocal classes

A local classisaclass defined within ablock of Java code. Like alocal variable, alocal classis
visible only within that block. Although local classes are not member classes, they are still
defined within an enclosing class, so they share many of the features of member classes.
Additionally, however, alocal class can accessany f i nal local variables or parameters that are
accessible in the scope of the block that defines the class. Interfaces cannot be defined locally.

Anonymous classes

file:///C]/orielly/jnut/ch03_08.htm (1 of 2) [2/5/2003 7:47:44 PM]

Inner Class Overview (Javain a Nutshell)

An anonymous classis akind of local class that has no name; it combines the syntax for class
definition with the syntax for object instantiation. While alocal class definition is a Java
statement, an anonymous class definition (and instantiation) is a Java expression, so it can appear
as part of alarger expression, such as method invocation. Interfaces cannot be defined
anonymously.

Java programmers have not reached a consensus on the appropriate names for the various kinds of inner
classes. Thus, you may find them referred to by different namesin different situations. In particular,
static member classes are sometimes called "nested top-level" classes, and the term "nested classes' may
refer to all types of inner classes. The term "inner classes' isitself overloaded and sometimes refers
specifically to member classes. On other occasions, "inner classes' refers to member classes, local
classes, and anonymous classes, but not static member classes. In this book, | use "inner class' to mean
any class other than a standard top-level class and the names shown previously to refer to the individual
types of inner classes.

41 PREVIOUS HOME HEXT »
3.7. Interfaces BOOK INDEX 3.9. Static Member Classes

Copyright © 2001 O'Rellly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch03_08.htm (2 of 2) [2/5/2003 7:47:44 PM]

file:///C|/orielly/jnut/copyrght.htm

Static Member Classes (Javain a Nutshell)

41 PREVIOUS Chapter 3: Object-Oriented MEXT B
Programming in Java

3.9. Static Member Classes

A static member class (or interface) is much like aregular top-level class (or interface). For convenience,
however, it is nested within another class or interface. Example 3-8 shows a hel per interface defined as a static
member of a containing class. The example also shows how thisinterface is used both within the class that
containsit and by external classes. Note the use of its hierarchical name in the external class.

Example 3-8. Defining and Using a Static Member Interface

/'l A class that inplenents a stack as a linked |ist
public class LinkedStack {
/1 This static nmenber interface defines how objects are |inked
public static interface Linkable {
publ i c Li nkabl e get Next ();
publ i c voi d set Next (Li nkabl e node);

}

/'l The head of the list is a Linkable object
Li nkabl e head;

/1 Method bodies omtted
public void push(Linkable node) { ... }
public Object pop() { ... }

}

/1 This class inplenents the static nenber interface
cl ass Li nkabl el nteger inplenents LinkedStack. Li nkabl e {
/'l Here's the node's data and constructor
int i;
public Linkablelnteger(int i) { this.i =1i; }
/'l Here are the data and nethods required to inplenent the interface
Li nkedSt ack. Li nkabl e next;

publ i ¢ Li nkedSt ack. Li nkabl e get Next() { return next; }
public voi d set Next (Li nkedSt ack. Li nkabl e node) { next = node; }

}

3.9.1. Features of Static Member Classes

file://IC|/orielly/jnut/ch03_09.htm (1 of 2) [2/5/2003 7:47:46 PM]

Static Member Classes (Javain a Nutshell)

A static member class or interfaceis defined asast at i ¢ member of a containing class, making it analogous to
the class fields and methods that are also declared st at i ¢. Like a class method, a static member classis not
associated with any instance of the containing class (i.e., thereisnot hi s object). A static member class does,
however, have accessto all the st at i ¢ members (including any other static member classes and interfaces) of its
containing class. A static member class can use any other static member without qualifying its name with the name
of the containing class.

A static member class has access to all static members of its containing class, including pr i vat e members. The
reverseistrue as well: the methods of the containing class have access to all members of a static member class,
including the pri vat e members. A static member class even has access to all the members of any other static
member classes, including the pr i vat e members of those classes.

Since static member classes are themselves class members, a static member class can be declared with its own
access control modifiers. These modifiers have the same meanings for static member classes as they do for other
members of aclass. In Example 3-8, the Li nkabl e interfaceis declared publ i ¢, soit can be implemented by

any classthat isinterested in being stored on aLi nkedSt ack.

3.9.2. Restrictions on Static Member Classes

A static member class cannot have the same name as any of its enclosing classes. In addition, static member
classes and interfaces can be defined only within top-level classes and other static member classes and interfaces.
Thisisactually part of alarger prohibition against st at i ¢ members of any sort within member, local, and
anonymous classes.

3.9.3. New Syntax for Static Member Classes

In code outside of the containing class, a static member class or interface is named by combining the name of the
outer class with the name of theinner class (e.g., Li nkedSt ack. Li nkabl e). You can usethei npor t
directive to import a static member class:

i nport LinkedStack. Linkable; // Inport a specific inner class
i mport LinkedStack. *; /1 lTnport all inner classes of LinkedStack

Importing inner classes is not recommended, however, because it obscures the fact that the inner classistightly
associated with its containing class.

41 PREVIOUS HOME MEXT &
3.8. Inner Class Overview BEOOK INDEX 3.10. Member Classes

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch03_09.htm (2 of 2) [2/5/2003 7:47:46 PM]

file:///C|/orielly/jnut/copyrght.htm

Member Classes (Javain a Nutshell)

41 PREVIOUS Chapter 3: Object-Oriented MEXT B
Programming in Java

3.10. Member Classes

A member classisaclassthat isdeclared asanon-st at i ¢ member of acontaining class. If a static member classis
analogous to a class field or class method, a member class is analogous to an instance field or instance method.
Example 3-9 shows how a member class can be defined and used. This example extends the previous

Li nkedSt ack example to allow enumeration of the elements on the stack by defining an enuner at e() method

that returns an implementation of thej ava. uti | . Enuner at i on interface. The implementation of thisinterface
Is defined as a member class.

Example 3-9. An Enumeration Implemented as a Member Class

public class LinkedStack {
/1l Qur static nmenber interface; body omtted here...
public static interface Linkable { ... }

/'l The head of the I|ist
private Linkabl e head;

/1 Method bodies omtted here
public void push(Linkable node) { ... }
public Linkable pop() { ... }

/1 This nmethod returns an Enuneration object for this LinkedStack
public java.util.Enuneration enunerate() { return new Enunerator(); }

/'l Here is the inplenentation of the Enuneration interface,
/'l defined as a nenber class.
protected class Enunerator inplenents java.util.Enunmeration {
Li nkabl e current;
/'l The constructor uses the private head field of the containing class
public Enunerator() { current = head; }

publ i ¢ bool ean hasMoreEl enents() { return (current !'= null); }
public Object nextEl enment() {
if (current == null) throw new java. util.NoSuchEl enent Exception();

bj ect value = current;
current = current. getNext();
return val ue;
}
}
}

file://IC|/orielly/jnut/ch03_10.htm (1 of 5) [2/5/2003 7:47:49 PM]

Member Classes (Javain a Nutshell)

Notice how the Enuner at or classisnested withinthe Li nkedSt ack class. Since Enuner at or isahelper class
used only within Li nkedSt ack, thereisareal elegance to having it defined so close to where it is used by the
containing class.

3.10.1. Features of Member Classes

Like instance fields and instance methods, every member class is associated with an instance of the class within
which it isdefined (i.e., every instance of amember classis associated with an instance of the containing class). This
means that the code of a member class has accessto all the instance fields and instance methods (as well as the

st at i ¢ members) of the containing class, including any that are declared pri vat e.

This crucia featureisillustrated in Example 3-9. Here isthe body of the Li nkedSt ack. Enuner at or ()
constructor again:

current = head;

Thissingle line of code setsthecur r ent field of the inner class to the value of the head field of the containing
class. The code works as shown, even though head isdeclared asapri vat e field in the containing class.

A member class, like any member of a class, can be assigned one of three visibility levels: publ i ¢, pr ot ect ed, or
pri vat e. If none of these visibility modifiersis specified, the default package visibility isused. In Example 3-9, the
Enuner at or classisdeclared pr ot ect ed, soitisinaccessible to code using the Li nkedSt ack class, but
accessible to any classthat subclasses Li nkedSt ack.

3.10.2. Restrictions on Member Classes
There are three important restrictions on member classes:

. A member class cannot have the same name as any containing class or package. Thisis an important rule, and
one not shared by fields and methods.

. Member classes cannot contain any st at i ¢ fields, methods, or classes (with the exception of constant fields
declared both st ati c andf i nal). st at i ¢ fields, methods, and classes are top-level constructs not
associated with any particular object, while every member class is associated with an instance of its enclosing
class. Defining ast at i ¢ top-level member within a non-top-level member class ssmply promotes confusion
and bad programming style, so you are required to define all static members within atop-level or static
member class or interface.

. Interfaces cannot be defined as member classes. An interface cannot be instantiated, so there is no object to
associate with an instance of the enclosing class. If you declare an interface as a member of aclass, the
interface isimplicitly st at i ¢, making it a static member class.

3.10.3. New Syntax for Member Classes

The most important feature of a member classisthat it can access the instance fields and methods in its containing

file:///C]/orielly/jnut/ch03_10.htm (2 of 5) [2/5/2003 7:47:49 PM]

Member Classes (Javain a Nutshell)

object. We saw thisinthe Li nkedSt ack. Enumer at or () constructor of Example 3-9:

public Enunerator() { current = head; }

Inthisexample, head isafield of the Li nkedSt ack class, and we assign it to thecur r ent field of the
Enuner at or class. The current code works, but what if we want to make these references explicit? We could try
code like this:

public Enunmerator() { this.current = this.head; }

This code does not compile, however. t hi s. cur r ent isfine; itisan explicit referencetothecurr ent fieldin
the newly created Enuner at or object. Itisthet hi s. head expression that causes the problem; it refersto afield
named head in the Enuner at or object. Since there is no such field, the compiler generates an error. To solve this
problem, Java defines a special syntax for explicitly referring to the containing instance of thet hi s object. Thus, if
we want to be explicit in our constructor, we can use the following syntax:

public Enumerator() { this.current = LinkedStack.this.head; }

The general syntax is classname. t hi s, where classname is the name of a containing class. Note that member
classes can themselves contain member classes, nested to any depth. Since no member class can have the same name
as any containing class, however, the use of the enclosing class name prepended tot hi s isaperfectly general way
to refer to any containing instance. This syntax is needed only when referring to a member of a containing class that
is hidden by a member of the same name in the member class.

3.10.3.1. Accessing superclass members of the containing class

When a class shadows or overrides a member of its superclass, you can use the keyword super to refer to the hidden
member. Thissuper syntax can be extended to work with member classes as well. On the rare occasion when you
need to refer to a shadowed field f or an overridden method mof a superclass of a containing class C, use the
following expressions:

C. super. f
C. super. m)

This syntax was not implemented by Java 1.1 compilers, but it works correctly as of Java1.2.
3.10.3.2. Specifying the containing instance

Asweve seen, every instance of a member class is associated with an instance of its containing class. Look again at
our definition of theenuner at e() method in Example 3-9:

public Enuneration enunerate() { return new Enunerator(); }

When a member class constructor isinvoked like this, the new instance of the member classis automatically
associated with thet hi s object. Thisiswhat you would expect to happen and exactly what you want to occur in
most cases. Occasionally, however, you may want to specify the containing instance explicitly when instantiating a

file:///C]/orielly/jnut/ch03_10.htm (3 of 5) [2/5/2003 7:47:49 PM]

Member Classes (Javain a Nutshell)

member class. Y ou can do this by preceding the new operator with areference to the containing instance. Thus, the
enuner at e() method shown above is shorthand for the following:

public Enuneration enunerate() { return this.new Enunerator(); }

Let's pretend we didn't define an enuner at e() method for Li nkedSt ack. Inthis case, the code to obtain an
Enuner at or object for agiven Li nkedSt ack object might look like this:

Li nkedSt ack stack = new Li nkedSt ack(); /| Create an enpty stack
Enunerati on e = stack. new Enunerator(); /'l Create an Enuneration for it

The containing instance implicitly specifies the name of the containing class; it is a syntax error to explicitly specify
that containing class:

Enuneration e = stack. new Li nkedSt ack. Enunerator(); // Syntax error

Thereis one other special piece of Java syntax that specifies an enclosing instance for amember class explicitly.
Before we consider it, however, let me point out that you should rarely, if ever, need to use this syntax. It is one of the
pathological cases that snuck into the language along with all the elegant features of inner classes.

Asstrange asit may seem, it is possible for atop-level class to extend a member class. This means that the subclass
does not have a containing instance, but its superclass does. When the subclass constructor invokes the superclass
constructor, it must specify the containing instance. It does this by prepending the containing instance and a period to
thesuper keyword. If we had not declared our Enurrer at or classto beapr ot ect ed member of

Li nkedSt ack, we could subclassit. Although it is not clear why we would want to do so, we could write code like
the following:

/'l A top-level class that extends a nenber cl ass
cl ass Speci al Enuner at or ext ends Li nkedSt ack. Enuner at or {
/'l The constructor nust explicitly specify a containing instance
/'l when invoking the superclass constructor.
publ i ¢ Speci al Enuner at or (Li nkedStack s) { s.super(); }
/'l Rest of class omtted...

}
3.10.4. Scope Versus Inheritance for Member Classes

We've just noted that atop-level class can extend a member class. With the introduction of member classes, there are
two separate hierarchies that must be considered for any class. The first is the classhierarchy, from superclassto
subclass, that defines the fields and methods a member class inherits. The second is the containmenthierarchy, from
containing class to contained class, that defines a set of fields and methods that are in the scope of (and are therefore
accessible to) the member class.

The two hierarchies are entirely distinct from each other; it isimportant that you do not confuse them. This should not
be a problem if you refrain from creating naming conflicts, where afield or method in a superclass has the same
name as afield or method in a containing class. If such a naming conflict does arise, however, the inherited field or

file:///C|/orielly/jnut/ch03_10.htm (4 of 5) [2/5/2003 7:47:49 PM]

Member Classes (Javain a Nutshell)

method takes precedence over the field or method of the same name in the containing class. This behavior islogical:
when a class inherits afield or method, that field or method effectively becomes part of that class. Therefore,
inherited fields and methods are in the scope of the class that inherits them and take precedence over fields and
methods by the same name in enclosing scopes.

Because this can be quite confusing, Java does not leave it to chance that you get it right. Whenever there is anaming
conflict between an inherited field or method and afield or method in a containing class, Java requires that you
explicitly specify which one you mean. For example, if amember class B inherits afield named x and is contained
within aclass A that also defines afield named x, you must uset hi s. x to specify the inherited field and

A. t hi s. x to specify thefield in the containing class. Any attempt to use the field x without an explicit
specification of the desired instance causes a compilation error.

A good way to prevent confusion between the class hierarchy and the containment hierarchy isto avoid deep
containment hierarchies. If aclassis nested more than two levels deep, it is probably going to cause more confusion
than it isworth. Furthermore, if a class has a deep class hierarchy (i.e., it has many superclass ancestors), consider
defining it as atop-level class, rather than as a member class.

41 PREVIOUS HOME HEXT B
3.9. Static Member Classes BOOK INDEX 3.11. Local Classes

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch03_10.htm (5 of 5) [2/5/2003 7:47:49 PM]

file:///C|/orielly/jnut/copyrght.htm

Local Classes (Javain a Nutshell)

41 PREVIOUS Chapter 3: Object-Oriented MEXT »
Programming in Java

3.11. Local Classes

A local classisdeclared locally within ablock of Java code, rather than as a member of aclass. Typically, alocal classis
defined within a method, but it can also be defined within a static initializer or instance initializer of aclass. Because all
blocks of Java code appear within class definitions, all local classes are nested within containing classes. For this reason,
local classes share many of the features of member classes. It is usually more appropriate, however, to think of them as an
entirely separate kind of inner class. A local class has approximately the same relationship to a member class as alocal
variable has to an instance variable of aclass.

The defining characteristic of alocal classisthat it islocal to ablock of code. Like alocal variable, aloca classisvalid
only within the scope defined by its enclosing block. If amember classis used only within a single method of its
containing class, for example, thereis usually no reason it cannot be coded as alocal class, rather than a member class.
Example 3-10 shows how we can modify theenuner at e() method of the Li nkedSt ack class so it defines

Enuner at or asalocal classinstead of amember class. By doing this, we move the definition of the class even closer to
where it is used and hopefully improve the clarity of the code even further. For brevity, Example 3-10 shows only the
enuner at e() method, not the entire Li nkedSt ack classthat containsit.

Example 3-10. Defining and Using a Local Class

/1 This nmethod creates and returns an Enunerati on object
public java.util.Enuneration enunerate() {

/'l Here's the definition of Enunerator as a |ocal class
cl ass Enunerator inplenents java.util.Enunmeration {

Li nkabl e current;

public Enunerator() { current = head; }

publ i ¢ bool ean hasMoreEl enents() { return (current !'= null); }
public Object nextElenment() {
if (current == null) throw new java. util.NoSuchEl enent Exception();

bj ect value = current;
current = current. get Next();
return val ue;

}
}

/'l Now return an instance of the Enunerator class defined directly above
return new Enunerator();

}
3.11.1. Features of Local Classes

Local classes have the following interesting features:

file://IC|/orielly/jnut/ch03_11.htm (1 of 4) [2/5/2003 7:47:52 PM]

Local Classes (Javain a Nutshell)

. Like member classes, local classes are associated with a containing instance, and can access any members,
including pr i vat e members, of the containing class.

. Inaddition to accessing fields defined by the containing class, local classes can access any local variables, method
parameters, or exception parameters that are in the scope of the local method definition and declared f i nal .

3.11.2. Restrictions on Local Classes

Local classes are subject to the following restrictions:
. Alocal classisvisible only within the block that definesit; it can never be used outside that block.

. Local classes cannot be declared publ i c, prot ect ed, pri vat e, or st at i c. These modifiersare for
members of classes; they are not allowed with local variable declarations or local class declarations.

. Like member classes, and for the same reasons, local classes cannot contain st at i ¢ fields, methods, or classes.
The only exception isfor constants that are declared both st ati ¢ andf i nal .

. Interfaces cannot be defined locally.
. Alocal class, like amember class, cannot have the same name as any of its enclosing classes.

. Asnoted earlier, alocal class can use the local variables, method parameters, and even exception parameters that
arein itsscope, but only if those variables or parameters are declared f i nal . Thisis because the lifetime of an
instance of alocal class can be much longer than the execution of the method in which the classis defined. For this
reason, alocal class must have a private internal copy of al local variablesit uses (these copies are automatically
generated by the compiler). The only way to ensure that the local variable and the private copy are always the same
Istoinsist that thelocal variableisf i nal .

3.11.3. New Syntax for Local Classes

In Java 1.0, only fields, methods, and classes can be declared f i nal . The addition of local classesin Java 1.1 has
required aliberalization in the use of thef i nal modifier. It can now be applied to local variables, method parameters,
and even the exception parameter of acat ch statement. The meaning of thef i nal modifier remains the same in these
new uses. once the local variable or parameter has been assigned a value, that value cannot be changed.

Instances of local classes, like instances of member classes, have an enclosing instance that is implicitly passed to all
constructors of the local class. Local classes can use the samet hi s syntax as member classes, to refer explicitly to
members of enclosing classes. Because local classes are never visible outside the blocks that define them, however, there
isnever aneed to use the newand super syntax used by member classes to specify the enclosing instance explicitly.

3.11.4. Scope of a Local Class

In discussing member classes, we saw that a member class can access any members inherited from superclasses and any
members defined by its containing classes. The sameistrue for local classes, but local classes can also accessf i nall
local variables and parameters. The following code illustrates the many fields and variables that may be accessible to a

file:///C|/orielly/jnut/ch03_11.htm (2 of 4) [2/5/2003 7:47:52 PM]

Local Classes (Javain a Nutshell)

local class:
class A{ protected char a = "a'; }
class B { protected char b ="'b"; }

public class C extends A {
private char ¢ = 'c'; /1l Private fields visible to |ocal class
public static char d = 'd";

public void createlLocal Object(final char e)

{
final char f = "'"f"';
int i = 0; /1 i not final; not usable by |ocal class
cl ass Local extends B
{
char g = '9g";
public void printVars()
{
/'l Al of these fields and variables are accessible to this class
Systemout.printin(g); // (this.g) gis a field of this class
Systemout.printin(f); // f is a final local variable
Systemout.println(e); // e is a final |ocal paraneter
Systemout.printin(d); // (Cthis.d) d-- field of containing class
Systemout.println(c); // (Cthis.c) ¢c -- field of containing class
Systemout.println(b); // bis inherited by this class
Systemout.printin(a); // ais inherited by the containing class
}
}
Local | = new Local (); /'l Create an instance of the |ocal class
| . printVars(); /1 and call its printVars() nethod.
}

}
3.11.5. Local Classes and Local Variable Scope

A locdl variable is defined within ablock of code, which definesits scope. A local variable ceasesto exist outside of its
scope. Javais alexically scoped language, which means that its concept of scope has to do with the way the source codeis
written. Any code within the curly braces that define the boundaries of a block can use local variables defined in that
block.[9]

[9] This section covers advanced material; first-time readers may want to skip it for now and return to it
later.

Lexical scoping smply defines a segment of source code within which a variable can be used. It is common, however, to
think of a scope as atemporal scope--to think of alocal variable as existing from the time the Java interpreter begins
executing the block until the time the interpreter exits the block. Thisis usually a reasonable way to think about local
variables and their scope.

The introduction of local classes confuses the picture, however, because local classes can use local variables, and
instances of alocal class can have alifetime much longer than the time it takes the interpreter to execute the block of

file://IC|/orielly/jnut/ch03_11.htm (3 of 4) [2/5/2003 7:47:52 PM]

Local Classes (Javain a Nutshell)

code. In other words, if you create an instance of alocal class, the instance does not automatically go away when the
interpreter finishes executing the block that defines the class, as shown in the following code:

public class Weird {
/'l A static nmenber interface used bel ow
public static interface IntHolder { public int getValue(); }

public static void main(String[] args) {

I nt Hol der[] hol ders = new | nt Hol der[10]; /1 An array to hold 10 objects
for(int i =0; i < 10; i++) { /1l Loop to fill the array up
final int fi =1i; /1 A final local variable

class Myl ntHol der inplenents IntHolder { // A local class
public int getvValue() { return fi; } [/ It uses the final variable

}

hol ders[i] = new Myl nt Hol der () ; /'l Instantiate the |ocal class

}

/'l The local class is now out of scope, so we can't use it. But
/'l we've got ten valid instances of that class in our array. The | ocal
/1l variable fi is not in our scope here, but it is still in scope for
/'l the getValue() nethod of each of those ten objects. So call getVal ue()
I/ for each object and print it out. This prints the digits 0 to 9.
for(int i =0; i < 10; i++) Systemout.println(holders[i].getValue());
}
}

The behavior of the previous program is pretty surprising. To make sense of it, remember that the lexical scope of the
methods of alocal class has nothing to do with when the interpreter enters and exits the block of code that defines the
local class. Here's another way to think about it: each instance of alocal class has an automatically created private copy of
each of thefinal local variablesit uses, so, in effect, it hasits own private copy of the scope that existed when it was
created.

4 PREVIOUS HOME NEXT B
3.10. Member Classes BOOK INDEX 3.12. Anonymous Classes

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch03_11.htm (4 of 4) [2/5/2003 7:47:52 PM]

file:///C|/orielly/jnut/copyrght.htm

Anonymous Classes (Javain a Nutshell)

41 PREVIOUS Chapter 3: Object-Oriented MEXT o
Programming in Java

3.12. Anonymous Classes

An anonymous classisalocal class without a name. An anonymous class is defined and instantiated in a single succinct
expression using the new operator. While alocal class definition is a statement in ablock of Java code, an anonymous
class definition is an expression, which means that it can be included as part of alarger expression, such as a method
call. When alocal classis used only once, consider using anonymous class syntax, which places the definition and use
of the classin exactly the same place.

Consider Example 3-11, which shows the Enurrer at i on class implemented as an anonymous class within the
enumer at e() method of the Li nkedSt ack class. Compare it with Example 3-10, which shows the same class
implemented as alocal class.

Example 3-11. An Enumeration Implemented with an Anonymous Class

public java.util.Enunmeration enunerate() {
/'l The anonynous class is defined as part of the return statenent

return new java. util.Enunmeration() {
Li nkabl e current; = head,
{ current = head; } // Replace constructor with an instance initializer
publ i ¢ bool ean hasMoreEl enments() { return (current !'= null); }
public Object nextEl enent() {
if (current == null) throw new java. util.NoSuchEl enment Exception();

bj ect value = current;
current = current.getNext();
return val ue;

}

}; /] Note the required semcolon: it termnates the return statenent

}

One common use for an anonymous class is to provide a simple implementation of an adapter class. An adapter classis
one that defines code that is invoked by some other object. Take, for example, thel i st () method of the

java. i o. Fi | e class. Thismethod liststhe filesin adirectory. Before it returns the list, though, it passes the name of
eachfiletoaFi | enanmeFi | t er object you must supply. ThisFi | enaneFi | t er object accepts or rejects each file.
When you implement the Fi | enaneFi | t er interface, you are defining an adapter class for use with the
File.list() method. Sincethe body of such aclassistypically quite short, it is easy to define an adapter class as an
anonymous class. Here's how you can defineaFi | enaneFi | t er classto list only those files whose names end with
java:

File f = new File("/src"); /1l The directory to |ist

/'l Now call the list() nmethod with a single FilenaneFilter argunent

file://IC|/orielly/jnut/ch03_12.htm (1 of 4) [2/5/2003 7:47:54 PM]

Anonymous Classes (Javain a Nutshell)

/'l Define and instantiate an anonynous i nplenentation of FilenaneFilter
/'l as part of the nmethod invocation expression.
String[] filelist = f.list(new FilenameFilter() ({
publ i ¢ bool ean accept(File f, String s) { return s.endsWth(".java"); }
}); // Don't forget the parenthesis and sem colon that end the nethod call!

Asyou can see, the syntax for defining an anonymous class and creating an instance of that class uses the new keyword,
followed by the name of aclass and a class body definition in curly braces. If the name following the new keyword is
the name of a class, the anonymous class is a subclass of the named class. If the name following new specifies an
interface, as in the two previous examples, the anonymous class implements that interface and extends Obj ect . The
syntax does not include any way to specify an ext ends clause, ani npl enent s clause, or aname for the class.

Because an anonymous class has no name, it is not possible to define a constructor for it within the class body. Thisis
one of the basic restrictions on anonymous classes. Any arguments you specify between the parentheses following the
superclass name in an anonymous class definition are implicitly passed to the superclass constructor. Anonymous
classes are commonly used to subclass simple classes that do not take any constructor arguments, so the parenthesesin
the anonymous class definition syntax are often empty. In the previous examples, each anonymous class implemented an
interface and extended Obj ect . Sincethe Obj ect () constructor takes no arguments, the parentheses were empty in
those exampl es.

3.12.1. Features of Anonymous Classes

One of the most elegant things about anonymous classes is that they alow you to define a one-shot class exactly where
it is needed. In addition, anonymous classes have a succinct syntax that reduces clutter in your code.

3.12.2. Restrictions on Anonymous Classes

Because an anonymous classisjust atype of local class, anonymous classes and local classes share the same
restrictions. An anonymous class cannot define any st at i ¢ fields, methods, or classes, except for st ati cfi nal
constants. I nterfaces cannot be defined anonymously, since there is no way to implement an interface without a name.
Also, like local classes, anonymous classes cannot be publ i ¢, pri vat e, protect ed,orstati c.

Since an anonymous class has no name, it is not possible to define a constructor for an anonymous class. If your class
requires a constructor, you must use alocal class instead. However, you can often use an instance initializer as a
substitute for a constructor. In fact, instance initializers were introduced into the language for this very purpose.

The syntax for defining an anonymous class combines definition with instantiation. Thus, using an anonymous class
instead of alocal classis not appropriate if you need to create more than a single instance of the class each time the
containing block is executed.

3.12.3. New Syntax for Anonymous Classes

We've aready seen examples of the syntax for defining and instantiating an anonymous class. We can express that
syntax more formally as:

new cl ass-nane ([argunent-list]) { class-body }

file:///C]/orielly/jnut/ch03_12.htm (2 of 4) [2/5/2003 7:47:54 PM]

Anonymous Classes (Javain a Nutshell)

or:
new i nterface-name () { class-body }

As| aready mentioned, instance initializers are another specialized piece of Java syntax that was introduced to support
anonymous classes. As we discussed earlier in the chapter, an instance initializer is ablock of initialization code
contained within curly bracesinside a class definition. The contents of an instance initializer for aclass are
automatically inserted into all constructors for the class, including any automatically created default constructor. An
anonymous class cannot define a constructor, so it gets a default constructor. By using an instance initializer, you can get
around the fact that you cannot define a constructor for an anonymous class.

3.12.4. When to Use an Anonymous Class

Aswe've discussed, an anonymous class behaves just like alocal class and is distinguished from alocal class merely in
the syntax used to define and instantiate it. In your own code, when you have to choose between using an anonymous
classand alocal class, the decision often comes down to a matter of style. Y ou should use whichever syntax makes your
code clearer. In general, you should consider using an anonymous class instead of alocal classif:

. Theclass has avery short body.
« Only one instance of the classis needed.
. Theclassisused right after it is defined.

. The name of the class does not make your code any easier to understand.

3.12.5. Anonymous Class Indentation and Formatting

The common indentation and formatting conventions we are familiar with for block-structured languages like Java and
C begin to break down somewhat once we start placing anonymous class definitions within arbitrary expressions. Based
on their experience with inner classes, the engineers at Sun recommend the following formatting rules:

. The opening curly brace should not be on aline by itself; instead, it should follow the close parenthesis of the
new operator. Similarly, the new operator should, when possible, appear on the same line as the assignment or
other expression of which it isapart.

. The body of the anonymous class should be indented relative to the beginning of the line that contains the new
keyword.

. Theclosing curly brace of an anonymous class should not be on aline by itself either; it should be followed by
whatever tokens are required by the rest of the expression. Often thisis a semicolon or a close parenthesis
followed by a semicolon. This extra punctuation serves as a flag to the reader that thisis not just an ordinary
block of code and makes it easier to understand anonymous classes in a code listing.

41 PREVIOUS HOME HEXT

file://IC|/orielly/jnut/ch03_12.htm (3 of 4) [2/5/2003 7:47:54 PM]

Anonymous Classes (Javain a Nutshell)

3.11. Loca Classes BOOK INDEX 3.13. How Inner Classes
Work

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch03_12.htm (4 of 4) [2/5/2003 7:47:54 PM]

file:///C|/orielly/jnut/copyrght.htm

How Inner Classes Work (Javain a Nutshell)

41 PREVIOUS Chapter 3: Object-Oriented HEXT
Programming in Java

3.13. How Inner Classes Work

The preceding sections have explained the features and behavior of the various types of inner classes.
Strictly speaking, that should be al you need to know about inner classes. In practice, however, some
programmers find it easier to understand the details of inner classes if they understand how they are
implemented.

Inner classes were introduced in Java 1.1. Despite the dramatic changes to the Java language, the
introduction of inner classes did not change the Java Virtual Machine or the Java classfile format. Asfar
asthe Java interpreter is concerned, there is no such thing as an inner class: al classes are normal top-
level classes. In order to make an inner class behave as if it is actually defined inside another class, the
Java compiler ends up inserting hidden fields, methods, and constructor arguments into the classes it
generates. Y ou may want to use the javap disassembler to disassemble some of the classfilesfor inner
classes so you can see what tricks the compiler has used to make inner classes work. (See Chapter 8,

"Java Development Tools", for information on javap.)

3.13.1. Static Member Class Implementation

Recall our first Li nkedSt ack example (Example 3-8), which defined a static member interface named

Li nkabl e. When you compilethisLi nkedSt ack class, the compiler actually generates two class
files. Thefirst oneis LinkedStack.class, as expected. The second class file, however, is called
LinkedStack$Linkable.class. The $ in this name is automatically inserted by the Java compiler. This
second class file contains the implementation of the static member interface.

Aswe discussed earlier, a static member class can access all the st at i ¢ members of its containing
class. If a static member class does this, the compiler automatically qualifies the member access
expression with the name of the containing class. A static member classis even alowed to access the
privat est ati c fields of its containing class. Since the static member classis compiled into an
ordinary top-level class, however, thereis no way it can directly accessthe pri vat e members of its
container. Therefore, if a static member classusesapr i vat e member of its containing class (or vice
versa), the compiler automatically generates non-pr i vat e access methods and converts the expressions
that accessthe pri vat e membersinto expressions that access these specially generated methods. These
methods are given the default package access, which is sufficient, as the member class and its containing
class are guaranteed to be in the same package.

file:///C]/orielly/jnut/ch03_13.htm (1 of 3) [2/5/2003 7:47:58 PM]

How Inner Classes Work (Javain a Nutshell)

3.13.2. Member Class Implementation

A member classisimplemented much like a static member class. It is compiled into a separate top-level
classfile, and the compiler performs various code manipulations to make interclass member access work
correctly.

The most significant difference between a member class and a static member classis that each instance
of amember classis associated with an instance of the enclosing class. The compiler enforces this
association by defining a synthetic field named t hi s$0 in each member class. Thisfield isused to hold
areference to the enclosing instance. Every member class constructor is given an extra parameter that
initializes thisfield. Every time a member class constructor isinvoked, the compiler automatically passes
areference to the enclosing class for this extra parameter.

Aswe've seen, amember class, like any member of aclass, can be declared publ i ¢, pr ot ect ed, or
pri vat e, or given the default package visibility. However, as | mentioned earlier, there have been no
changes to the Java Virtual Machine to support member classes. Member classes are compiled to class
filesjust like top-level classes, but top-level classes can only have public or package access. Therefore,
asfar asthe Javainterpreter is concerned, member classes can only have public or package visibility.
This means that a member class declared pr ot ect ed isactualy treated as a public class, and a member
classdeclared pr i vat e actually has package visibility. This does not mean you should never declare a
member classas pr ot ect ed or pri vat e. Although the interpreter cannot enforce these access control
modifiers, the modifiers are noted in the class file. This allows any conforming Java compiler to enforce
the access modifiers and prevent the member classes from being accessed in unintended ways.

3.13.3. Local and Anonymous Class Implementation

A local classis able to refer to fields and methods in its containing class for exactly the same reason that
amember class can; it is passed a hidden reference to the containing classin its constructor and saves
that reference away inapr i vat e field added by the compiler. Also, like member classes, local classes
canuse pri vat e fields and methods of their containing class because the compiler inserts any required
accessor methods,

What makes local classes different from member classesis that they have the ability to refer to local
variables in the scope that defines them. The crucial restriction on this ability, however, is that local
classes can only reference local variables and parameters that are declared f i nal . The reason for this
restriction becomes apparent from the implementation. A local class can use local variables because the
compiler automatically givesthe classapr i vat e instance field to hold a copy of each local variable the
class uses. The compiler also adds hidden parameters to each local class constructor to initialize these
automatically created pri vat e fields. Thus, alocal class does not actually access local variables, but
merely its own private copies of them. The only way this can work correctly isif thelocal variables are
declared f i nal , so that they are guaranteed not to change. With this guarantee, the local class can be

file:///C]/orielly/jnut/ch03_13.htm (2 of 3) [2/5/2003 7:47:58 PM]

How Inner Classes Work (Javain a Nutshell)

assured that itsinternal copies of the variables are always in sync with the real local variables.

Since anonymous classes have no names, you may wonder what the class files that represent them are
named. Thisis an implementation detail, but the Java compiler from Sun uses numbersto provide
anonymous class names. If you compile the example shown in Example 3-11, you'll find that it produces

afile with aname like LinkedStack$l.class. Thisisthe classfile for the anonymous class.

41 PREVIOUS HOME MEXT »
3.12. Anonymous Classes BOOK INDEX 3.14. Modifier Summary

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch03_13.htm (3 of 3) [2/5/2003 7:47:58 PM]

file:///C|/orielly/jnut/copyrght.htm

Modifier Summary (Javain a Nutshell)

41 PREVIOUS Chapter 3: Object-Oriented HEXT
Programming in Java

3.14. Modifier Summary

Aswe've seen, classes, interfaces, and their members can be declared with one or more modifiers--
keywordssuchaspubl i c,stati c,andf i nal . Thischapter hasintroduced the publ i c,

pr ot ect ed, and pri vat e access modifiers, aswell astheabstract ,final ,andstatic
modifiers. In addition to these six, Java defines five other less commonly used modifiers. Table 3-2 lists

the Java modifiers, explains what types of Java constructs they can modify, and explains what they do.

Table 3-2. Java Modifiers

Modifier Used on M eaning

The class contains unimplemented methods and cannot be instantiated.
abstract class

All interfacesareabst r act . The modifier is optional in interface
interface |declarations.

No body is provided for the method; it is provided by a subclass. The
signature is followed by a semicolon. The enclosing class must also be

abstract method abst r act .

) The class cannot be subclassed.
final class

The method cannot be overridden (and is not subject to dynamic method
method |lookup).

Thefield cannot haveitsvalue changed. st ati ¢ fi nal fieldsare
field compile-time constants.

A local variable, method parameter, or exception parameter cannot have
variable |itsvalue changed (Java 1.1 and later). Useful with local classes.

file://IC|/orielly/jnut/ch03_14.htm (1 of 3) [2/5/2003 7:48:00 PM]

Modifier Summary (Javain a Nutshell)

native

none (package)

private

pr ot ect ed

public

strictfp

strictfp

static

method

class

interface

member

member

member

class

interface

member

class

method

class

method

The method isimplemented in some platform-dependent way (oftenin
C). No body is provided; the signature is followed by a semicolon.

A non-publ i ¢ classisaccessible only in its package.

A non-publ i c interface is accessible only in its package.

A member that isnot pri vat e, pr ot ect ed, or publ i ¢ has package
visibility and is accessible only within its package.

The member is accessible only within the class that definesiit.

The member is accessible only within the package in which it is defined
and within subclasses.

The class is accessible anywhere its package is.

The interface is accessible anywhere its package is.

The member is accessible anywhereitsclassis.

All methods of the classareimplicitly st ri ct f p (Java1l.2 and later).

All floating-point computation done by the method must be performed in
away that strictly conformsto the IEEE 754 standard. In particular, all
values, including intermediate results, must be expressed as |IEEE f | oat
or doubl e values and cannot take advantage of any extra precision or
range offered by native platform floating-point formats or hardware (
Java 1.2 and later). Thismodifier israrely used.

Aninner classdeclared st at i c isatop-level class, not associated with a
member of the containing class (Java 1.1 and | ater).

A st at i ¢ method is aclass method. It isnot passed an implicitt hi s
object reference. It can be invoked through the class name.

file:///C|/orielly/jnut/ch03_14.htm (2 of 3) [2/5/2003 7:48:00 PM]

Modifier Summary (Javain a Nutshell)

A stati c fiedisaclassfield. Thereisonly oneinstance of the field,
regardless of the number of class instances created. It can be accessed

field through the class name.

Theinitializer isrun when the class is loaded, rather than when an
initializer [instance is created.

The method makes non-atomic modifications to the class or instance, so
care must be taken to ensure that two threads cannot modify the class or
Instance at the sametime. For ast at i ¢ method, alock for the classis
acquired before executing the method. For anon-st at i ¢ method, alock
for the specific object instance is acquired.

synchroni zed method

Thefield is not part of the persistent state of the object and should not be
serialized with the object. Used with object serialization; see

transient field j ava. i 0. Qbj ect Qut put St r eam
The field can be accessed by unsynchronized threads, so certain
optimizations must not be performed on it. This modifier can sometimes

vol atil e fied be used as an alternativeto synchr oni zed. Thismodifier is very
rarely used.

41 PREVIOUS HOME MEXT »

3.13. How Inner Classes BOOK INDEX 3.15. C++ Features Not

Work Found in Java

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch03_14.htm (3 of 3) [2/5/2003 7:48:00 PM]

file:///C|/orielly/jnut/copyrght.htm

C++ Features Not Found in Java (Javain a Nutshell)

41 PREVIOUS Chapter 3: Object-Oriented HEXT
Programming in Java

3.15. C++ Features Not Found in Java

Throughout this chapter, I've noted similarities and differences between Java and C++ in footnotes. Java
shares enough concepts and features with C++ to make it an easy language for C++ programmers to pick
up. There are several features of C++ that have no paralel in Java, however. In general, Java does not
adopt those features of C++ that make the language significantly more complicated.

C++ supports multiple inheritance of method implementations from more than one superclass at atime.
While this seems like a useful feature, it actually introduces many complexities to the language. The Java
language designers chose to avoid the added complexity by using interfaces instead. Thus, aclassin Java
can inherit method implementations only from a single superclass, but it can inherit method declarations
from any number of interfaces.

C++ supports templates that allow you, for example, to implement a St ack class and then instantiate it
as St ack<i nt > or St ack<doubl e> to produce two separate types. a stack of integers and a stack of
floating-point values. Java does not allow this, but efforts are underway to add this feature to the
language in arobust and standardized way. Furthermore, the fact that every classin Javais a subclass of
(bj ect meansthat every object can be cast to an instance of Cbj ect . Thus, in Javait is often
sufficient to define a data structure (such asa St ack class) that operates on Cbj ect values; the objects
can be cast back to their actual types whenever necessary.

C++ allows you to define operators that perform arbitrary operations on instances of your classes. In
effect, it allows you to extend the syntax of the language. Thisis anifty feature, called operator
overloading, that makes for elegant examples. In practice, however, it tends to make code quite difficult
to understand. After much debate, the Javalanguage designers decided to omit such operator overloading
from the language. Note, though, that the use of the + operator for string concatenation in Javais at |least
reminiscent of operator overloading.

C++ alows you to define conversion functions for a class that automatically invoke an appropriate
constructor method when avalue is assigned to a variable of that class. Thisis ssmply a syntactic shortcut
(similar to overriding the assignment operator) and is not included in Java.

In C++, objects are manipulated by value by default; you must use & to specify avariable or function
argument automatically manipulated by reference. In Java, all objects are manipulated by reference, so
thereis no need for this & syntax.

file:///C]/orielly/jnut/ch03_15.htm (1 of 2) [2/5/2003 7:48:01 PM]

C++ Features Not Found in Java (Javain a Nutshell)

41 PREVIOUS HOME MEXT B
3.14. Modifier Summary BOOK INDEX 4. The Java Platform

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch03_15.htm (2 of 2) [2/5/2003 7:48:01 PM]

file:///C|/orielly/jnut/copyrght.htm

The Java Platform (Javain a Nutshell)

41 PREVIOUS Part 1: Introducing Java HEXT »

Chapter 4. The Java Platform

Contents:

Java Platform Overview
Strings and Characters
Numbers and Math

Dates and Times

Arrays

Collections

Types, Reflection, and Dynamic Loading
Threads

Files and Directories

| nput and Output Streams
Networking

Processes

Security

Cryptography

Chapter 2, "Java Syntax from the Ground Up", and Chapter 3, "Object-Oriented Programming in Java’,
documented the Java programming language. This chapter switches gears and covers the Java platform,
which isthe vast collection of predefined classes available to every Java program, regardless of the
underlying host system on which it is running. The classes of the Java platform are collected into related
groups, known as packages. This chapter begins with an overview of the packages of the Java platform
that are documented in this book. It then moves on to demonstrate, in the form of short examples, the
most useful classesin these packages.

4.1. Java Platform Overview

Table 4-1 summarizes the key packages of the Java platform that are covered in this book.

Table 4-1. Key Packages of the Java Platform

file://IC|/orielly/jnut/ch04_01.htm (1 of 4) [2/5/2003 7:48:04 PM]

The Java Platform (Javain a Nutshell)

Package

| ava.

| ava.

] ava. i

| ava.

] ava.

| ava.

| ava.

| ava.

| ava.

j ava.

] ava.

] ava.

beans

beans. beancont ext

e}
| ang

| ang. r ef

| ang. refl ect
mat h

net

security
security. acl

security.cert

security.interfaces

Description

The JavaBeans component model for reusable, embeddable
software components.

Additional classes that define bean context objects that hold and
provide services to the JavaBeans objects they contain.

Classes and interfaces for input and output. Although some of the
classesin this package are for working directly with files, most are
for working with streams of bytes or characters.

The core classes of the language, suchas St ri ng, Mat h,
Syst em Thr ead, and Except i on.

Classes that define weak references to objects. A weak reference
Is one that does not prevent the referent object from being garbage-
collected.

Classes and interfaces that allow Java programsto reflect on
themselves by examining the constructors, methods, and fields of
classes.

A small package that contains classes for arbitrary-precision
integer and floating-point arithmetic.

Classes and interfaces for networking with other systems.

Classes and interfaces for access control and authentication.
Supports cryptographic message digests and digital signatures.

A package that supports access control lists. Deprecated and
unused as of Java 1.2.

Classes and interfaces for working with public key certificates.

Interfaces used with DSA and RSA public-key encryption.

file:///C|/orielly/jnut/ch04_01.htm (2 of 4) [2/5/2003 7:48:04 PM]

The Java Platform (Javain a Nutshell)

| ava. security. spec

| ava. t ext

j ava. util

java.util.jar

java.util.zip

j avax. crypto

j avax. crypto.interfaces

| avax. crypt o. spec

Classes and interfaces for transparent representations of keys and
parameters used in public-key cryptography.

Classes and interfaces for working with text in internationalized
applications.

Various utility classes, including the powerful collections
framework for working with collections of objects.

Classes for reading and writing JAR files.

Classes for reading and writing ZIP files.

Classes and interfaces for encryption and decryption of data.

Interfaces that represent the Diffie-Hellman public/private keys
used in the Diffie-Hellman key agreement protocol.

Classes that define transparent representations of keys and
parameters used in cryptography.

Table 4-1 does not list all the packages in the Java platform, only those documented in this book. Java

also defines numerous packages for graphics and graphical user interface programming and for
distributed, or enterprise, computing. The graphics and GUI packagesarej ava. awt and

j avax. swi ng and their many subpackages. These packages, along with thej ava. appl et package,
are documented in Java Foundation Classes in a Nutshell (O'Rellly). The enterprise packages of Java
includej ava. rm ,j ava. sgl ,j avax. j ndi,or g. ong. CORBA, or g. ong. CosNam ng, and all
of their subpackages. These packages, as well as several standard extensions to the Java platform, are
documented in the book Java Enterprise in a Nutshell (O'Relilly).

41 PREVIOUS

3.15. C++ Features Not
Found in Java

HOME MEXT B
BOOK INDEX 4.2. Strings and Characters

file://IC|/orielly/jnut/ch04_01.htm (3 of 4) [2/5/2003 7:48:04 PM]

The Java Platform (Javain a Nutshell)

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch04_01.htm (4 of 4) [2/5/2003 7:48:04 PM]

file:///C|/orielly/jnut/copyrght.htm

Strings and Characters (Javain a Nutshell)

41 PREVIOUS Chapter 4: The Java Platform HEXT

4.2. Strings and Characters

Strings of text are afundamental and commonly used data type. In Java, however, strings are not a primitive type, like char ,
i nt,andfl oat . Instead, strings are represented by thej ava. | ang. St ri ng class, which defines many useful methods
for manipulating strings. St r i ng areimmutable : oncea St r i ng object has been created, there is no way to modify the
string of text it represents. Thus, each method that operates on a string typically returnsanew St r i ng object that holds the
modified string.

This code shows some of the basic operations you can perform on strings:

/1 Creating strings

String s = "Now'; /1l String objects have a special literal syntax
Stringt =s + " is thetinme."; // Concatenate strings with + operator
Stringtl =s + " " + 23.4, /'l + converts other values to strings

tl = String.valueO('c'); /'l Get string corresponding to char val ue

tl = String.valueO(42); /'l Get string version of integer or any val ue
tl = Object.toString(); /'l Convert objects to strings with toString()
[l String |l ength

int len =t.length(); /'l Nunber of characters in the string: 16

/'l Substrings of a string

String sub = t.substring(4); /'l Returns char 4 to end: "is the tine."

sub = t.substring(4, 6); /'l Returns chars 4 and 5: "is"

sub = t.substring(0, 3); /'l Returns chars 0 through 2: " Now'

sub = t.substring(x, y); /'l Returns chars between pos x and y-1

int nunchars = sub.length(); /1 Length of substring is always (y-Xx)

/1 Extracting characters froma string

char ¢ = t.charAt(2); /'l Get the 3rd character of t: w
char[] ca = t.toCharArray(); /1l Convert string to an array of characters
t.getChars(0, 3, ca, 1); /1l Put 1st 4 chars of s into ca at position 2

/| Case conversion
String caps = t.toUpperCase(); // Convert to uppercase
String lower = t.toLowerCase(); // Convert to |owercase

/1 Conparing strings

bool ean bl = t.equal s("hello"); /'l Returns false: strings not equal
bool ean b2 = t.equal sl gnoreCase(caps); // Case-insensitive conpare: true
bool ean b3 = t.startsWth("Now'); /'l Returns true

bool ean b4 = t.endsWth("tinme."); /1l Returns true

int rl = s.conpareTo("Pow'); /'l Returns < 0: s cones before "Pow'
int r2 = s.conpareTo("Now"); /!l Returns 0: strings are equal

int r3 = s.conpareTo("MWw'); /[l Returns > 0: s cones after "Mw'

file://IC|/orielly/jnut/ch04_02.htm (1 of 4) [2/5/2003 7:48:07 PM]

Strings and Characters (Javain a Nutshell)

rl = s.conpareTol gnoreCase("pow'); /'l Returns < 0 (Java 1.2 and later)
/'l Searching for characters and substrings

int pos =t.indexOr("i'); /1l Position of first "i': 4

pos = t.indexOF("i', pos+l); /'l Position of the next "i': 12

pos = t.indexOF("i', pos+l); /'l No nore 'i's in string, returns -1
pos = t.lastlndexOF("i'); /1l Position of last "i' in string: 12
pos = t.lastlndexOr('i', pos-1); [/ Search backwards for '"i' fromchar 11
pos = t.indexOF("is"); /'l Search for substring: returns 4

pos = t.indexOF("is", pos+l); /'l Only appears once: returns -1

pos = t.lastlndexOr("the "); /| Search backwards for a string

String noun = t.substring(pos+4); // Extract word follow ng "the"

/1 Replace all instances of one character with another character
String exclaim= t.replace('."', "!"); [/ Only works with chars, not substrings

/1 Strip blank space off the beginning and end of a string
String noextraspaces = t.trin();

/1 Cbtain unique instances of strings with intern()

String s1 = s.intern(); /1 Returns sl equal to s
String s2 = "Now'.intern(); /'l Returns s2 equal to "Now'
bool ean equals = (sl == s2); /1 Now can test for equality with ==

Since St r i ng objects are immutable, you cannot manipulate the characters of aSt ri ng in place. If you need to do this,
useaj ava. | ang. Stri ngBuf f er instead:

/] Create a string buffer froma string
StringBuffer b = new StringBuffer("Mw'),;

[/l Get and set individual characters of the StringBuffer

char ¢ = b.charAt(0); /'l Returns "M : just like String.charAt()
b.setCharAt (0, 'N); /1 b holds "Now': can't do that with a String!
/1 Append to a StringBuffer

b. append(' '); /| Append a character

b. append("is the tine."); /'l Append a string

b. append(23); /'l Append an integer or any other value
/1l Insert Strings or other values into a StringBuffer

b.insert(6, "n't"); /1 b now holds: "Nowisn't the tine.23"
/'l Replace a range of characters with a string (Java 1.2 and | ater)
b.replace(4, 9, "is"); /1 Back to "Now is the tine.23"

/'l Delete characters

b. del ete(16, 18); /'l Delete a range: "Now is the tine"

b. del et eChar At (2) ; /'l Delete 2nd character: "No is the tine"
b. setLengt h(5); /1l Truncate by setting the length: "No is"

/1 O her useful operations
b.reverse(); /'l Reverse characters: "si oN'

file://IC|/orielly/jnut/ch04_02.htm (2 of 4) [2/5/2003 7:48:07 PM]

Strings and Characters (Javain a Nutshell)

String s = b.toString(); /'l Convert back to an i mutable string
S = b.substring(1, 2); /Il O take a substring: "i"
b. set Lengt h(0); /'l Erase buffer; nowit is ready for reuse

Inadditiontothe St ri ng and St r i ngBuf f er classes, there are a number of other Java classes that operate on strings.
Onenotableclassisj ava. uti | . Stri ngTokeni zer, which you can use to break a string of text into its component
words:

String s = "Now is the tinme";
java. util.StringTokeni zer st = new java. util.StringTokeni zer(s);
whi | e(st. hasMbreTokens()) {

Systemout. println(st.nextToken());

}

Y ou can even use this class to tokenize words that are delimited by characters other than spaces:

String s = "a:b:c:d";
java.util.StringTokenizer st = new java.util.StringTokenizer(s, ":");

Asyou know, individual characters are represented in Java by the primitive char type. The Java platform also defines a
Char act er class, which defines useful class methods for checking the type of a character and converting the case of a
character. For example:

char[] text; // An array of characters, initialized somewhere el se
int p = 0; /1 Qur current position in the array of characters
/1 Skip |eading whitespace
while((p < text.length) && Character.isWitespace(text[p])) p++;
[/l Capitalize the first word of text
while((p < text.length) && Character.isLetter(text[p])) {
text[p] = Character.toUpperCase(text[p]);
p++;
}
Theconpar eTo() andequal s() methods of the St r i ng class allow you to compare strings. conpar eTo() basesits
comparison on the character order defined by the Unicode encoding, whileequal s() defines string equality as strict
character-by-character equality. These are not always the right methods to use, however. In some languages, the character
ordering imposed by the Unicode standard does not match the dictionary ordering used when alphabetizing strings. In
Spanish, for example, the letters "ch" are considered a single letter that comes after "¢" and before "d." When comparing
human-readable strings in an internationalized application, you should usethej ava. t ext . Col | at or classinstead:

i nport java.text.*;

/1l Conpare two strings; results depend on where the programis run
/1 Return values of Collator.conpare() have sanme nmeani ngs as String.conpareTo()

Collator ¢ = Col lator.getlnstance(); [/l Get Collator for current |ocale
int result = c.conpare("chica", "coche"); [// Use it to conpare two strings

4 PREVIOUS HOME NEXT &

4.1. Java Platform Overview BOOK INDEX 4.3. Numbers and Math

file://IC|/orielly/jnut/ch04_02.htm (3 of 4) [2/5/2003 7:48:07 PM]

Strings and Characters (Javain a Nutshell)

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch04_02.htm (4 of 4) [2/5/2003 7:48:07 PM]

file:///C|/orielly/jnut/copyrght.htm

Numbers and Math (Javain a Nutshell)

41 PREVIOUS Chapter 4: The Java Platform HEXT

4.3. Numbers and Math

Javaprovidesthebyt e, short,int,| ong, fl oat, and doubl e primitive types for representing numbers. The

j ava. | ang package includes the corresponding Byt e, Short , | nt eger, Long, Fl oat , and Doubl e classes, each of
which is asubclass of Nunber . These classes can be useful as object wrappers around their primitive types, and they also
define some useful constants:

/'l Integral range constants: Integer, Long, and Character also define these

Byt e. M N_VALUE /1 The small est (nobst negative) byte val ue

Byt e. MAX_VALUE /1l The | argest byte val ue

Short. M N_VALUE /1 The nobst negative short val ue

Short. MAX_VALUE /1l The | argest short val ue

/'l Fl oating-point range constants: Double al so defines these

Fl oat . M N_VALUE /1 Smallest (closest to zero) positive float val ue
Fl oat . MAX_VALUE /1l Largest positive float val ue

/1 O her useful constants

Mat h. PI /1 3.14159265358979323846

Mat h. E /1 2.7182818284590452354

A Java program that operates on numbers must get its input values from somewhere. Often, such a program reads a textual
representation of a number and must convert it to a numeric representation. The various Nunrber subclasses define useful
conversion methods:

String s = "-42";

byte b = Byte. parseByte(s); /Il s as a byte

short sh = Short. parseShort(sh); /1l s as a short

int i = Integer.parselnt(s); [l s as an int

long | = Long. parseLong(s); /1 s as a |long

float f = Fl oat. parseFl oat(s); /1 s as a float (Java 1.2 and | ater)
f = Float.valueO (s).fl oatVal ue(); /Il s as a float (prior to Java 1.2)
doubl e d = Doubl e. par seDoubl e(s); /'l s as a double (Java 1.2 and | ater)
d = Doubl e. val ueOf (s) . doubl eval ue(); /Il s as a double (prior to Java 1.2)

/1 The integer conversion routines handl e nunbers in other bases
byte b = Byte. parseByte("1011", 2); /1 1011 in binary is 11 in deci mal
short sh = Short.parseShort("ff", 16); [l ff in base 16 is 255 in deci nmal

/1 The valueOr() nmethod can handle arbitrary bases
int i = Integer.val ued ("egg", 17).intVal ue(): /| Base 17!

/1 The decode() nethod handles octal, decimal, or hexadeci mal, dependi ng
/1 on the nuneric prefix of the string
short sh = Short.decode("0377"). byteVal ue(); /'l Leading 0 neans base 8

file://IC|/orielly/jnut/ch04_03.htm (1 of 3) [2/5/2003 7:48:14 PM]

Numbers and Math (Javain a Nutshell)

int i = Integer.decode("O0xff").shortValue(); /| Leadi ng Ox means base 16
long | = Long. decode("255").i ntVal ue(); /'l O her nunbers mean base 10

/1l Integer class can convert nunbers to strings
String decimal = Integer.toString(42);

String binary = Integer.toBinaryString(42);
String octal = Integer.toCctal String(42);
String hex = Integer.toHexString(42);

String base36 = Integer.toString(42, 36);

Numeric values are often printed differently in different countries. For example, many European languages use a commato
separate the integral part of afloating-point value from the fractional part (instead of a decimal point). Formatting differences
can diverge even further when displaying numbers that represent monetary values. When converting numbersto strings for
display, therefore, it isbest to usethej ava. t ext . Nunber For mat classto perform the conversion in alocale-specific

way':
i nport java.text.*;

/1 Use Nunber Format to format and parse nunbers for the current |ocale
Nunber For mat nf = Nunber For mat . get Nunber | nstance(); // Get a Nunber For nat
Systemout. println(nf.format(9876543.21)); // Format nunber for current |ocale
try {

Nunber n = nf.parse("1.234.567,89"); /'l Parse strings according to |locale
} catch (ParseException e) { /* Handl e exception */ }

/'l Monetary values are sonetines formatted differently than other nunbers
Nunber For mat noneyFm = Nunber For mat. get Currencyl nst ance() ;
System out . printl n(nmoneyFnt . format(1234.56)); // Prints $1,234.56 in U S.

The Mat h class defines a number of methods that provide trigonometric, logarithmic, exponential, and rounding operations,
among others. Thisclassis primarily useful with floating-point values. For the trigonometric functions, angles are expressed
in radians. The logarithm and exponentiation functions are base e, not base 10. Here are some examples:

doubl e d = Mat h. toRadi ans(27); /| Convert 27 degrees to radians
d = Math.cos(d); /| Take the cosine

d = Math.sqgrt(d); /| Take the square root

d = Math.log(d); /| Take the natural |ogarithm

d = Mat h. exp(d); /'l Do the inverse: e to the power d
d = Math. pow(10, d); /'l Raise 10 to this power

d = Math. atan(d); /| Conpute the arc tangent

d = Mat h. toDegrees(d); /'l Convert back to degrees
doubl e up = Math.ceil (d); /1 Round to ceiling

doubl e down = Math. fl oor(d); /1 Round to floor

| ong nearest = Math.round(d); /'l Round to nearest

The Mat h class also defines a rudimentary method for generating pseudo-random numbers, but thej ava. uti | . Random
classis moreflexible. If you need very random pseudo-random numbers, you can use the
j ava. security. Secur eRandomclass:

/1 A sinple random nunber
double r = Math. random(); /!l Returns d such that: 0.0 <=d < 1.0

file://IC|/orielly/jnut/ch04_03.htm (2 of 3) [2/5/2003 7:48:14 PM]

Numbers and Math (Javain a Nutshell)

/1 Create a new Random obj ect, seeding with the current tine
java. util.Random generator = new java. util.Randonm(SystemcurrentTimeMIlis());
doubl e d = gener at or. next Doubl e() ; // 0.0 <=d < 1.0

float f = generator.nextFl oat(); // 0.0 <=d < 1.0

long | = generator.nextLong(); /'l Chosen fromthe entire range of |ong
int i = generator.nextlnt(); /'l Chosen fromthe entire range of int

i = generator.nextlnt(limt); [l 0 <=1 <Ilimt (Java 1.2 and | ater)
bool ean b = generator.nextBoolean(); // true or false (Java 1.2 and | ater)

d = generat or. next Gaussi an(); /1l Mean value: 0.0; std. deviation: 1.0
byte[] randonBytes = new byte[128];

gener at or . next Byt es(randonByt es) ; /1 Fill in array with random bytes

/'l For cryptographic strength random nunbers, use the SecureRandom subcl ass

j ava. security. SecureRandom generator2 = new j ava. security. SecureRandon();

/'l Have the generator generate its own 16-byte seed; takes a *long* tine

gener ator 2. set Seed(generator 2. generateSeed(16)); // Extra random 16-byte seed
/1 Then use SecureRandom | i ke any ot her Random obj ect

gener at or 2. next Byt es(randonByt es) ; /'l CGenerate nore random bytes

Thej ava. mat h package containsthe Bi gl nt eger and Bi gDeci mal classes. These classes allow you to work with
arbitrary-size and arbitrary-precision integers and floating-point values. For example:

i nport java. math. *;

/1l Conpute the factorial of 1000
Bi gl nteger total = Biglnteger.valueO(1);
for(int i = 2; i <= 1000; i++)

total = total.nmultiply(Biglnteger.valueO(i));
Systemout.printlin(total.toString());

41 PREVIOUS HOME HEXT %
4.2. Strings and Characters BOOK INDEX 4.4. Dates and Times

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch04_03.htm (3 of 3) [2/5/2003 7:48:14 PM]

file:///C|/orielly/jnut/copyrght.htm

Dates and Times (Javain a Nutshell)

41 PREVIOUS Chapter 4: The Java Platform HEXT mp

4.4. Dates and Times

Java uses severa different classes for working with dates and times. Thej ava. uti | . Dat e class represents an instant in
time (precise down to the millisecond). This class is hothing more than a wrapper around al ong value that holds the
number of milliseconds since midnight GMT, January 1, 1970. Here are two ways to determine the current time:

long t0 = SystemcurrentTimeM I 1lis(); /1l Current time in mlliseconds
java.util.Date now = new java. util.Date(); // Basically the same thing
long t1 = now. getTine(); /'l Convert a Date to a |ong val ue

The Dat e class has a number of interesting-sounding methods, but almost all of them have been deprecated in favor of
methods of thej ava. uti | . Cal endar andj ava. t ext . Dat eFor mat classes. To print adate or atime, use the
Dat eFor mat class, which automatically handles locale-specific conventions for date and time formatting. Dat eFor mat
even works correctly in locales that use a calendar other than the common era (Gregorian) calendar in use in much of the
world:

I nport java.util.Date;
i mport java.text.*;

/1l Display today's date using a default format for the current |ocale
Dat eFor mat def aul t Dat e = Dat eFor mat . get Dat el nst ance() ;
System out. println(defaul tDate.format(new Date()));

/1l Display the current tinme using a short tinme format for the current |ocale
Dat eFor mat short Ti me = Dat eFor mat. get Ti nel nst ance(Dat eFor mat . SHORT) ;
Systemout. println(shortTine.format(new Date()));

/1l Display date and tinme using a long format for both
Dat eFor mat | ongTi nestanp =

Dat eFor mat . get Dat eTi nel nst ance(Dat eFor mat . FULL, Dat eFormat. FULL) ;
System out. println(longTi mestanp.format(new Date()));

/'l Use SinpleDateFormat to define your own formatting tenplate
/'l See java.text.SinpleDateFormat for the tenplate syntax
Dat eFor mat nyformat = new Si npl eDat eFor mat ("yyyy. VM dd") ;
Systemout.println(nyformat.format(new Date()));
try { /| Dat eFormat can parse dates too

Dat e | eapday = nyformat. parse("2000.02.29");
}

catch (ParseException e) { /* Handl e parsing exception */ }
The Dat e class and its millisecond representation allow only avery simple form of date arithmetic:

| ong now = SystemcurrentTimeM I 1lis(); /1 The current tine

file://IC|/orielly/jnut/ch04_04.htm (1 of 2) [2/5/2003 7:48:17 PM]

Dates and Times (Javain a Nutshell)

| ong anHour FromNow = now + (60 * 60 * 1000); /1 Add 3,600,000 mlliseconds

To perform more sophisticated date and time arithmetic and manipul ate dates in ways humans (rather than computers)
typically care about, usethej ava. uti | . Cal endar class:

I mport java.util.?*;

/! Get a Calendar for current |locale and time zone
Cal endar cal = Cal endar. getlnstance();

/'l Figure out what day of the year today is
cal .setTime(new Date()); /1 Set to the current tine
int dayOf Year = cal . get(Cal endar. DAY_OF_YEAR); // Wat day of the year is it?

/1 What day of the week does the |leap day in the year 2000 occur on?
cal . set (2000, Cal endar. FEBRUARY, 29); /'l Set year, nonth, day fields
I nt dayOf Week = cal . get(Cal endar. DAY OF WEEK); // Query a different field

/1 What day of the nonth is the 3rd Thursday of My, 20017?

cal . set (Cal endar. YEAR, 2001); /'l Set the year

cal . set (Cal endar. MONTH, Cal endar. MAY) ; /'l Set the nonth

cal . set (Cal endar. DAY_OF VEEK, Cal endar. THURSDAY); // Set the day of week
cal . set (Cal endar. DAY_OF _WEEK | N MONTH, 3); /1l Set the week

i nt dayOFMonth = cal . get (Cal endar. DAY_OF _MONTH) ; /'l Query the day in nonth

/| Get a Date object that represents 30 days from now

Date today = new Date(); /1l Current date
cal . set Ti me(t oday); /1 Set it in the Cal endar object
cal . add(Cal endar . DATE, 30); /1 Add 30 days
Date expiration = cal.getTine(); /'l Retrieve the resulting date
41 PREVIOUS HOME NEXT o
4.3. Numbers and Math BOOK INDEX 4.5. Arrays

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch04_04.htm (2 of 2) [2/5/2003 7:48:17 PM]

file:///C|/orielly/jnut/copyrght.htm

Arrays (Javain a Nutshell)

41 PREVIOUS Chapter 4: The Java Platform HEXT o

4.5. Arrays

Thej ava. | ang. Syst emclassdefinesan ar r aycopy() method that is useful for copying specified elementsin one
array to a specified position in a second array. The second array must be the same type as the first, and it can even be the same

array.

char[] text = "Nowis the tine".toCharArray();

char[] copy = new char[100];

/1 Copy 10 characters fromelenment 4 of text into copy, starting at copy[O]
System arraycopy(text, 4, copy, 0, 10);

/1 Move sone of the text to |later elenents, making roomfor insertions
System arraycopy(copy, 3, copy, 6, 7);

InJaval.2 and later, thej ava. uti | . Arrays class defines useful array-manipulation methods, including methods for
sorting and searching arrays:

i mport java.util.Arrays;

int[] intarray = newint[] { 10, 5, 7, -3 }; // An array of integers

Arrays.sort(intarray); /1 Sort it in place
int pos = Arrays. binarySearch(intarray, 7); // Value 7 is found at index 2
pos = Arrays. binarySearch(intarray, 12); /1 Not found: negative return val ue

/'l Arrays of objects can be sorted and searched too
String[] strarray = new String[] { "now', "is", "the", "tinme" };
Arrays.sort(strarray); [{ "is", "now', "the", "time" }

/1l Arrays.equal s() conpares all elenents of two arrays
String[] clone = (String[]) strarray.clone();
bool ean bl = Arrays. equal s(strarray, clone); [/ Yes, they're equal

[l Arrays.fill() initializes array el enents

byte[] data = new byte[100]; /1 An enpty array; elenents set to O
Arrays.fill (data, (byte) -1); /1 Set themall to -1
Arrays.fill(data, 5, 10, (byte) -2); // Set elenents 5, 6, 7, 8 9 to -2

Arrays can be treated and manipulated as objects in Java. Given an arbitrary object 0, you can use code such as the following
to find out if the object is an array and, if so, what type of array it is:

Cl ass type = o.getd ass();
if (type.isArray()) {
Cl ass el enent Type = type. get Conponent Type();

}

file://IC|/orielly/jnut/ch04_05.htm (1 of 2) [2/5/2003 7:48:19 PM]

Arrays (Javain a Nutshell)

4a PREVIOUS HOME MEXT o
4.4, Dates and Times BOOK IMDEX 4.6. Collections

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch04_05.htm (2 of 2) [2/5/2003 7:48:19 PM]

file:///C|/orielly/jnut/copyrght.htm

Collections (Javain aNutshell)

41 PREVIOUS Chapter 4: The Java Platform HEXT

4.6. Collections

The Java collection framework is a set of important utility classes and interfacesinthej ava. uti | package for working
with collections of objects. The collection framework defines two fundamental types of collections. A Col | ecti onisa
group of objects, whileaMap isaset of mappings, or associations, between objects. A Set isatypeof Col | ecti onin
which there are no duplicates, and aLi st isaCol | ect i on inwhich the elements are ordered. Col | ect i on, Set

Li st, and Map areadl interfaces, but thej ava. ut i | package also defines various concrete implementations (see Chapter
23, "Thejava.util Package"). Other important interfacesarel t er at or and Li st 1t er at or, which alow you to loop

through the objectsin a collection. The collection framework is new as of Java 1.2, but prior to that release you can use
Vect or and Hasht abl e, which are approximately the sameasAr r ayLi st and HashMap.

The following code demonstrates how you might create and perform basic manipulations on sets, lists, and maps.

i nport java.util.*;

Set s = new HashSet (); /1 1Inplenmentation based on a hash table
s.add("test"); /1 Add a String object to the set

boolean b = s.contains("test2"); // Check whether a set contains an object
s.renove("test"); /'l Renobve a nenber froma set

Set ss = new TreeSet(); /'l TreeSet inplenents SortedSet
ss.add("b"); /1 Add sone el enents

ss.add("a");

/1 Now iterate through the elenments (in sorted order) and print them
for(lterator i = ss.iterator(); i.hasNext();)

Systemout.printlin(i.next());

List I = new LinkedList(); /'l LinkedLi st inplenments a doubly Ilinked |ist

| = new ArrayList(); /[l ArrayList is nore efficient, usually

Vector v = new Vector(); /1l Vector is an alternative in Java 1.1/1.0

| .addAl | (ss); /1 Append sone elenents to it

| .addAl I (1, ss); /1l Insert the elenments again at index 1

hject o =1.get(1); /] Get the second el enent

| .set(3, "new el enent"); /1 Set the fourth el enent

| .add("test"); /1 Append a new el enent to the end

| .add(0, "test2"); /'l Insert a new elenent at the start

| .renmove(l); /'l Renove the second el enent

| .renove("a"); /'l Renove the elenent "a"

| .renmoveAl |l (ss); /'l Renove elenents fromthis set

if ('l.isEnpty()) [l 1f list is not enpty,
Systemout.printin(l.size()); [// print out the nunber of elenments in it

bool ean bl = |.contains("a"); /1l Does it contain this value?

bool ean b2 = 1.containsAll(ss); [// Does it contain all these val ues?

Li st sublist =1.subList(1,3); /1 A sublist of the 2nd and 3rd el enents

oject[] elements = |.toArray(); // Convert it to an array

file://IC|/orielly/jnut/ch04_06.htm (1 of 3) [2/5/2003 7:48:21 PM]

Collections (Javain aNutshell)

|.clear(); /1l Delete all elenents

Map m = new HashMap() ; /'l Hashtable an alternative in Java 1.1/1.0
m put ("key", new I nteger(42)); /'l Associate a value object with a key object
Obj ect value = mget ("key"); /'l Look up the value associated with a key

m renove(" key"); /'l Renove the association fromthe Mp

Set keys = m keySet (); /'l Get the set of keys held by the Map

Arrays of objects and collections serve similar purposes. It is possible to convert from one to the other:

oj ect[] nmenbers = set.toArray(); /Il CGet set elenents as an array
oject[] itens = list.toArray(); /Il CGet list elenents as an array

Obj ect[] keys = map. keySet ().toArray(); /'l Get map key objects as an array
Qbj ect[] values = map.values().toArray(); // Get map val ue objects as an array

Li st |
Li st |

Arrays. asList(a); /'l View array as an ungrowabl e |i st
new Arraylist(Arrays.aslList(a)); // Make a growable copy of it

Just asthej ava. util . Arrays classdefined methods to operate on arrays, thej ava. uti | . Col | ecti ons class
defines methods to operate on collections. Most notable are methods to sort and search the elements of collections:

Col | ections.sort(list);
int pos = Collections. binarySearch(list, "key"); // list nmust be sorted first

Here are some other interesting Col | ect i ons methods:

Col | ections.copy(listl, list2); // Copy list2 into listl, overwiting listl

Collections.fill(list, 0); [l Fill lTist wwth Object o

Col | ecti ons. max(c); /'l Find the largest elenent in Collection c

Col | ections.mn(c); /1 Find the snmallest elenment in Collection c
Col | ections.reverse(list); /'l Reverse |ist

Col | ections. shuffle(list); Il Mx up list

Set s = Collections.singleton(o); // Return an inmutable set with one elenent o
List ul = Collections.unnodifiableList(list); // Inmtable wapper for |ist

Map sm = Col | ecti ons. synchroni zedMap(map) ; /'l Synchroni zed wrapper for map

One particularly useful collection classisj ava. util . Properti es.Properti es isasubclassof Hasht abl e that
predates the collections framework of Java 1.2, making it alegacy collection. A Pr opert i es object maintains a mapping
between string keys and string values, and defines methods that allow the mappings to be written to and read from a simple-
format text file. Thismakesthe Pr oper ti es classideal for configuration and user preferencefiles. The Pr operti es
classisalso used for the system properties returned by Syst em get Property():

inport java.util.*;
i nport java.io.?*,

String homedir = System get Property("user.honme"); // Get a system property
Properties sysprops = System get Properties(); /[l CGet all system properties

/1 Print the nanmes of all defined system properties
for(Enuneration e = sysprops. propertyNanes(); e.hasMreEl enents();)

file://IC|/orielly/jnut/ch04_06.htm (2 of 3) [2/5/2003 7:48:21 PM]

Collections (Javain aNutshell)

Systemout. println(e.nextEl ement());
sysprops.list(Systemout); // Here's an even easier way to list the properties

/'l Read properties froma configuration file

Properties options = new Properties(); /1l Enpty properties |ist
File configfile = new File(homedir, ".config"); /'l The configuration file
try {

options. | oad(new Fil el nput Stream(configfile)); /1 Load props fromthe file

} catch (I Cexception e) { /* Handl e exception here */ }

/[l Query a property ("color"), specifying a default ("gray") if undefined
String color = options.getProperty("color”, "gray");

/1l Set a property named "color" to the value "green"
options. setProperty("color", "green");

/1l Store the contents of the Properties object back into a file
try {
options. store(new Fil eQutput Strean(configfile), // Qutput stream
"MyApp Config File"); /[l File header coment text
} catch (I CeException e) { /* Handl e exception */ }

48 PREVIQUS HOME HEXT &

4.5. Arrays BOOK INDEX 4.7. Types, Reflection, and
Dynamic Loading

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch04_06.htm (3 of 3) [2/5/2003 7:48:21 PM]

file:///C|/orielly/jnut/copyrght.htm

Types, Reflection, and Dynamic Loading (Javain a Nutshell)

41 PREVIOUS Chapter 4: The Java Platform HEXT mp

4.7. Types, Reflection, and Dynamic Loading

Thej ava. | ang. O ass class represents data typesin Java and, along with the classesinthej ava. | ang. ref | ect
package, gives Java programs the capability of introspection (or self-reflection); a Java class can look at itself, or any other
class, and determine its superclass, what methods it defines, and so on. There are several ways you can obtainaCl ass
object in Java:

/1 Qbtain the Cass of an arbitrary object o
Class c 0.getd ass();

/] Obtain a Class object for primtive types with various predefined constants

c = Voi d. TYPE; [l The special "no-return-value" type

c = Byte. TYPE; /1 Class object that represents a byte

c = Integer. TYPE; /1l O ass object that represents an int

¢ = Doubl e. TYPE; /'l etc. See al so Short, Character, Long, Float.

/'l Express a class literal as a type nane followed by ".class"

c = int.class; /'l Same as |nteger. TYPE

c = String.class; /1l Same as "dummystring".getd ass()

c = byte[].class; /1 Type of byte arrays

c = Cass[][].class; /[l Type of array of arrays of C ass objects

Onceyou have aCl ass object, you can perform some interesting reflective operations with it:

i nport java.lang.reflect.*;

Obj ect o; /1 Some unknown object to investigate
Class ¢ = o.getd ass(); Il Get its type

/1l 1f it is an array, figure out its base type
while (c.isArray()) ¢ = c.get Conponent Type();

/1 1f cis not a primtive type, print its class hierarchy
if (lc.isPrimtive()) {
for(Cass s =c; s !=null; s = s.getSuperclass())
Systemout.println(s.getNanme() + " extends");

}

/Il Try to create a new instance of c; this requires a no-arg constructor
bj ect newobj = nul |;

try { newobj = c.newlnstance(); }
catch (Exception e) {

/1 Handl e InstantiationException, Il1egal AccessException
}

file://IC|/orielly/jnut/ch04_07.htm (1 of 2) [2/5/2003 7:48:24 PM]

Types, Reflection, and Dynamic Loading (Javain a Nutshell)

/'l See if the class has a nethod nanmed set Text that takes a single String
/1 1f so, call it with a string argunent
try {
Met hod m = c. get Met hod("set Text", new Cl ass[] { String.class });
m i nvoke(newobj, new Qbject[] { "My Label" });
} catch(Exception e) { /* Handl e exceptions here */ }

C ass aso provides asimple mechanism for dynamic class loading in Java. For more complete control over dynamic
class loading, however, you should useaj ava. | ang. Cl assLoader object, typicaly a

j ava. net . URLC assLoader . Thistechniqueis useful, for example, when you want to load a class that isnamed in a
configuration file instead of being hardcoded into your program:

/1 Dynamcally load a class specified by nane in a config file
String classnane = /1 Look up the nane of the class
config.getProperties("filterclass", [/ The property nane
"comdavidflangan.filters. Default"); // A default

try {
Class ¢ = Cass.forNane(classnane); // Dynamcally |oad the class
Obj ect o = c.new nstance(); /'l Dynamcally instantiate it

} catch (Exception e) { /* Handl e exceptions */ }

/1 If the class to be loaded is not in the classpath, create a custom
[l class |loader to |load it.

/1l Use the config file again to specify the custom path

i mport java. net.URLC assLoader;

String classdir = config.getProperties("classpath");

try {
Cl assLoader | oader = new URLC assLoader (new URL[] { new URL(classdir) });
Class ¢ = | oader.| oadd ass(cl assnane);

}

catch (Exception e) { /* Handl e exceptions */ }

4 PREVIOUS HOME MEXT B
4.6. Collections BOOK INDEX 4.8. Threads

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch04_07.htm (2 of 2) [2/5/2003 7:48:24 PM]

file:///C|/orielly/jnut/copyrght.htm

Threads (Javain a Nutshell)

41 PREVIOUS Chapter 4: The Java Platform HEXT

4.8. Threads

Javamakes it easy to define and work with multiple threads of execution within aprogram. j ava. | ang. Thr ead isthe
fundamental thread class in the Java API. There are two ways to define athread. Oneisto subclass Thr ead, override the

r un() method, and then instantiate your Thr ead subclass. The other isto define a class that implements the Runnabl e
method (i.e., definear un() method) and then pass an instance of this Runnabl e object to the Thr ead() constructor. In
either case, theresult isaThr ead object, wherether un() method is the body of the thread. When you call thest art ()
method of the Thr ead object, the interpreter creates a new thread to execute ther un() method. This new thread continues
to run until ther un() method exits, at which point it ceases to exist. Meanwhile, the original thread continues running
itself, starting with the statement following the st ar t () method. The following code demonstrates:

final List list; // Some long unsorted |list of objects; initialized el sewhere

[** A Thread class for sorting a List in the background */
cl ass BackgroundSorter extends Thread {

List I;
publ i c BackgroundSorter(List I) { this.| =1; } /'l Constructor
public void run() { Collections.sort(l); } /1 Thread body

}

/'l Create a BackgroundSorter thread

Thread sorter = new BackgroundSorter(list);

[l Start it running; the new thread runs the run() nethod above, while
/1 the original thread continues with whatever statenent cones next.
sorter.start();

/1 Here's another way to define a simlar thread
Thread t = new Thread(new Runnabl e() { /'l Create a new thread
public void run() { Collections.sort(list); } // to sort the list of objects.

1)
t.start(); [l Start it running

Threads can run at different priority levels. A thread at a given priority level does not run unless there are no higher-priority
threads waiting to run. Here is some code you can use when working with thread priorities:

/] Set athread t to | ower-than-nornal priority
t.setPriority(Thread. NORM PRI ORI TY-1);

/1 Set a thread to |lower priority than the current thread
t.setPriority(Thread. current Thread().getPriority() - 1);

/1 Threads that don't pause for 1/0O should explicitly yield the CPU
/1l to give other threads with the sane priority a chance to run.
Thread t = new Thread(new Runnabl e() {

public void run() {

file://IC|/orielly/jnut/ch04_08.htm (1 of 5) [2/5/2003 7:48:27 PM]

Threads (Javain a Nutshell)

for(int i =0; i < data.length; i++) { [// Loop through a bunch of data
process(data[i]); /'l Process it
if ((i %10) == 0) /1l But after every 10 iterations,
Thread. yi el d(); /'l pause to let other threads run.
}

}
1)

Often, threads are used to perform some kind of repetitive task at afixed interval. Thisis particularly true when doing
graphical programming that involves animation or similar effects:

public class O ock extends Thread {
java.text.DateFormat f = /1l How to format the tine for this |locale
j ava. t ext . Dat eFor nat . get Ti nel nst ance(j ava. t ext . Dat eFor mat . MEDI UM ;
bool ean keepRunni ng = true;

public Cock() { /'l The constructor
set Daenon(true); /| Daenon thread: interpreter can exit while it runs
start(); /1 This thread starts itself

}

public void run() { /1 The body of the thread

whi | e(keepRunni ng) { /1 This thread runs until asked to stop
String time = f.format(new java.util.Date()); // Current tinme

Systemout.printlin(tine); /[l Print the tinme
try { Thread. sl eep(1000); } /1 Wait 1000 mlliseconds
catch (I nterruptedException e) {} /'l lgnore this exception

}
}

/'l Ask the thread to stop running
public void pleaseStop() { keepRunning = fal se; }

}

Noticethepl easeSt op() method in the previous example. Y ou can forcefully terminate a thread by calling itsst op()
method, but this method has been deprecated because a thread that is forcefully stopped can leave objectsit is manipulating
in an inconsistent state. If you need a thread that can be stopped, you should define a method such as pl easeSt op() that
stops the thread in a controlled way.

InJaval.3,thej ava. util. Timer andj ava. util . Ti mer Task classes make it even easier to run repetitive tasks.
Here is some code that behaves much like the previous Cl ock class:

i nport java.util.*;

/[l How to format the time for this |ocale
final java.text.DateFormat tinmeFnt =
j ava. t ext . Dat eFor mat . get Ti nel nst ance(j ava. t ext. Dat eFor mat . MEDI UM ;
/1 Define the tinme-display task
Ti mer Task di spl ayTi me = new Ti nmer Task() {
public void run() { Systemout.println(tinmeFnt.format(new Date())); }

};

file://IC|/orielly/jnut/ch04_08.htm (2 of 5) [2/5/2003 7:48:27 PM]

Threads (Javain a Nutshell)

I/l Create a tiner object to run the task (and possibly others)

Timer timer = new Tinmer();

/1 Now schedul e that task to be run every 1000 mlliseconds, starting now
Ti mer. schedul e(di spl ayTi ne, 0, 1000);

/1l To stop the tine-display task

di spl ayTi ne. cancel () ;

Sometimes one thread needs to stop and wait for another thread to complete. Y ou can accomplish thiswith thej oi n()
method:

List list; // Along list of objects to be sorted; initialized el sewhere

/'l Define a thread to sort the list: lower its priority, so it only runs
/'l when the current thread is waiting for 1/Q and then start it running.

Thread sorter = new BackgroundSorter(list); /1 Defined earlier
sorter.setPriority(Thread. current Thread.getPriority()-1); // Lower priority
sorter.start(); /[l Start sorting

/1 Meanwhile, in this original thread, read data froma file
byte[] data = readData(); // Method defined el sewhere

/1l Before we can proceed, we need the list to be fully sorted, so
/[l we've got to wait for the sorter thread to exit, if it hasn't already.
sorter.join();

When using multiple threads, you must be very careful if you alow more than one thread to access the same data structure.
Consider what would happen if one thread was trying to loop through the elements of aLi st while another thread was
sorting those elements. Preventing this problem is called threadsynchronization and is one of the central problems of
multithreaded computing. The basic technique for preventing two threads from accessing the same object at the sametimeis
to require athread to obtain alock on the object before the thread can modify it. While any one thread holds the lock, another
thread that requests the lock has to wait until the first thread is done and releases the lock. Every Java object has the
fundamental ability to provide such alocking capability.

The easiest way to keep objects thread-safe is to declare any sensitive methods synchr oni zed. A thread must obtain a
lock on an object before it can execute any of itssynchr oni zed methods, which means that no other thread can execute
any other synchr oni zed method at the sametime. (If ast at i ¢ method isdeclared synchr oni zed, the thread must
obtain alock on the class, and this works in the same manner.) To do finer-grained locking, you can specify

synchr oni zed blocks of code that hold alock on a specified object for a short time:

/1 This method swaps two array elenents in a synchroni zed bl ock
public static void swap(Qbject[] array, int indexl, int index2) {
synchroni zed(array) {
bject tnp = array[indexl];
array[index1] array[index2];
array[index2] t np;
}

}

[l The Collection, Set, List, and Map inplenentations in java.util do
/1 not have synchroni zed net hods (except for the | egacy inplenentations
/1 Vector and Hashtable). Wen working with multiple threads, you can

file://IC|/orielly/jnut/ch04_08.htm (3 of 5) [2/5/2003 7:48:27 PM]

Threads (Javain a Nutshell)

/1 obtain synchroni zed wapper objects.
Li st synclist = Collections.synchronizedList(list);
Map syncrmap = Col | ections. synchroni zedMap(map) ;

When you are synchronizing threads, you must be careful to avoid deadlock, which occurs when two threads end up waiting
for each other to release alock they need. Since neither can proceed, neither one can release the lock it holds, and they both
stop running:

/1 When two threads try to |lock two objects, deadl ock can occur unl ess
/1 they always request the |locks in the sanme order.
final Object resourcel = new bject(); /'l Here are two objects to | ock
final Object resource2 = new bject();
Thread t1 = new Thread(new Runnable() { // Locks resourcel then resource2
public void run() {
synchroni zed(resourcel) {
synchroni zed(resource2) { conpute(); }
}
}
1)

Thread t2 = new Thread(new Runnable() { // Locks resource2 then resourcel
public void run() {
synchroni zed(resource2) {
synchroni zed(resourcel) { conpute(); }
}
}
1)

tl.start(); // Locks resourcel
t2.start(); // Locks resource2 and now neither thread can progress!

Sometimes a thread needs to stop running and wait until some kind of event occurs, at which point it istold to continue
running. Thisisdonewiththewai t () andnoti f y() methods. These aren't methods of the Thr ead class, however; they
are methods of Obj ect . Just as every Java object has alock associated with it, every object can maintain alist of waiting
threads. When athread callsthewai t () method of an object, it is added to the list of waiting threads for that object and
stops running. When another thread callsthenot i f y() method of the same object, the object wakes up one of the waiting
threads and allows it to continue running:

/**

* A queue. One thread calls push() to put an object on the queue.
* Another calls pop() to get an object off the queue. If there is no
* data, pop() waits until there is sone, using wait()/notify().
* wait() and notify() nmust be used within a synchroni zed nethod or
* bl ock.
*/
i mport java.util.*;

public class Queue {
Li nkedLi st q = new LinkedList(); // \Were objects are stored
publi ¢ synchroni zed voi d push(Cbject o) {
g. add(o) ; /'l Append the object to the end of the I|ist

file://IC|/orielly/jnut/ch04_08.htm (4 of 5) [2/5/2003 7:48:27 PM]

Threads (Javain a Nutshell)

this.notify(); // Tell waiting threads that data is ready
}
public synchroni zed Object pop() {
while(qg.size() == 0) {
try { this.wait(); }
catch (I nterruptedException e) { /* Ignore this exception */ }

}
return q.renove(0);
}
}
41 PREVIOUS HOME NEXT B
4.7. Types, Reflection, and BOOK INDEX 4.9. Files and Directories

Dynamic Loading

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch04_08.htm (5 of 5) [2/5/2003 7:48:27 PM]

file:///C|/orielly/jnut/copyrght.htm

Files and Directories (Javain a Nutshell)

41 PREVIOUS Chapter 4: The Java Platform HEXT

4.9. Files and Directories

Thej ava. i 0. Fi | e classrepresentsafile or adirectory and defines a number of important methods for manipulating files
and directories. Note, however, that none of these methods allow you to read the contents of afile; that isthe job of
java.io. Fil el nput St ream whichisjust one of the many types of input/output streams used in Java and discussed in
the next section. Here are some things you can do with Fi | e:

i nport java.io.?*;

[l Get the nanme of the user's honme directory and represent it with a File
File honedir = new Fil e(System get Property("user. hone"));

/] Create a File object to represent a file in that directory
File f = new File(honedir, ".configfile");

/1 Find out how big a file is and when it was |last nodified
long filelength = f.length();
Date | astModified = new java.util.Date(f.lastMdified());

/1 1f the file exists, is not a directory, and is readabl e,
/1l move it into a newy created directory.

if (f.exists() & f.isFile() && f.canRead()) { /'l Check config file
File configdir = new File(honmedir, ".configdir"); [// A new config directory
configdir.nkdir(); /] Create that directory
f.renameTo(new File(configdir, ".config")); /1 Move the file into it
}

/1 List all files in the home directory
String[] allfiles = homedir.list();

/1 List all files that have a ".java" suffix
String[] sourcecode = honedir.list(new FilenaneFilter() {
publ i ¢ bool ean accept(File d, String nanme) { return nane.endsWth(".java"); }

1)

TheFi | e class provides some important additional functionality as of Java1.2:

/1 List all filesystemroot directories; on Wndows, this gives us
/'l File objects for all drive letters (Java 1.2 and later).
File[] rootdirs = File.listRoots();

/1 Atomcally, create a lock file, then delete it (Java 1.2 and | ater)
File lock = new File(configdir, ".lock");
if (lock.createNewFile()) {

/'l We successfully created the file, so do sonething

file://IC|/orielly/jnut/ch04_09.htm (1 of 2) [2/5/2003 7:48:30 PM]

Files and Directories (Javain a Nutshell)

[/ Then delete the lock file
| ock. del ete();

}

el se {
/[l We didn't create the file; soneone el se has a | ock
Systemerr.printin("Can't create lock file; exiting.");
Systemexit(0);

}
I/l Create a tenporary file to use during processing (Java 1.2 and | ater)
File tenp = File.createTenpFile("app", ".tnp"); [/ Filename prefix and suffix

/1 Make sure file gets deleted when we're done with it (Java 1.2 and | ater)
tenp. del eteOnExit ();

Thej ava. i o package also definesaRandomAccessFi | e classthat allows you to read binary datafrom arbitrary
locations in afile. This can be a useful thing to do in certain situations, but most applications read files sequentially, using
the stream classes described in the next section. Here is a short example of using RandomAccessFi | e:

/1 Open a file for read/wite ("rw') access
File datafile = new File(configdir, "datafile");
RandomAccessFil e f = new RandomAccessFil e(datafile, "rw');

f.seek(100); /'l Move to byte 100 of the file
byte[] data = new byte[100]; /Il Create a buffer to hold data
f.read(data); /'l Read 100 bytes fromthe file
int i =f.readlnt(); /'l Read a 4-byte integer fromthe file
f.seek(100); /1 Move back to byte 100
f.witelnt(i); /1 Wite the integer first
f.wite(data); /1 Then wite the 100 bytes
f.close(); /'l Close file when done with it

4 PREVIOUS HOME NEXT &

4.8. Threads BOOK INDEX 4.10. Input and Output

Streams

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch04_09.htm (2 of 2) [2/5/2003 7:48:30 PM]

file:///C|/orielly/jnut/copyrght.htm

Input and Output Streams (Javain a Nutshell)

41 PREVIOUS Chapter 4: The Java Platform HEXT mp

4.10. Input and Output Streams

Thej ava. i o package defines alarge number of classes for reading and writing streaming, or sequential, data. The

I nput St r eamand Qut put St r eamclasses are for reading and writing streams of bytes, while the Reader and
Wit er classesarefor reading and writing streams of characters. Streams can be nested, meaning you might read
charactersfromaFi | t er Reader object that reads and processes characters from an underlying Reader stream. This
underlying Reader stream might read bytes from an | nput St r eamand convert them to characters.

There are anumber of common operations you can perform with streams. Oneisto read lines of input the user types at the
console:

i mport java.io.*;

Buf f eredReader consol e = new BufferedReader (new | nput St reanReader (Systemin));
Systemout.print("Wat is your nane: "),
String nane = null;

try {
nanme = consol e. readLi ne();
}
catch (1 Cexception e) { name = "<" + e + ">"; } [/ This should never happen

Systemout.printin("Hello " + name);

Reading lines of text from afileisasimilar operation. The following code reads an entire text file and quits when it reaches
the end:

String filenane = System get Property("user. honme") + File.separator + ".cshrc";
try {

Buf f eredReader in = new BufferedReader (new Fil eReader (fil enane));

String |ine;

while((line = in.readLine()) !'=null) { // Read line, check for end-of-file

Systemout.println(line); /[l Print the line

}

in.close(); /'l Always cl ose a stream when you are done with it
}

catch (1 OException e) {
/'l Handl e Fil eNot FoundException, etc. here

}
Throughout this book, you've seen the use of the Syst em out . pri nt | n() method to display text on the console.

Syst em out simply refersto an output stream. Y ou can print text to any output stream using similar techniques. The
following code shows how to output text to afile:

try {
File f = new File(honedir, ".config");

file://IC|/orielly/jnut/ch04_10.htm (1 of 5) [2/5/2003 7:48:35 PM]

Input and Output Streams (Javain a Nutshell)

PrintWiter out = new PrintWiter(new FileWiter(f));
out.println("## Automatically generated config file. DO NOT ED T!");
out.close(); // W're done witing

}
catch (1 Oexception e) { /* Handl e exceptions */ }

Not al files contain text, however. The following lines of code treat afile as a stream of bytes and read the bytesinto a
large array:

try {
File f; /Il File to read; initialized el sewhere
int filesize = (int) f.length(); /1 Figure out the file size
byte[] data = new byte[filesize]; /|l Create an array that is big enough

/Il Create a streamto read the file

Dat al nput Stream i n = new Dat al nput Stream(new Fi | el nput Strean(f));
in.readFully(data); // Read file contents into array
in.close();

}
catch (1 Oexception e) { /* Handl e exceptions */ }

Various other packages of the Java platform define specialized stream classes that operate on streaming data in some useful
way. The following code shows how to use stream classesfrom | ava. uti | . zi p to compute a checksum of data and
then compress the data while writing it to afile:

I mport java.io.*,;
I nport java.util.zip.*;

try {
File f; /Il File to wite to; initialized el sewhere
byte[] data; /|l Data to wite; initialized el sewhere
Checksum check = new Adl er32(); // An object to conpute a sinple checksum

[/l Create a streamthat wites bytes to the file f

Fi | eQut put Stream fos = new Fi |l eQut put Strean(f);

/1 Create a streamthat conpresses bytes and wites themto fos

&ZI PQut put Stream gzos = new G&ZI PQut put St rean(fos);

/Il Create a streamthat conputes a checksumon the bytes it wites to gzos
CheckedQut put St ream cos = new CheckedQut put Strean(gzos, check);

cos.wite(data); /'l Now wite the data to the nested streans
cos. cl ose(); /'l C ose down the nested chain of streans
| ong sum = check. getValue(); // Obtain the conputed checksum

}
catch (1 Oexception e) { /* Handl e exceptions */ }

Thej ava. util . zi p package also containsa Zi pFi | e classthat gives you random access to the entries of aZIP
archive and allows you to read those entries through a stream:

i nport java.io.*;
i nport java.util.zip.*,

file://IC|/orielly/jnut/ch04_10.htm (2 of 5) [2/5/2003 7:48:35 PM]

Input and Output Streams (Javain a Nutshell)

String fil enane; I/l File to read; initialized el sewhere
String entrynane; /1l Entry to read fromthe ZIP file; initialized el sewhere
ZipFile zipfile = new Zi pFile(fil enane); /'l Open the ZIP file

ZipEntry entry = zipfile.getEntry(entrynane); /'l Get one entry
InputStreamin = zipfile.getlnputStrean(entry); // A streamto read the entry
Buf f er edl nput Stream bis = new Bufferedl nputStream(in); // Inproves efficiency
/1 Now read bytes frombis...
[l Print out contents of the ZIP file
for(java.util.Enuneration e = zipfile.entries(); e.hasMreEl enments();) {

Zi pEntry zipentry = (Zi pEntry) e.nextEl enent();

System out. println(zipentry.getNane());

}

If you need to compute a cryptographic-strength checksum (also knows as a message digest), use one of the stream classes
of thej ava. securi ty package. For example:

I mport java.io.*;
| nport java.security.*;
i mport java.util.*;

File f; /'l File to read and conpute digest on; initialized el sewhere
List text = new ArrayList(); // W'Il store the lines of text here

[/l Get an object that can conpute an SHA nessage di gest

MessageDi gest di gester = MessageDi gest. getlnstance("SHA");

/Il A streamto read bytes fromthe file f

FilelnputStreamfis = new Fil el nput Strean(f);

/1 A streamthat reads bytes fromfis and conputes an SHA nessage di gest
Di gestlnput Stream dis = new Di gestlnput Stream(fis, digester);

/'l A streamthat reads bytes fromdis and converts themto characters
| nput St reanReader i sr = new | nput St reanReader (di s);

/'l A streamthat can read a line at a tine

Buf f eredReader br = new BufferedReader (isr);

I/ Now read lines fromthe stream

for(String line; (line = br.readLine()) != null; text.add(line)) ;
I/ Close the streans
br.cl ose();

/1 Get the nessage digest
byte[] digest = digester.digest();

So far, we've used avariety of stream classes to manipulate streaming data, but the dataitself ultimately comes from afile
or iswritten to the console. Thej ava. i 0 package defines other stream classes that can read data from and write data to
arrays of bytes or strings of text:

| nport java.io.*;

/[l Set up a streamthat uses a byte array as its destination

Byt eArrayQut put Stream baos = new Byt eArrayQut put Strean();

Dat aQut put St ream out = new Dat aCut put St r eam baos) ;

out.witeUTF("hello0"); /Il Wite some string data out as bytes

file://IC|/orielly/jnut/ch04_10.htm (3 of 5) [2/5/2003 7:48:35 PM]

Input and Output Streams (Javain a Nutshell)

out.witeDoubl e(Math. Pl); /Il Wite a floating-point value out as bytes
byte[] data = baos.toByteArray(); // Get the array of bytes we've witten
out . cl ose(); /'l Close the streans

/'l Set up a streamto read characters froma string
Reader in = new StringReader("Now is the tinel");

I/ Read characters fromit until we reach the end

I nt c;

while((c =in.read()) !'= -1) Systemout.print((char) c);

Other classes that operate thisway include Byt eArr ayl nput Stream Stri ngWi t er, Char Arr ayReader , and
Char ArrayWiter.

Pi pedl nput St r eamand Pi pedQut put St r eamand their character-based counterparts, Pi pedReader and
Pi pedW i t er, are another interesting set of streams defined by j ava. i 0. These streams are used in pairs by two
threads that want to communicate. One thread writes bytesto aPi pedQut put St r eamor charactersto a

Pi pedW i t er, and another thread reads bytes or characters from the corresponding Pi pedl nput St r eamor

Pi pedReader :

/[l A pair of connected piped |I/O streans forns a pipe. One thread wites

/1 bytes to the PipedQutputStream and another thread reads themfromthe
/1 correspondi ng PipedlnputStream O use PipedWiter/Pi pedReader for chars.
final PipedQutput Stream witeEndO Pi pe = new Pi pedQut put Strean();

final Pipedl nput Stream readEndOf Pi pe = new Pi pedl nput Stream(w it eEndO Pi pe);

/1 This thread reads bytes fromthe pipe and di scards them

Thread devnull = new Thread(new Runnabl e() {
public void run() {
try { while(readEndO Pipe.read() !'=-1); }
catch (1 Oexception e) {} [// ignore it
}
1)

devnul | . start();

One of the most important features of thej ava. i o packageisthe ability to serialize objects: to convert an object into a
stream of bytes that can later be deserialized back into a copy of the original object. The following code shows how to use
serialization to save an object to afile and later read it back:

oject o; [// The object we are serializing; it nust inplement Serializable
File f; /[l The file we are saving it to

try {
/1l Serialize the object

bj ect Qut put St ream oos = new Obj ect Qut put St reanm(new Fi | eQut put Strean(f));
00s.witeQbject(0);
00s. cl ose();

/'l Read the object back in:

Obj ectl nput Stream oi s = new Obj ect | nput Strean(new Fi |l el nput Strean(f));
bj ect copy = ois.readObject();

oi s.close();

file://IC|/orielly/jnut/ch04_10.htm (4 of 5) [2/5/2003 7:48:35 PM]

Input and Output Streams (Javain a Nutshell)

}

catch (1 Oexception e) { /* Handl e i nput/output exceptions */ }
catch (C assNot FoundException cnfe) { /* readObject() can throw this */ }

The previous example serializes to afile, but remember, you can write serialized objects to any type of stream. Thus, you
can write an object to a byte array, then read it back from the byte array, creating a deep copy of the object. Y ou can write

the object's bytes to a compression stream or even write the bytes to a stream connected across a network to another
program!

41 PREVIOUS HOME HEXT

4.9. Files and Directories BOOK INDEX 4.11. Networking

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch04_10.htm (5 of 5) [2/5/2003 7:48:35 PM]

file:///C|/orielly/jnut/copyrght.htm

Networking (Javain a Nutshell)

41 PREVIOUS Chapter 4: The Java Platform HEXT

4.11. Networking

Thej ava. net package defines a number of classes that make writing networked applications surprisingly easy. The
easiest class to useis URL, which represents a uniform resource locator. Different Javaimplementations may support
different sets of URL protocols, but, at a minimum, you can rely on support for theht t p: ,ft p: ,andfi | e: protocols.
Here are some ways you can use the URL class:

i nport java.net.*;
i nport java.io.?*;

/1 Create sone URL objects

URL url=null, url2=null, url3=null;

try {
url = new URL("http://ww. oreilly.conl); /1 An absol ute URL
url2 = new URL(url, "catal og/books/javanut3/"); // A relative URL
url3 = new URL("http:", "www. oreilly.conf, "index.htm");

} catch (Ml fornmedURLException e) { /* Ignore this exception */ }

/! Read the content of a URL froman input stream
I nput Streamin = url.openStrean();

/'l For nore control over the reading process, get a URLConnection object
URLConnection conn = url.openConnection();

/1 Now get sone information about the URL

String type = conn. get Content Type();

String encodi ng = conn. get Cont ent Encodi ng() ;

java.util.Date |l astMdified = new java.util.Date(conn. getlLastMdified());
int len = conn. get Content Length();

/1 1f necessary, read the contents of the URL using this stream
| nput Stream in = conn. getl nput Strean();

Sometimes you need more control over your networked application than is possible with the URL class. In this case, you can
useaSocket to communicate directly with aserver. For example:

i nport java.net.*;
i nport java.io.?*;

/1 Here's a sinple client programthat connects to a web server,
/'l requests a docunment, and reads the docunent fromthe server.

String hostnane = "java.oreilly.conf; // The server to connect to
int port = 80; /'l Standard port for HTTP
String filenanme = "/index. htm"; /'l The file to read fromthe server

Socket s = new Socket (hostname, port); // Connect to the server

file://IC|/orielly/jnut/ch04_11.htm (1 of 4) [2/5/2003 7:48:39 PM]

Networking (Javain a Nutshell)

/Il CGet 1/O streanms we can use to talk to the server

| nput Stream sin = s. getlnputStrean();

Buf f eredReader fronterver = new BufferedReader (new | nput St reanReader (sin));
Qut put Stream sout = s. get Qut put Strean();

PrintWiter toServer = new PrintWiter(new QutputStreanWiter(sout));

/'l Request the file fromthe server, using the HTTP protocol
toServer.print("GET " + filenane + " HITP/1.0\n\n");
toServer.flush();

/1 Now read the server's response, assune it is a text file, and print it out
for(String | = null; (I = fronBerver.readLine()) != null;)
Systemout.printlin(l);

/1 O ose everything down when we're done
toServer. cl ose();

fronBerver. cl ose();

s.close();

A client application usesa Socket to communicate with aserver. The server does the same thing: it usesa Socket object
to communicate with each of its clients. However, the server has an additional task, in that it must be able to recognize and
accept client connection requests. Thisis done with the Ser ver Socket class. The following code shows how you might
useaSer ver Socket . The code implements asimple HTTP server that responds to all requests by sending back (or
mirroring) the exact contents of the HTTP request. A dummy server like thisis useful when debugging HTTP clients:

i nport java.io.*;
i mport java.net.*;

public class HitpMrror {
public static void main(String[] args) {

try {
int port = Integer.parselnt(args[0]); /1l The port to listen on
Server Socket ss = new Server Socket (port); /'l Create a socket to listen
for(;;) { /'l Loop forever
Socket client = ss.accept(); /1 WAit for a connection
ClientThread t = new CientThread(client); // Athread to handle it
t.start(); /1 Start the thread running
} /1 Loop again
}

catch (Exception e) {
Systemerr.println(e.get Message());
Systemerr.println("Usage: java HtpMrror <port>");

}
}

static class CientThread extends Thread {
Socket client;
Cient Thread(Socket client) { this.client = client; }
public void run() {

try {
/] Get streans to talk to the client

file://IC|/orielly/jnut/ch04_11.htm (2 of 4) [2/5/2003 7:48:39 PM]

Networking (Javain a Nutshell)

Buf f eredReader in =

new Buf f er edReader (new | nput St reanReader (client.getlnputStrean()));
PrintWiter out =

new PrintWiter(new QutputStreanWiter(client.getQutputStreanm()));

/1 Send an HTTP response header to the client
out.print("HTTP/ 1.0 200\ nContent - Type: text/plain\n\n");

/'l Read the HTTP request fromthe client and send it right back
/1l Stop when we read the blank line fromthe client that marks
/1l the end of the request and its headers.
String line;
while((line = in.readLine()) !'= null) {

if (line.length() == 0) break;

out.println(line);

}

out . cl ose();
in.close();
client.close();

}

catch (1 OException e) { /* Ignore exceptions */ }

}
}
}

Note how elegantly both the URL and Socket classes use the input/output streams that we saw earlier in the chapter. Thisis
one of the features that makes the Java networking classes so powerful.

Both URL and Socket perform networking on top of a stream-based network connection. Setting up and maintaining a
stream across a network takes work at the network level, however. Sometimes you need alow-level way to speed a packet of
data across a network, but you don't care about maintaining a stream. If, in addition, you don't need a guarantee that your
datawill get there or that the packets of datawill arrive in the order you sent them, you may be interested in the

Dat agr anSocket and Dat agr anPacket classes:

i nport java.net.*;

/1 Send a nmessage to another conputer via a datagram

try {
String hostnanme = "host.donain.org"; /'l The conputer to send the data to
| net Addr ess address = /'l Convert the DNS hostnane
| net Addr ess. get ByNane(host nane) ; /'l to a lower-|level |IP address.
int port = 1234; /1 The port to connect to
String message = "The eagle has |anded."; // The nessage to send
byte[] data = message. get Bytes(); /'l Convert string to bytes
Dat agr anSocket s = new Dat agranSocket(); // Socket to send nessage with
Dat agr anPacket p = /'l Create the packet to send
new Dat agr anPacket (data, data.l ength, address, port);
s.send(p); /1 Now send it!
s.cl ose(); /'l Al'ways cl ose sockets when done
}

catch (UnknownHost Exception e) {} // Thrown by I net Address. get ByNane()

file://IC|/orielly/jnut/ch04_11.htm (3 of 4) [2/5/2003 7:48:39 PM]

Networking (Javain a Nutshell)

catch (Socket Exception e) {} /1 Thrown by new Dat agr anSocket ()
catch (java.io.|Oexception e) {} /1 Thrown by Dat agranSocket. send()

/'l Here's how the other conputer can receive the datagram
try {
byte[] buffer = new byte[4096]; /] Buffer to hold data
Dat agr anSocket s = new Dat agr anSocket (1234); // Socket to receive it through
Dat agr anPacket p =
new Dat agr anPacket (buffer, buffer.length); // The packet to receive it

s.receive(p); /1 Wait for a packet to arrive
String nmeg = /1 Convert the bytes fromthe
new String(buffer, 0, p.getLength()); /'l packet back to a string.
s.cl ose(); /'l Always cl ose the socket
}
catch (Socket Exception e) {} /'l Thrown by new Dat agr anSocket ()

catch (java.io.|OException e) {} /1 Thrown by Dat agranSocket.receive()

41 PREVIOUS HOME HEXT
4.10. Input and Output BOOK INDEX 4.12. Processes
Streams

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch04_11.htm (4 of 4) [2/5/2003 7:48:39 PM]

file:///C|/orielly/jnut/copyrght.htm

Processes (Javain a Nutshell)

41 PREVIOUS Chapter 4: The Java Platform HEXT

4.12. Processes

Earlier in the chapter, we saw how easy it is to create and manipul ate multiple threads of execution running within the same
Javainterpreter. Javaalso hasaj ava. | ang. Process classthat represents a program running externally to the
interpreter. A Java program can communicate with an external process using streams in the same way that it might
communicate with a server running on some other computer on the network. Using a Pr ocess is aways platform-
dependent and israrely portable, but it is sometimes a useful thing to do:

/1 NMaxim ze portability by |looking up the nanme of the command to execute
/1 in a configuration file.
java. util.Properties config;
String cnd = config.getProperty("sysloadcnd");
if (cmd !'= null) {
/| Execute the command; Process p represents the runni ng conmand

Process p = Runtine.getRuntinme().exec(cnd); /1l Start the command
| nput Stream pin = p.getlnputStrean(); /'l Read bytes fromit
| nput St reanReader cin = new I nput StreanReader (pin); // Convert themto chars
Buf f eredReader in = new BufferedReader(cin); /'l Read lines of chars
String load = in.readLine(); /'l Get the command out put
in.close(); /'l Close the stream
}
41 PREVIOUS HOME HEXT B
4.11. Networking BOOK INDEX 4.13. Security

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:/lIC|/orielly/jnut/ch04_12.htm [2/5/2003 7:48:41 PM]

file:///C|/orielly/jnut/copyrght.htm

Security (Javain aNutshell)

41 PREVIOUS Chapter 4: The Java Platform HEXT mp

4.13. Security

Thej ava. securi t y package defines quite afew classes related to the Java access-control architecture, whichis
discussed in more detail in Chapter 5, "Java Security”. These classes allow Java programs to run untrusted codein a

restricted environment from which it can do no harm. While these are important classes, you rarely need to use them.

The more interesting classes are the ones used for authentication. A message digest is avalue, also known as cryptographic
checksum or secure hash, that is computed over a sequence of bytes. The length of the digest istypically much smaller than
the length of the data for which it is computed, but any change, no matter how small, in the input bytes, produces a change
in the digest. When transmitting data (a message), you can transmit a message digest along with it. Then, the recipient of
the message can recompute the message digest on the received data and, by comparing the computed digest to the received
digest, determine whether the message or the digest was corrupted or tampered with during transmission. We saw away to
compute a message digest earlier in the chapter when we discussed streams. A similar technique can be used to compute a
message digest for non-streaming binary data:

| nport java.security.*;

/1 Cbtain an object to conpute nessage digests using the "Secure Hash
[l Algorithnt; this nethod can throw NoSuchAl gorithnmExcepti on.
MessageDi gest nd = MessageDi gest. getl nstance("SHA") ;

byte[] data, datal, data2, secret; [// Sone byte arrays initialized el sewhere

/'l Create a digest for a single array of bytes
byte[] digest = nd. di gest(data);

/| Create a digest for several chunks of data

md. reset () ; /1l Optional: automatically called by digest()
nd. updat e(dat al); /'l Process the first chunk of data
nd. updat e(dat a2) ; /'l Process the second chunk of data

digest = nd.digest(); // Conpute the digest

/'l Create a keyed digest that can be verified if you know the secret bytes
nd. updat e(dat a) ; /'l The data to be transmitted with the di gest
di gest = nd.digest(secret); // Add the secret bytes and conpute the digest

I/l Verify a digest like this

byte[] receivedData, receivedDi gest; // The data and the di gest we received
byte[] verifyDi gest = nd. digest(receivedData); // Digest the received data
/1 Conpare conputed digest to the received di gest

bool ean verified = java.util.Arrays. equal s(recei vedD gest, verifyDi gest);

A digital signature combines a message-digest algorithm with public-key cryptography. The sender of a message, Alice,
can compute a digest for a message and then encrypt that digest with her private key. She then sends the message and the
encrypted digest to arecipient, Bob. Bob knows Alice's public key (it is public, after all), so he can use it to decrypt the

file://IC|/orielly/jnut/ch04_13.htm (1 of 3) [2/5/2003 7:48:44 PM]

Security (Javain aNutshell)

digest and verify that the message has not been tampered with. In performing this verification, Bob aso learns that the
digest was encrypted with Alice's private key, since he was able to decrypt the digest successfully using Alice's public key.
AsAliceisthe only one who knows her private key, the message must have come from Alice. A digital signatureis called
such because, like a pen-and-paper signature, it serves to authenticate the origin of a document or message. Unlike a pen-
and-paper signature, however, adigital signature is very difficult, if not impossible, to forge, and it cannot simply be cut
and pasted onto another document.

Java makes creating digital signatures easy. In order to create adigital signature, however, you need a
java. security. Privat eKey object. Assuming that a keystore exists on your system (see the keytool documentation
in Chapter 8, "Java Development Tools"), you can get one with code like the following:

/1l Here is sonme basic data we need
File honmedir = new Fil e(System get Property("user. hone"));

File keyfile = new File(honedir, ".keystore"); // O read fromconfig file
String fil epass = "KeyStore password” /'l Password for entire file
String signer = "david"; /'l Read fromconfig file

String password = "No one can guess this!"; /]l Better to pronpt for this

PrivateKey key; [// This is the key we want to | ook up fromthe keystore

try {
/1 Cbtain a KeyStore object and then load data into it

KeySt ore keystore = KeyStore. getlnstance(KeyStore. getDefaultType());
keyst ore. | oad(new Buf f eredl nput Stream new Fi |l el nput St rean(keyfile)),
filepass.toCharArray());
/'l Now ask for the desired key
key = (PrivateKey) keystore.getKey(signer, password.toCharArray());
}

catch (Exception e) { /* Handl e various exception types here */ }

Onceyou have aPr i vat eKey object, you create adigital signature withaj ava. security. Si gnat ur e object:

Privat eKey key; /1 Initialized as shown previously

byte[] data; /'l The data to be signed

Signature s = /1l Qbtain object to create and verify signatures
Si gnat ure. getl nstance("SHALwi t hDSA"); // Can throw NoSuchAl gorithmExcepti on

S.initSign(key); /1 Initialize it; can throw I nval i dkeyExcepti on

S. updat e(dat a) ; /'l Data to sign; can throw SignatureException

/* s.update(data2); */ [l Call multiple times to specify all data

byte[] signature = s.sign(); // Conpute signature
A Si gnat ur e object can verify adigital signature:

byte[] data; /1l The signed data; initialized el sewhere

byte[] signature; /1l The signature to be verified; initialized el sewhere
String signername; // Who created the signature; initialized el sewhere
KeyStore keystore; [// Were certificates stored; initialize as shown earlier

/1 Look for a public key certificate for the signer
java.security.cert.Certificate cert = keystore.getCertificate(signernane);
Publ i cKey publickey = cert.getPublicKey(); // Get the public key fromit

file://IC|/orielly/jnut/ch04_13.htm (2 of 3) [2/5/2003 7:48:44 PM]

Security (Javain aNutshell)

Signature s = Signature.getlnstance("SHAIw t hDSA"); // O some other algorithm

s.initVerify(publickey); /'l Setup for verification
S. updat e(dat a) ; /'l Specify signed data
bool ean verified = s.verify(signature); /'l Verify signature data

Thej ava. security. Si gnedQbj ect classisaconvenient utility for wrapping adigital signature around an object.
The Si gnedbj ect can then be serialized and transmitted to a recipient, who can deserialize it and usetheveri fy()
method to verify the signature:

Serializable o; [// The object to be signed; nust be Serializable

Privat eKey Kk; /'l The key to sign with; initialized el sewhere
Signature s = Signature.getlnstance("SHAIw t hDSA"); // Signature "engi ne"
Si gned(bj ect so = new Si gnedObj ect (0, k, s); /'l Create the SignedCbhject

/1 The SignedObj ect encapsul ates the object o; it can now be serialized
/1l and transmtted to a recipient.

/'l Here's how the recipient verifies the SignedObject

Si gnedbj ect so; /1 The deserialized SignedQbject
hj ect o; /1 The original object to extract fromit
Publ i cKey pk; /[l The key to verify with
Signature s = Signature.getlnstance("SHA1Iw t hDSA"); // Verification "engine"
if (so.verify(pk,s)) /1 1f the signature is valid,
0 = so.getObject(); /'l retrieve the encapsul at ed obj ect.
41 PREVIOUS HOME HEXT o
4.12. Processes BOOK INDEX 4.14. Cryptography

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch04_13.htm (3 of 3) [2/5/2003 7:48:44 PM]

file:///C|/orielly/jnut/copyrght.htm

Cryptography (Javain a Nutshell)

41 PREVIOUS Chapter 4: The Java Platform HEXT

4.14. Cryptography

Thej ava. securi t y package includes cryptography-based classes, but it does not contain classes for actual encryption
and decryption. That isthe job of thej avax. cr ypt o package. This package supports symmetric-key cryptography, in
which the same key is used for both encryption and decryption and must be known by both the sender and the receiver of
encrypted data. The Secr et Key interface represents an encryption key; the first step of any cryptographic operation isto
obtain an appropriate Secr et Key. Unfortunately, the keytool program supplied with the Java SDK cannot generate and
store secret keys, so a program must handle these tasks itself. Here is some code that shows various ways to work with
Secr et Key objects:

i mport javax.crypto.*;
i mport javax.crypto.spec.*;

/'l Generate encryption keys with a KeyGenerator object

KeyGener at or desGen = KeyCGenerator. getlnstance("DES"); /1 DES al gorithm
Secr et Key desKey = desGen. gener at eKey(); /'l Cenerate a key
KeyCGener at or desEdeGen = KeyGenerator. getlnstance("DESede"); // Triple DES

Secr et Key desEdeKey = desEdeCen. gener at eKey() ; /'l Cenerate a key

/] SecretKey is an opaque representation of a key. Use SecretKeyFactory to
/1l convert to a transparent representation that can be mani pul ated: saved
/[l to a file, securely transmtted to a receiving party, etc.
Secr et KeyFact ory desFactory = SecretKeyFactory. getlnstance("DES");
DESKeySpec desSpec = (DESKeySpec)
desFact ory. get KeySpec(desKey, javax.crypto.spec. DESKeySpec. cl ass);
byte[] rawbDesKey = desSpec. get Key();
/1 Do the sane for a DESede key
Secr et KeyFact ory desEdeFactory = Secret KeyFact ory. getl nstance(" DESede") ;
DESedeKeySpec desEdeSpec = (DESedeKeySpec)
desEdeFact ory. get KeySpec(desEdeKey, javax.crypto. spec. DESedeKeySpec. cl ass);
byte[] rawDesEdeKey = desEdeSpec. getKey();

/'l Convert the raw bytes of a key back to a SecretKey object
DESedeKeySpec keyspec = new DESedeKeySpec(rawbDesEdeKey) ;
Secret Key k = desEdeFactory. gener at eSecr et (keyspec);

/1 For DES and DESede keys, there is an even easier way to create keys

/'l SecretKeySpec inplenents SecretKey, so use it to represent these keys
byte[] desKeyData = new byte[8]; /'l Read 8 bytes of data froma file
byte[] tripleDesKeyData = new byte[24]; // Read 24 bytes of data froma file
Secr et Key nyDesKey = new Secr et KeySpec(desKeyData, "DES");

Secret Key nyTri pl eDesKey = new Secr et KeySpec(tri pl eDesKeyData, "DESede");

Once you have obtained an appropriate Secr et Key object, the central class for encryption and decryptionisCi pher . Use
it like this:

file://IC|/orielly/jnut/ch04_14.htm (1 of 3) [2/5/2003 7:48:48 PM]

Cryptography (Javain a Nutshell)

Secr et Key key; /1 Cbtain a SecretKey as shown earlier
byte[] plaintext; // The data to encrypt; initialized el sewhere

/1 QObtain an object to performencryption or decryption

C pher cipher = G pher.getlnstance("DESede"); [/ Triple-DES encryption
/1l Initialize the cipher object for encryption

ci pher.init(C pher. ENCRYPT _MODE, key);

/1 Now encrypt data

byte[] ciphertext = cipher.doFinal (plaintext);

/1 1f we had multiple chunks of data to encrypt, we can do this
ci pher . updat e(nessagel) ;

ci pher. updat e(ressage?2);

byte[] ciphertext = cipher.doFinal();

/1 W sinply reverse things to decrypt
ci pher.init (G pher. DECRYPT_MODE, key);
byte[] decryptedMessage = ci pher. doFi nal (ci phertext);

/1 To decrypt nultiple chunks of data

byte[] decryptedl ci pher. updat e(ci phertext1);
byte[] decrypted2 ci pher . updat e(ci phertext 2);
byte[] decrypted3 ci pher. doFi nal (ci phertext3);

The G pher class can also be used with Ci pher | nput St r eamor G pher Qut put St r eamto encrypt or decrypt while
reading or writing streaming data:

byte[] dat a; /'l The data to encrypt

Secr et Key key; /'l Initialize as shown earlier

Ci pher ¢ = Cipher.getlnstance("DESede"); [/ The object to performencryption
c.init(CG pher. ENCRYPT _MODE, key); /1l Initialize it

/] Create a streamto wite bytes to a file
Fi | eQut put Stream fos = new Fil eQut put Stream("encrypted. data");

I/l Create a streamthat encrypts bytes before sending themto that stream
[/l See also Ci pherlnputStreamto encrypt or decrypt while reading bytes
C pher Qut put St ream cos = new Ci pher Qut put Strean(fos, c);

cos.wite(data); /1l Encrypt and wite the data to the file
cos. cl ose(); /1 Always remenber to close streans
java. util . Arrays.fill (data, (byte)0); // Erase the unencrypted data

Finaly, thej avax. crypt 0. Seal edObj ect class provides an especialy easy way to perform encryption. This class
serializes a specified object and encrypts the resulting stream of bytes. The Seal edObj ect can then be seriaized itself and
transmitted to arecipient. The recipient is only able to retrieve the original object if she knows the required Secr et Key:

Serializable o; /1 The object to be encrypted; nust be Serializable
Secr et Key key; /'l The key to encrypt it with

C pher ¢ = G pher.getlnstance("Blowfish"); // Qbject to performencryption
c.init(CG pher. ENCRYPT_MODE, key); /[l Initialize it with the key

file://IC|/orielly/jnut/ch04_14.htm (2 of 3) [2/5/2003 7:48:48 PM]

Cryptography (Javain a Nutshell)
Seal edObj ect so = new Seal edbj ect(o, c); /'l Create the seal ed object

[l Object so is a wapper around an encrypted formof the original object o;
/1 it can now be serialized and transmtted to another party.

/1 Here's how the recipient decrypts the original object
oj ect original = so.getject(key); /'l Must use the sane SecretKey

4 PREVIQUS HOME HEXT B

4.13. Security BOOK INDEX 5. Java Security

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch04_14.htm (3 of 3) [2/5/2003 7:48:48 PM]

file:///C|/orielly/jnut/copyrght.htm

Java Security (Javain a Nutshell)

41 PREVIOUS Part 1: Introducing Java HEXT »

Chapter 5. Java Security

Contents:

Security Risks

JavaVM Security and Class File Verification
Authentication and Cryptography

Access Control

Security for Everyone

Permission Classes

Java programs can dynamically load Java classes from avariety of sources, including untrusted sources,
such as web sites reached across an insecure network. The ability to create and work with such mobile
code is one of the great strengths and features of Java. To make it work successfully, however, Java puts
great emphasis on a security architecture that allows untrusted code to run safely, without fear of damage
to the host system.

The need for a security system in Javais most acutely demonstrated by applets--miniature Java
applications designed to be embedded in web pages.[1] When a user visits aweb page (with a Java-
enabled web browser) that contains an applet, the web browser downloads the Java class files that define
that applet and runs them. In the absence of a security system, an applet could wreak havoc on the user's
system by deleting files, installing avirus, stealing confidential information, and so on. Somewhat more
subtly, an applet could take advantage of the user's system to forge email, generate spam, or launch
hacking attempts on other systems.

[1] Applets are documented in Java Foundation Classesin a Nutshell (O'Rellly) and are
not covered in this book. Still, they serve as good examples here.

Javas main line of defense against such malicious code is access control : untrusted code is simply not
given access to certain sensitive portions of the core Java API. For example, an untrusted applet is not
typically alowed to read, write, or delete files on the host system or connect over the network to any
computer other than the web server from which it was downloaded. This chapter describes the Java
access control architecture and afew other facets of the Java security system.

file://IC|/orielly/jnut/ch05_01.htm (1 of 2) [2/5/2003 7:48:50 PM]

Java Security (Javain a Nutshell)

5.1. Security Risks

Java has been designed from the ground up with security in mind; this givesit a great advantage over
many other existing systems and platforms. Nevertheless, no system can guarantee 100% security, and
Javais no exception.

The Java security architecture was designed by security experts and has been studied and probed by
many other security experts. The consensus is that the architecture itself is strong and robust,
theoretically without any security holes (at |east none that have been discovered yet). The
implementation of the security architecture is another matter, however, and there is along history of
security flaws being found and patched in particular implementations of Java. For example, in April
1999, aflaw was found in Sun's implementation of the class verifier in Java 1.1. Patches for Java 1.1.6
and 1.1.7 were issued and the problem was fixed in Java 1.1.8. Even more recently, in August 1999, a
severe flaw was found in Microsoft's Java Virtual Machine (which is used by the Internet Explorer 4.0
and 5.0 web browsers). The flaw was a particularly dangerous one because it alowed a malicious appl et
to gain unrestricted access to the underlying system. Microsoft has released a new version of their VM,
and (as of thiswriting) there have not been any known attacks that took advantage of the flaw.

In al likelihood, security flaws will continue to be discovered (and patched) in Java VM
implementations. Despite this, Java remains perhaps the most secure platform currently available. There
have been few, if any, reported instances of malicious Java code exploiting security holes"in the wild."
For practical purposes, the Java platform appears to be adequately secure, especialy when contrasted
with some of the insecure and virus-ridden alternatives.

41 PREVIOUS HOME HEXT B

4.14. Cryptography BOOK INDEX 5.2. JavaVM Security and
Class File Verification

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch05_01.htm (2 of 2) [2/5/2003 7:48:50 PM]

file:///C|/orielly/jnut/copyrght.htm

JavaVVM Security and Class File Verification (Javain a Nutshell)

41 PREVIOUS Chapter 5: Java Security HEXT

5.2. Java VM Security and Class File Verification

The lowest level of the Java security architecture involves the design of the Java Virtua Machine and the
byte codes it executes. The JavaVM does not allow any kind of direct access to individual memory
addresses of the underlying system, which prevents Java code from interfering with the native hardware
and operating system. These intentional restrictions on the VM are reflected in the Java language itself,
which does not support pointers or pointer arithmetic. The language does not allow an integer to be cast
to an object reference or vice versa, and there is no way whatsoever to obtain an object's address in
memory. Without capabilities like these, malicious code ssmply cannot gain a foothold.

In addition to the secure design of the Virtual Machine instruction set, the VM goes through a process
known as byte-codeverification whenever it loads an untrusted class. This process ensures that the byte
codes of aclass (and their operands) are all valid; that the code never underflows or overflows the VM
stack; that local variables are not used before they are initialized; that field, method, and class access
control modifiers are respected; and so on. The verification step is designed to prevent the VM from
executing byte codes that might crash it or put it into an undefined and untested state where it might be
vulnerable to other attacks by malicious code. Byte-code verification is a defense against malicious hand-
crafted Java byte codes and untrusted Java compilers that might output invalid byte codes.

4 PREVIOUS HOME HEXT %
5.1. Security Risks BOOK INDEX 5.3. Authentication and
Cryptography

Copyright © 2001 O'Rellly & Associates. All rights reserved.

file:/lIC|/orielly/jnut/ch05_02.htm [2/5/2003 7:48:54 PM]

file:///C|/orielly/jnut/copyrght.htm

Authentication and Cryptography (Javain a Nutshell)

41 PREVIOUS Chapter 5: Java Security HEXT

5.3. Authentication and Cryptography

InJava 1.1 and later, thej ava. securi t y package (and its subpackages) provides classes and
interfaces for authentication. As described in Chapter 4, "The Java Platform", this piece of the security
architecture allows Java code to create and verify message digests and digital signatures. These
technologies can ensure that any data (such as a Java classfile) is authentic; that it originates from the
person who claimsto have originated it and has not been accidentally or maliciously modified in transit.

The Java Cryptography Extension, or JCE, consists of thej avax. cr ypt o package and its
subpackages. These packages define classes for encryption and decryption of data. Thisis an important
security-related feature for many applications, but is not directly relevant to the basic problem of
preventing untrusted code from damaging the host system, so it is not discussed in this chapter.

41 PREVIOUS HOME HEXT B

5.2. JavaVM Security and BOOK INDEX 5.4. Access Control
Class File Verification

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:/lIC|/orielly/jnut/ch05_03.htm [2/5/2003 7:48:56 PM]

file:///C|/orielly/jnut/copyrght.htm

Access Control (Javain aNutshell)

41 PREVIOUS Chapter 5: Java Security HEXT

5.4. Access Control

As | noted at the beginning of this chapter, the heart of the Java security architecture is access control:
untrusted code simply must not be granted access to the sensitive parts of the Java API that would allow
it to do malicious things. Aswe'll discussin the following sections, the Java access-control model
evolved significantly between Java 1.0 and Java 1.2. The Java 1.2 access-control model is relatively
stable; it has not changed significantly in Java 1.3.

54.1. Java 1.0: The Sandbox

In thisfirst release of Java, all Java code installed locally on the system is trusted implicitly. All code
downloaded over the network, however, is untrusted and run in arestricted environment playfully called
"the sandbox." The access-control policies of the sandbox are defined by the currently installed

j ava. | ang. Securi t yManager object. When system code is about to perform arestricted
operation, such asreading afile from the local filesystem, it first calls an appropriate method (such as
checkRead()) of the currently installed Secur i t yManager object. If untrusted code is running, the
Securi t yManager throwsaSecuri t yExcepti on that prevents the restricted operation from
taking place.

The most common user of the Secur i t yManager classis a Java-enabled web browser, which installs
aSecuri t yManager object to allow applets to run without damaging the host system. The precise
details of the security policy are an implementation detail of the web browser, of course, but applets are
typically restricted in the following ways:

. An applet cannot read, write, rename, or delete files. It cannot query the length or modification
date of afile or even check whether agiven file exists. Similarly, an applet cannot create, list, or
delete adirectory.

. An applet cannot connect to or accept a connection from any computer other than the one it was
downloaded from. It cannot use any privileged ports (i.e., ports below and including port 1024).

« An applet cannot perform system-level functions, such asloading a native library, spawning a
new process, or exiting the Javainterpreter. An applet cannot manipulate any threads or thread
groups, except for those it createsitself. In Java 1.1 and later, applets cannot use the Java
Reflection API to obtain information about the non-public members of classes, except for classes
that were downloaded with the applet.

file:///C|/orielly/jnut/ch05_04.htm (1 of 4) [2/5/2003 7:48:59 PM]

Access Control (Javain aNutshell)

. An applet cannot access certain graphics- and GUI-related facilities. It cannot initiate a print job
or access the system clipboard or event queue. In addition, all windows created by an applet
typically display a prominent visual indicator that they are "insecure,”" to prevent an applet from
spoofing the appearance of some other application.

. An applet cannot read certain system properties, notably theuser . hone anduser . di r
properties, that specify the user's home directory and current working directory.

« An applet cannot circumvent these security restrictions by registering a new
SecurityManager object.

5.4.1.1. How the sandbox works

Suppose that an applet (or some other untrusted code running in the sandbox) attempts to read the
contents of the file /etc/passwd by passing thisfilenameto the Fi | el nput St r ean() constructor. The
programmers who wrotethe Fi | el nput St r eamclass were aware that the class provides accessto a
system resource (afile), so use of the class should therefore be subject to access control. For this reason,
they coded the Fi | el nput St r ean() constructor to usethe Secur it yManager class.

Every timeFi | el nput St rean() iscaled, it checksto seeif aSecuri t yManager object has been
installed. If so, the constructor callsthecheckRead() method of that Secur i t yManager object,
passing the filename (/etc/passwd, in this case) as the sole argument. ThecheckRead() method has no
return value; it either returns normally or throwsa Secur i t yExcept i on. If the method returns, the
Fi | el nput St ream() constructor ssimply proceeds with whatever initialization is necessary and
returns. Otherwise, it allowsthe Secur i t yExcept i on to propagate to the caller. When this happens,
no Fi | el nput St r eamobject is created, and the applet does not gain access to the /etc/passwd file.

5.4.2. Java 1.1: Digitally Signed Classes

Java 1.1 retains the sandbox model of Java 1.0, but addsthej ava. securi t y package anditsdigital
signature capabilities. With these capabilities, Java classes can be digitally signed and verified. Thus,
web browsers and other Javainstallations can be configured to trust downloaded code that bears avalid
digital signature of atrusted entity. Such codeistreated asif it wereinstalled locally, so it is given full
access to the Java APIs. In thisrelease, the javakey program manages keys and digitally signs JAR files
of Java code. Although Java 1.1 adds the important ability to trust digitally signed code that would
otherwise be untrusted, it sticks to the basic sandbox model: trusted code gets full access and untrusted
code gets totally restricted access.

5.4.3. Java 1.2: Permissions and Policies

file:///C|/orielly/jnut/ch05_04.htm (2 of 4) [2/5/2003 7:48:59 PM]

Access Control (Javain aNutshell)

Java 1.2 introduces major new access-control features into the Java security architecture. These features
are implemented by new classesinthej ava. secur ity package. The Pol i cy classisone of the
most important: it defines a Java security policy. A Pol i cy object maps CodeSour ce objectsto
associated sets of Per mi ssi on objects. A CodeSour ce object represents the source of a piece of
Java code, which includes both the URL of the classfile (and can be alocal file) and alist of entities that
have applied their digital signaturesto the classfile. The Per mi ssi on objects associated with a
CodeSour ce inthe Pol i cy define the permissions that are granted to code from a given source.
Various Java APIs includes subclasses of Per m ssi on that represent different types of permissions.
Theseincludej ava. | ang. Runti nePer m ssi on,j ava.i o. Fi | ePerm ssi on, and

] ava. net . Socket Per m ssi on, for example.

Under this new access-control model, the Secur i t yManager class continues to be the central class;
access-control requests are still made by invoking methods of aSecur i t yManager . However, the
default Secur i t yManager implementation now delegates most of those requests to a new
AccessControl | er classthat makes access decisions based on the Per m ssi on and Pol i cy
architecture.

The new Java 1.2 access-control architecture has several important features:

. Code from different sources can be given different sets of permissions. In other words, the new
architecture supports fine-grained levels of trust. Even locally installed code can be treated as
untrusted or partialy untrusted. Under this new architecture, only system classes and standard
extensions run as fully trusted.

. Itisnolonger necessary to define a custom subclass of Secur i t yManager to define a security
policy. Policies can be configured by a system administrator by editing atext file or using the new
policytool program.

. The new architecture is not limited to afixed set of access control methods in the
SecurityManager class. New Per m ssi on subclasses can be defined easily to govern
access to new system resources (which might be exposed, for example, by new standard
extensions that include native code).

5.4.3.1. How policies and permissions work

Let's return to the example of an applet that attemptsto create aFi | el nput St r eamto read the file
/etc/passwd. InJava 1.2, the Fi | el nput St r ean() constructor behaves exactly the same as it doesin
Javal.0and Javal.l: it looksto seeif aSecurit yManager isinstalled and, if so, callsits
checkRead() method, passing the name of thefile to be read.

What's new in Java 1.2 is the default behavior of the checkRead() method. Unless a program has
replaced the default security manager with one of its own, the default implementation creates a

file:///C|/orielly/jnut/ch05_04.htm (3 of 4) [2/5/2003 7:48:59 PM]

Access Control (Javain aNutshell)

Fi | ePer m ssi on object to represent the access being requested. ThisFi | ePer m ssi on object has
atarget of "/etc/passwd" and an action of "read". ThecheckRead() method passesthis

Fi | ePer m ssi on object to the static checkPer m ssi on() method of the

j ava. security. AccessControl | er class.

Itisthe AccessControl | er anditscheckPer m ssi on() method that do the real work of access
control in Java 1.2. The method determines the Code Sour ce of each calling method and uses the

current Pol i cy object to determine the Per m ssi on objects associated with it. With this information,
the AccessCont r ol | er can determine whether read access to the /etc/passwd file should be allowed.

The Per m ssi on class represents both the permissions granted by aPol i cy and the permissions
requested by amethod likethe Fi | el nput St r ean() constructor. When requesting a permission,
Javatypically usesaFi | ePer m ssi on (or other Per m ssi on subclass) with avery specific target,
like "/etc/passwd”. When granting a permission, however, aPol i cy commonly uses a

Fi | ePer m ssi on object with awildcard target, such as "/etc/*", to represent many files. One of the
key features of aPer m ssi on subclasssuch asFi | ePer m ssi onisthat it definesani npl i es()
method that can determine whether permission to read "/etc/*" implies permission to read "/etc/passwd".

41 PREVIOUS HOME MEXT B
5.3. Authentication and BOOK INDEX 5.5. Security for Everyone
Cryptography

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch05_04.htm (4 of 4) [2/5/2003 7:48:59 PM]

file:///C|/orielly/jnut/copyrght.htm

Security for Everyone (Javain a Nutshell)

41 PREVIOUS Chapter 5: Java Security HEXT o

5.5. Security for Everyone

Programmers, system administrators, and end users all have different security concerns and, thus, different rolesto play in the
Java 1.2 security architecture.

5.5.1. Security for System Programmers

System programmers are the people who define new Java APIs that allow access to sensitive system resources. These
programmers are typically working with native methods that have unprotected access to the system. They need to use the Java
access-control architecture to prevent untrusted code from executing those native methods. To do this, system programmers
must carefully insert Secur i t yManager callsat appropriate placesin their code. A system programmer may choose to use
an existing Per m ssi on subclass to govern access to the system resources exposed by her API, or she may decide to define
aspecialized subclass of Per m ssi on.

The system programmer carries atremendous security burden: if she does not perform appropriate access control checksin her
code, she compromises the security of the entire Java platform. The details are complex and are beyond the scope of this book.
Fortunately, however, system programming that involves native methods is rare in Java; amost all of us are application
programmers who can simply rely on the existing APIs.

5.5.2. Security for Application Programmers

Programmers who use the core Java APIs and standard extensions, but do not define new extensions or write native methods,
can simply rely on the security efforts of the system programmers who created those APIs. In other words, most of us Java
programmers can simply use the Java APIs and need not worry about introducing security holes into the Java platform.

In fact, application programmers rarely have to use the access-control architecture. If you are writing Java code that may be
run as untrusted code, you should be aware of the restrictions placed on untrusted code by typical security policies. Keepin
mind that some methods (such as methods that read or write files) can throw Secur i t yExcept i on objects, but don't feel
you must write your code to catch these exceptions. Often, the appropriate responseto aSecur i t yExcept i onisto alow
it to propagate uncaught, so that it terminates the application.

Sometimes, as an application programmer, you want to write an application (such as an applet viewer) that can load untrusted
classes and run them subject to access-control checks. To do thisin Java 1.2, you must first install a security manager:

Syst em set Secur it yManager (new SecurityManager());

Thenusej ava. net . URLCl assLoader toload the untrusted classes. URLCl assLoader assigns adefault set of safe
permissions to the classes it loads, but in some cases you may want to modify the permissions granted to the loaded code
through the Pol i cy and Per mi ssi onCol | ect i on classes.

5.5.3. Security for System Administrators

In Java 1.2 and later, system administrators are responsible for defining the default security policy for the computers at their

file://IC|/orielly/jnut/ch05_05.htm (1 of 3) [2/5/2003 7:49:02 PM]

Security for Everyone (Javain a Nutshell)

site. The default policy is stored in the file lib/security/java.policy in the Javainstallation. A system administrator can edit this
text file by hand or use the policytool program from Sun to edit the file graphically. policytool isthe preferred way to define
policies, so the syntax of the underlying policy fileis not documented in this book.

The default java.policy file defines a policy that is much like the policy of Java 1.0 and Java 1.1: system classes and installed
extensions are fully trusted, while all other code is untrusted and only allowed afew simple permissions. While this default
policy is adequate for many purposes, it may not be appropriate for all sites. For example, at some organizations, it may be
appropriate to grant extra permissions to code downloaded from a secure intranet.

In order to define secure and effective security policies, a system administrator must understand the various Per m ssi on
subclasses of the Java platform, the target and action names they support, and the security implications of granting any
particular permission. These topics are explained well in a document titled "Permissions in the Java 2 SDK," which is part of
the Java 1.2 release and al so available (at the time of thiswriting) online at:
http://|ava.sun.com/products/jdk/1.2/docs/quide/security/permissions.html.

5.5.4. Security for End Users

Most end users do not have to think about security at al: their Java programs should simply run in a secure way with no
intervention by them. Some sophisticated end users may want to define their own security policies, however. An end user can
do this by running policytool himself to define personal policy files that augment the system policy. The default personal
policy is stored in afile named .java.policy in the user's home directory. By default, Java loads this policy file and usesit to
augment the system policy file.

InJava 1.2 and later, a user can specify an additional policy file to use when starting up the Javainterpreter, by defining the
j ava. security. pol i cy property with the - D option. For example:

C.\> java -Djava. security.policy=policyfile UntrustedApp

Thislinerunsthe class Unt r ust edApp after augmenting the default system and user policies with the policy specified in the
fileor URL policyfile. To replace the system and user policies instead of augmenting them, use a double equals sign in the
property specification:

C\> java -Djava.security.policy==policyfile UntrustedApp

Note, however, that specifying apolicy fileisonly useful if thereisaSecuri t yManager installed. If auser doesn't trust an
application, he presumably doesn't trust that application to voluntarily install its own security manager. In this case, he can
definethej ava. securi ty. nanager system property:

C.\> java -Djava. security. manager -Djava.security.policy=policyfile UntrustedApp

The value of this property does not matter; simply defining it is enough to tell the Javainterpreter to automatically install a
default Secur i t yManager object that subjects an application to the access control policies described in the system, user,
andj ava. security. policy policy files.

4 PREVIOUS HOME HEXT »
5.4. Access Control BOOK INDEX 5.6. Permission Classes

file://IC|/orielly/jnut/ch05_05.htm (2 of 3) [2/5/2003 7:49:02 PM]

http://java.sun.com/products/jdk/1.2/docs/guide/security/permissions.html

Security for Everyone (Javain a Nutshell)

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch05_05.htm (3 of 3) [2/5/2003 7:49:02 PM]

file:///C|/orielly/jnut/copyrght.htm

Permission Classes (Javain a Nutshell)

4 PREVIOUS

Chapter 5: Java Security

HEXT &

5.6. Permission Classes

Table 5-1 liststhe various Per m ssi on subclasses, the target and action names they support, and the methods that
require those permissions (in Java 1.2 and | ater).

Table 5-1. Permission Classes and the Methods They Govern

Permission

AW -
Per m ssi on

"accessEventQueue"

File-
Per m ssi on

filename, "delete"

File-
Per m ssi on

Target, Action

"accessClipboard"

Tool ki t. get Syst enmEvent Queue()

"listenToAIIAWTEvents"

"readDisplayPixels"

"showWindowWithout-WarningBanner"

command, "execute"

File. {delete(),
del eteOnExit ()}

filename, "read"

file://IC|/orielly/jnut/ch05_06.htm (1 of 6) [2/5/2003 7:49:08 PM]

M ethods

Tool ki t. get SystenCl i pboard()

Tool ki t. {addAWEvent Li st ener (),
renoveAWEvent Li stener ()}

G aphi cs2D. set Conposi te()

W ndow. W ndow() (if permission isnot granted,
window has an "insecure" indication)

Runti me. exec()

Fil el nput Stream Fi | el nput Stream(),
File.{exists(),canRead(),isFile(),
isDirectory(),isH dden(),

| ast Modi fied(),l ength(),list(),
listFiles()},

RandomAccessFi | e. RandomAccessFi | e(),
Zi pFile.ZipFile()

Permission Classes (Javain a Nutshell)

Net -
Per m ssi on

Property-
Per m ssi on

Ref | ect -
Per m ssi on

Runt i nme-
Per m ssi on

filename, "write"

"requestPassword-Authentication”

"setDefaultAuthenticator”

"specifyStreamHandler

" Mread, write"

"user.language”, "write"
prop, "read"

prop, "write"

"suppressA ccessChecks'

"accessClassIn- Package.pkgnames'

file://IC|/orielly/jnut/ch05_06.htm (2 of 6) [2/5/2003 7:49:08 PM]

Fi | eQut put Stream Fi | eQut put Strean),
File.{canWite(),createNewrile(),
createTenpFil e(),nkdir(),nkdirs(),
renanmeTo(),set Last Modi fied(),

set ReadOnl y() },

RandomAccessFi | e. RandomAccessFi | e()

Aut hent i cat or. request Passwor d-
Aut henti cati on()

Aut henti cat or. set Defaul t ()

URL. URL()

Beans. { set Desi gnTi ne(),

set Gui Avai | abl e() },

I nt rospect or. set Beanl nf o-

Sear chPat h(),

Propert yEdi t or Manager . {regi st er -
Editor(),set Editor SearchPat h()},
System { get Properties(),

set Properties()}

Local e. set Def aul t ()

Syst em get Property()

Syst em set Property()

Accessi bl e(bj ect . set Accessi bl e()

O ass. {get d asses(),

get Decl ar edd asses(),

get Constructor(),get Constructors(),
get Decl ar edFi el ds(),

get Decl ar edMet hods(),

get Decl aredConstructors(),

get Decl ar edFi el d(),

get Decl ar edMet hod() ,

get Decl aredConstructor (),

Permission Classes (Javain a Nutshell)

Runt i nme-
Per m ssi on

"accessDeclaredM embers'

"createClassL oader

"exitVM"

"getClassL oader"”

"getProtectionDomain”

"loadLibrary.libNames"

"modifyThread"

"modifyThreadGroup"

file://IC|/orielly/jnut/ch05_06.htm (3 of 6) [2/5/2003 7:49:08 PM]

get Fi el ds(),get Met hods(),get Fi el d(),
get Met hod() }

Gl ass. {get d asses(),

get Decl aredCd asses(),

get Decl ar edFi el ds(),

get Decl ar edMet hods(),

get Decl aredConstructors(),
get Decl aredFi el d(),

get Decl ar edMet hod(),

get Decl aredConstructor ()}

Cl assLoader. C ass- Loader (),

URLCl assLoader. URL- Cl assLoader (),
Secur e assLoader. Secur e-

Cl assLoader ()

Runtinme. {exit(),
runFi nal i zersOnkExit ()},
System {exit(),
runFi nal i zersOnkExit ()}

Cl ass. {forNane(),get d assLoader ()},
Gl assLoader. {get Syst enCl assLoader (),
get Parent ()},

Thr ead. get Cont ext Cl assLoader ()

Cl ass. get Prot ecti onDonai n()

Runti ne. {l oad(),| oadLi brary()},
System {l oad(),!| oadLi brary()}

Thr ead. {checkAccess(),interrupt(),
suspend(),resune(),setPriority(),
set Nane(), set Daenon() },

ThreadG oup. {interrupt(),stop()}

Thread. { Thread(),enunerate()},

Thr eadG oup. { ThreadG oup(),
enunerate(),getParent(),interrupt(),
set Daenon(),set MaxPriority(),stop(),
suspend(),resume(),destroy()}

Permission Classes (Javain a Nutshell)

"queuePrintJob"

Tool kit.getPrintJob()

"readFileDescriptor”

Fil el nput Stream Fi | e-
| nput St rean{ Fi | eDescri ptor)

"setContextClassL oader"

Thr ead. set Cont ext Cl assLoader ()

Runt i me-
Per m ssi on "setFactory”

Ser ver Socket . set Socket Factory(),
Socket . set Socket | npl Fact ory(),

URL. set URLSt r eam Handl er Fact ory(),
URLConnect i on. { set Cont ent -

Handl er Factory(),set Fi | eNanmeMap()},
Ht t pURLConnecti on. set -

Fol | owRedi rect s(),

activation. Activation-

G oup. {createG oup(),set System() },
server. RM Socket Factory. set -
Socket Factory()

"setl 0"

System {setlIn(),setCQut(),setErr()}

"setSecurityM anager”

System set Securi t yManager ()

"stopThread"

Thr ead. st op(), ThreadG oup. st op()

"writeFileDescriptor"

Fi | eQut put Stream Fi |l e-
Qut put Strean(Fi | eDescri ptor)

Security- " addl dentity Certificate”

Identity. addCertificate()

.. "clearProvider- Properties.providere"
Per m ssi on

Provi der. cl ear ()

"getPolicy"

Pol i cy. getPolicy()

"getProperty.propname"

Security. get Property()

"getSignerPrivateK ey

Si gner. get Pri vat eKey()

"insertProvider.providers"

file://IC|/orielly/jnut/ch05_06.htm (4 of 6) [2/5/2003 7:49:08 PM]

Security. {addProvider(),
i nsert ProviderAt ()}

Permission Classes (Javain a Nutshell)

"printl dentity"

Identity.toString()

"putProvider- Property.providere"

Provi der. put ()

"removel dentityCertificate"

Identity.renoveCertificate()

"removeProvider.providere"

Security. renoveProvider ()

"removeProvider- Property.providere"

Provi der. renove()

"setl dentitylnfo”

Identity.setlnfo(String)

"setldentityPublicK ey

I dentity. set PublicKey()

Pol i cy.setPolicy();

"setPolicy"

" setProperty propnames" Security.setProperty()
"setSignerK eypair” Si gner. set KeyPai r ()
"SetSystemScope” | denti t yScope. set Syst enfScope()

Seri al i zabl e-
Per m ssi on

"enableSubclass- mplementation”

bj ect | nput St ream (bj ect -
| nput Strean(),

hj ect Qut put St ream Obj ect -
Qut put St ream()

"enableSubstitution"”

hj ect | nput St r eam enabl e-
Resol vebj ect (),

(bj ect Qut put St ream enabl e-
Repl acebj ect ()

Socket -
Per m ssi on

"localhost:porte”, "listen

Ser ver Socket . Server Socket (),
Dat agr anSocket . Dat agr anSocket (),
Mul ti cast Socket . Mul ti cast Socket ()

host, "accept, connect"

file://IC|/orielly/jnut/ch05_06.htm (5 of 6) [2/5/2003 7:49:08 PM]

Mul ti cast Socket . {j oi nG oup(),
| eaveG oup(),send()}

Permission Classes (Javain a Nutshell)

host, "resolve"

I net Addr ess. { get Host Nane(),
get Al | ByNane(), get Local Host () },
Dat agr anSocket . get Local Addr ess()

host:port, "accept"”

Dat agr anSocket . recei ve(),
Ser ver Socket . {accept (),

i mpl Accept ()}

host:port, "connect"

Dat agr anSocket . send(),
Socket . Socket ()

41 PREVIOUS HOME
5.5. Security for Everyone BOOK INDEX

MEXT B
6. JavaBeans

Copyright © 2001 O'Rellly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch05_06.htm (6 of 6) [2/5/2003 7:49:08 PM]

file:///C|/orielly/jnut/copyrght.htm

JavaBeans (Javain a Nutshell)

41 PREVIOUS Part 1: Introducing Java HEXT »

Chapter 6. JavaBeans

Contents:

Bean Basics
JavaBeans Conventions
Bean Contexts and Services

The JavaBeans API provides aframework for defining reusable, embeddable, modular software
components. The JavaBeans specification includes the following definition of a bean: "areusable
software component that can be manipulated visually in abuilder tool." Asyou can see, thisis arather
loose definition; beans can take a variety of forms. The most common use of beansis for graphical user
interface components, such as components of thej ava. awt andj avax. swi ng packages, which are
documented in Java Foundation Classesin a Nutshell (O'Reilly).[1] Although all beans can be
manipulated visually, this does not mean every bean has its own visual representation. For example, the
] avax. sql . RowSet class (documented in Java Enterprise in a Nutshell (O'Reilly)) is a JavaBeans
component that represents the data resulting from a database query. There are no limits on the simplicity
or complexity of a JavaBeans component. The simplest beans are typically basic graphical interface
components, such asaj ava. awt . But t on object. But even complex systems, such as an embeddable
spreadsheet application, can function asindividual beans.

[1] JavaBeans are documented in this book instead of that one because the JavaBeans
component model is not specific to AWT or Swing programming. Nevertheless, it is
hardly possible to discuss beans without mentioning AWT and Swing components. Y ou
will probably get the most out of this chapter if you have some familiarity with GUI
programming in Javausing AWT or Swing.

One of the goals of the JavaBeans model is interoperability with similar component frameworks. So, for
example, a native Windows program can, with an appropriate bridge or wrapper object, use a JavaBeans
component asif it werea COM or ActiveX component. The details of this sort of interoperability are
beyond the scope of this chapter, however.

The JavaBeans component model consists of thej ava. beans andj ava. beans. beancont ext
packages and a number of important naming and API conventions to which conforming beans and bean-
manipulation tools must adhere. Because JavaBeans is aframework for generic components, the

file:///C]/orielly/jnut/ch06_01.htm (1 of 5) [2/5/2003 7:49:11 PM]

JavaBeans (Javain a Nutshell)
JavaBeans conventions are, in many ways, more important than the actual API.
Two interesting technologies related to JavaBeans are the Java Activation Framework and InfoBus. Both

are standard extensions, implemented inthe | avax. acti vati on andj avax. i nf obus packages,
respectively. Y ou can read more about them at the JavaBeans web site: http://java.sun.com/beans/.

Beans can be used at three levels by three different categories of programmers:

. If you are writing an application that uses beans developed by other programmers or using a
beanbox tool[2] to combine those beans into an application, you need to be familiar with general
JavaBeans concepts and terminology. Y ou also need to read the documentation for the individual
beans you use in your application, but you do not need to understand the JavaBeans API. This
chapter begins with an overview of JavaBeans concepts that should be sufficient for programmers
using beans at thislevel.

[2] beanbox is the name of the sample bean-manipulation program provided by Sun
in its Beans Development Kit (BDK). Theterm isauseful one, and I'll useit to
describe any kind of graphical design tool or application builder that manipul ates
beans.

. If you are writing beans, you need to understand and follow various JavaBeans naming and
packaging conventions. After the introduction to general bean concepts and terminology, this
chapter describes the basic bean conventions bean devel opers must follow. Although a JavaBeans
component can be implemented without using the JavaBeans API, most beans are distributed with
various auxiliary classes that make them easier to use within beanbox tools. These auxiliary
classes rely heavily on the JavaBeans API so that they can interoperate with beanbox tools.

. If you are developing a GUI editor, application builder, or other beanbox tool, you use the
JavaBeans API to help you manipulate beans within the tool. Y ou also need to be intimately
familiar with all the various JavaBeans programming conventions. Although this chapter
describes the most important conventions, you should also refer to the primary source, the
JavaBeans specification (see http://|ava.sun.com/beans/s).

6.1. Bean Basics

Any object that conforms to certain basic rules can be a bean; thereisno Bean class al beans are
required to subclass. Many beans are AWT components, but it is also quite possible, and often useful, to
write "invisible" beans that do not have an onscreen appearance. (+Just because a bean does not have an
onscreen appearance in afinished application does not mean it cannot be visually manipulated by a
beanbox tool, however.)

file:///C|/orielly/jnut/ch06_01.htm (2 of 5) [2/5/2003 7:49:11 PM]

http://java.sun.com/beans/
http://java.sun.com/beans

JavaBeans (Javain a Nutshell)

A bean is characterized by the properties, events, and methods it exports. It is these properties, events,
and methods an application designer manipulatesin a beanbox tool. A property is a piece of the bean's
internal state that can be programmatically set and/or queried, usually through a standard pair of get and
set accessor methods.

A bean communicates with the application in which it is embedded and with other beans by generating
events. The JavaBeans API uses the same event model AWT and Swing components use. This model is
based onthej ava. uti | . Event Obj ect classandthej ava. uti|l. Event Li st ener interface; it
is described in detail in Java Foundation Classesin a Nutshell (O'Reilly). In brief, the event model
works like this:

. A bean definesan event if it providesadd and r enove methods for registering and deregistering
listener objects for that event.

. An application that wants to be notified when an event of that type occurs uses these methods to
register an event listener object of the appropriate type.

. When the event occurs, the bean notifies all registered listeners by passing an event object that
describes the event to a method defined by the event listener interface.

A unicast event isarare kind of event for which there can be only a single registered listener object. The
add registration method for a unicast event throwsa TooManyLi st ener sExcept i on if an attempt
Is made to register more than asingle listener.

The methods exported by a bean are ssimply any publ i ¢ methods defined by the bean, excluding those
methods that get and set property values and register and remove event listeners.

In addition to the regular sort of properties described earlier, the JavaBeans API also supports several
specialized property subtypes. An indexed proper ty is a property that has an array value, as well as getter
and setter methods that access both individual elements of the array and the entire array. A bound
property isonethat sendsaPr oper t yChangeEvent to any interested

Pr opert yChangelLi st ener objects whenever the value of the property changes. A constrained
property is one that can have any changes vetoed by any interested listener. When the value of a
constrained property of a bean changes, the bean must send out aPr oper t yChangeEvent tothelist
of interested Vet oabl eChangelLi st ener objects. If any of these objects throws a

Pr opertyVet oExcept i on, the property value is not changed, and the

Pr opertyVet oExcepti on ispropagated back to the property setter method.

Because Java allows dynamic loading of classes, beanbox programs can load arbitrary beans. The
beanbox tool uses a process called introspection to determine the properties, events, and methods
exported by a bean. The introspection mechanism is implemented by the

j ava. beans. I ntrospect or class; it relieson boththej ava. | ang. r ef | ect reflection

file:///C]/orielly/jnut/ch06_01.htm (3 of 5) [2/5/2003 7:49:11 PM]

JavaBeans (Javain a Nutshell)

mechanism and a number of JavaBeans naming conventions. | nt r ospect or can determine the list of
properties supported by a bean, for example, by scanning the class for methods that have the right names
and signaturesto beget and set property accessor methods.

The introspection mechanism does not rely on the reflection capabilities of Java alone, however. Any
bean can define an auxiliary Beanl nf o class that provides additional information about the bean and its
properties, events, and methods. Thel nt r ospect or automatically attempts to locate and |oad the
Beanl nf o class of a bean.

The Beanl nf o class provides additional information about the bean primarily in the form of

Feat ur eDescri pt or objects, each one describing a single feature of the bean. Each

Feat ur eDescri pt or providesaname and brief description of the feature it documents. The beanbox
tool can display the name and description to the user, making the bean essentially self-documenting and
easier to use. Specific bean features, such as properties, events, and methods, are described by specific
subclasses of Feat ur eDescri pt or, suchasPr opertyDescri ptor, Event Set Descri pt or,
and Met hodDescr i pt or.

One of the primary tasks of a beanbox application isto alow the user to customize a bean by setting
property values. A beanbox defines property editors for commonly used property types, such as
numbers, strings, fonts, and colors. If a bean has a property of a more complicated type, however, it can
defineaPr opert yEdi t or classthat enables the beanbox to let the user set values for that property.

In addition, a complex bean may not be satisfied with the property-by-property customization mechanism
provided by most beanbox tools. Such a bean can definea Cust om zer classto create agraphical
interface that allows the user to configure a bean in some useful way. A particularly complex bean can
even define customizers that serve as "wizards' that guide the user step by step through the

customi zation process.

A bean context isalogical container (and often avisual container) for JavaBeans and, optionally, for
other nested bean contexts. In practice, most JavaBeans are AWT or Swing components or containers.
Beanbox tools recognize this and allow component beans to be nested within container beans. A bean
context is akind of heavyweight container that formalizes this nesting relationship. More importantly,
however, a bean context can provide a set of services (e.g., printing services, debugging services,
database connection services) to the beansit contains. Beans that are aware of their context can be
written to query the context and take advantage of the services that are available. Bean contexts are
implemented using thej ava. beans. beancont ext API, whichisnew asof Java 1.2 and discussed
In more detail later in this chapter.

41 PREVIOUS HOME MEXT B
5.6. Permission Classes BOOK INDEX 6.2. JavaBeans Conventions

file:///C|/orielly/jnut/ch06_01.htm (4 of 5) [2/5/2003 7:49:11 PM]

JavaBeans (Javain a Nutshell)

Copyright © 2001 O'Rellly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch06_01.htm (5 of 5) [2/5/2003 7:49:11 PM]

file:///C|/orielly/jnut/copyrght.htm

JavaBeans Conventions (Javain a Nutshell)

41 PREVIOUS Chapter 6: JavaBeans MEXT B

6.2. JavaBeans Conventions

The JavaBeans component model relies on a number of rules and conventions bean devel opers must follow. These
conventions are not part of the JavaBeans API itself, but in many ways, they are more important to bean

devel opers than the API itself. The conventions are sometimes referred to as designpatternse; they specify such
things as method names and signatures for property accessor methods defined by a bean.

The reason for these design patternsis interoperability between beans and the beanbox programs that manipulate
them. Aswe've seen, beanbox programs may rely on introspection to determine the list of properties, events, and
methods a bean supports. In order for thisto work, bean developers must use method names the beanbox can
recognize. The JavaBeans framework facilitates this process by establishing naming conventions. One such
convention, for example, isthat the getter and setter accessor methods for a property should begin with get and
set.

Not all the patterns are absolute requirements. If a bean has property accessor methods that do not follow the
naming conventions, it is possibleto usea Pr opert yDescr i pt or object (specified in aBeanl nf o class) to
indicate the accessor methods for the property. Although the Beanl nf o class provides an aternative to the
property-accessor-method naming convention, the property accessor method must still follow the conventions that
specify the number and type of its parameters and its return value.

6.2.1. Beans

A bean itself must adhere to the following conventions:
Class name

There are no restrictions on the class name of a bean.
Superclass

A bean can extend any other class. Beans are often AWT or Swing components, but there are no
restrictions.

I nstantiation

A bean must provide a no-parameter constructor or afile that contains a serialized instance the beanbox can
deserialize for use as a prototype bean, so a beanbox can instantiate the bean. The file that contains the bean
should have the same name as the bean, with an extension of .ser.

file://IC|/orielly/jnut/ch06_02.htm (1 of 8) [2/5/2003 7:49:14 PM]

JavaBeans Conventions (Javain a Nutshell)

Bean name

The name of a bean isthe name of the class that implementsit or the name of the file that holds the
serialized instance of the bean (with the .ser extension removed and directory separator (/) characters
converted to dot (.) characters).

6.2.2. Properties

A bean defines aproperty p of type T if it has accessor methods that follow these patterns (if Tisbool ean, a
special form of getter method is alowed):

Getter

public T getP()
Boolean getter

publ i c bool ean isP()
Setter

public void setP(T)
Exceptions

Property accessor methods can throw any type of checked or unchecked exceptions

6.2.3. Indexed Properties

An indexed property is a property of array type that provides accessor methods that get and set the entire array, as
well as methods that get and set individual elements of the array. A bean defines an indexed property p of type
T[] if it defines the following accessor methods:

Array getter

public T[] getP()
Element getter

public T getP(int)
Array setter

public void setP(T[])

file:///C|/orielly/jnut/ch06_02.htm (2 of 8) [2/5/2003 7:49:14 PM]

JavaBeans Conventions (Javain a Nutshell)

Element setter
public void setP(int,T)
Exceptions

Indexed property accessor methods can throw any type of checked or unchecked exceptions. In particular,
they should throw an Ar r ayl ndexQut OF BoundsExcept i on if the supplied index is out of bounds.

6.2.4. Bound Properties

A bound property is one that generatesa Pr oper t yChangeEvent when its value changes. Here are the
conventions for a bound property:

Accessor methods
The getter and setter methods for a bound property follow the same conventions as aregular property.
I ntrospection

A beanbox cannot distinguish a bound property from a nonbound property through introspection alone.
Therefore, you may want to implement aBeanl nf o classthat returnsaPr oper t yDescri pt or object
for the property. Thei sBound() method of thisPr opert yDescri pt or should returnt r ue.

Listener registration

A bean that defines one or more bound properties must define a pair of methods for the registration of
listeners that are notified when any bound property value change. The methods must have these signatures:

public void addPropertyChangelLi st ener (PropertyChangelLi st ener)
public void renovePropertyChangelLi st ener (PropertyChangelLi st ener)

Named property listener registration

A bean can optionally provide additional methods that allow event listenersto be registered for changes to
asingle bound property value. These methods are passed the name of a property and have the following
signatures:

publ i c void addPropertyChangeLi stener (String, PropertyChangelLi stener)
publ i c void renovePropertyChangelLi stener(String, PropertyChangelLi stener)

Per-property listener registration
A bean can optionally provide additional event listener registration methods that are specific to asingle

file:///C|/orielly/jnut/ch06_02.htm (3 of 8) [2/5/2003 7:49:14 PM]

JavaBeans Conventions (Javain a Nutshell)

property. For a property p, these methods have the following signatures:

public void addPLi st ener (PropertyChangeLi st ener)
public void renovePLi st ener (PropertyChangeli st ener)

Methods of this type allow a beanbox to distinguish a bound property from a nonbound property.

Notification

When the value of a bound property changes, the bean should update itsinternal state to reflect the change

and then pass a Pr oper t yChangeEvent tothepr opert yChange() method of every
Pr oper t yChangelLi st ener object registered for the bean or the specific bound property.

Support

j ava. beans. Pr opert yChangeSupport isahelpful classfor implementing bound properties.

6.2.5. Constrained Properties

A constrained property is one for which any changes can be vetoed by registered listeners. Most constrained
properties are also bound properties. Here are the conventions for a constrained property:

Getter
The getter method for a constrained property is the same as the getter method for aregular property.

Setter

The setter method of a constrained property throws a Pr oper t yVet oExcept i on if the property change

isvetoed. For aproperty p of type T, the signature looks like this:
public void setP(T) throws PropertyVet oException

Listener registration

A bean that defines one or more constrained properties must define a pair of methods for the registration of

listeners that are notified when any constrained property value changes. The methods must have these
signatures:

public voi d addVet oabl eChangelLi st ener (Vet oabl eChangelLi st ener)
publ i c void renoveVet oabl eChangelLi st ener (Vet oabl eChangeli st ener)

Named property listener registration

file:///C]/orielly/jnut/ch06_02.htm (4 of 8) [2/5/2003 7:49:14 PM]

JavaBeans Conventions (Javain a Nutshell)

A bean can optionally provide additional methods that allow event listenersto be registered for changes to

asingle constrained property value. These methods are passed the name of a property and have the
following signatures:

public void addVet oabl eChangelLi stener(String, Vetoabl eChangelLi stener)
public void renoveVet oabl eChangelLi stener(String, Vetoabl eChangelLi stener)

Per-property listener registration

A bean can optionally provide additional listener registration methods that are specific to asingle
constrained property. For a property p, these methods have the following signatures:

public void addPLi st ener (Vet oabl eChangelLi st ener)
public void renovePLi st ener (Vet oabl eChangelLi st ener)

Notification

When the setter method of a constrained property isinvoked, the bean must generate a

Pr oper t yChangeEvent that describes the requested change and pass that event to the

vet oabl eChange() method of every Vet oabl eChangelLi st ener object registered for the bean or
the specific constrained property. If any listener vetos the change by throwing a

Pr opert yVet oExcept i on, the bean must send out another Pr oper t yChangeEvent to revert the
property to itsoriginal value, and then it should throw aPr oper t yVet oExcept i on itself. If, on the
other hand, the property change is not vetoed, the bean should update its internal state to reflect the change.
If the constrained property is aso a bound property, the bean should notify

Pr oper t yChangeLi st ener objects at this point.

Support
j ava. beans. Vet oabl eChangeSupport isahelpful classfor implementing constrained properties.

6.2.6. Events

In additionto Pr oper t yChangeEvent events generated when bound and constrained properties are changed, a
bean can generate other types of events. An event named E should follow these conventions:

Event class

The event class should directly or indirectly extendj ava. uti | . Event Obj ect and should be hamed
EEvent.

Listener interface

The event must be associated with an event listener interface that extends
java. util.EventLi st ener andisnamed ELi st ener.

file:///C]/orielly/jnut/ch06_02.htm (5 of 8) [2/5/2003 7:49:14 PM]

JavaBeans Conventions (Javain a Nutshell)

Listener methods

The event listener interface can define any number of methods that take a single argument of type EEvent
and returnvoi d.

Listener registration

The bean must define a pair of methods for registering event listeners that want to be notified when an E
event occurs. The methods should have the following signatures:

publ i c voi d addELi st ener (ELi st ener)
public void renoveELi st ener (ELi st ener)

Unicast events

A unicast event allows only one listener object to be registered at asingle time. If E isaunicast event, the
listener registration method should have this signature:

public void addELi st ener (ELi stener) throws TooManyLi st ener sExcepti on

6.2.7. Methods

A beanbox can expose the methods of a bean to application designers. The only formal convention is that these
methods must be declared publ i c¢. The following guidelines are also useful, however:

M ethod name

A method can have any name that does not conflict with the property- and event-naming conventions. The
name should be as descriptive as possible.

Parameters

A method can have any number and type of parameters. However, beanbox programs may work best with
no-parameter methods or methods that have simple primitive parameters.

Excluding methods
A bean can explicitly specify the list of methods it exports by providing aBeanl nf o implementation.
Documentation

A bean can provide user-friendly, human-readable |ocalized names and descriptions for methods through
Met hodDescr i pt or objects returned by aBeanl nf o implementation.

file:///C|/orielly/jnut/ch06_02.htm (6 of 8) [2/5/2003 7:49:14 PM]

JavaBeans Conventions (Javain a Nutshell)
6.2.8. Auxiliary Classes

A bean can provide the following auxiliary classes:
Beanl nf o

To provide additional information about a bean B, implement the Beanl nf o interface in a class named
BBeanl nf o.

Property editor for a specific type

To enable a beanbox to work with properties of type T, implement the Pr oper t yEdi t or interfaceina
classnamed TEdi t or . The class must have a no-parameter constructor.

Property editor for a specific property

To customize the way a beanbox allows the user to enter values for a single property, define a class that
implementsthe Pr oper t yEdi t or interface and has a no-parameter constructor, and register that class
with aPr oper t yDescri pt or object returned by the Beanl nf o classfor the bean.

Customizers

To define a customizer, or wizard, for configuring a bean B, define an AWT or Swing component with a no-
parameter constructor that does the customization. The classis commonly called BCust om zer , but this
is not required. Register the class with the BeanDescr i pt or object returned by the Beanl nf o classfor
the bean.

Documentation

Define default documentation for abean B in HTML 2.0 format and store that documentation in afile
named B. ht m . Define localized tranglations of the documentation in files by the same name in locale-
specific directories.

6.2.9. Bean Packaging and Distribution
Beans are distributed in JAR archive files that have the following:
Content

The class or classes that implement a bean should be included in the JAR file, along with auxiliary classes
such asBeanl nf o and Pr oper t yEdi t or implementations. If the bean isinstantiated from a serialized
instance, that instance should be included in the JAR archive with afilename ending in .ser. The JAR file
can contain HTML documentation for the bean and should also contain any resource files, such as images,
required by the bean and its auxiliary classes. A single JAR file can contain more than one bean.

file:///C|/orielly/jnut/ch06_02.htm (7 of 8) [2/5/2003 7:49:14 PM]

JavaBeans Conventions (Javain a Nutshell)
Java- Bean attribute

The manifest of the JAR file must mark any .class and .ser files that define a bean with the attribute:
Java- Bean: true

Depends- On attribute

The manifest of a JAR file can use the Depends- On attribute to specify al other filesin the JAR archive
on which the bean depends. A beanbox application can use this information when generating applications
or repackaging beans. Each bean can have zero or more Depends- On attributes, each of which can list
zero or more space-separated filenames. Within aJAR file, / isaways used as the directory separator.

Desi gn- Ti me- Onl y attribute
The manifest of a JAR file can optionally use the Desi gn- Ti me- Onl y attribute to specify auxiliary

files, such asBeanl nf o implementations, that are used by a beanbox, but not used by applications that
use the bean. The beanbox can use this information when repackaging beans for use in an application.

41 PREVIOUS HOME MEXT »
6.1. Bean Basics BOOK INDEX 6.3. Bean Contexts and
Services

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch06_02.htm (8 of 8) [2/5/2003 7:49:14 PM]

file:///C|/orielly/jnut/copyrght.htm

Bean Contexts and Services (Javain a Nutshell)

41 PREVIOUS Chapter 6: JavaBeans HEXT

6.3. Bean Contexts and Services

The JavaBeans component model was introduced in Java 1.1. Java 1.2 extends that model by introducing
a containment and services protocol, defined inthej ava. beans. beancont ext package. A bean
contextisaj ava. uti | . Col | ecti on of beansthat implements the BeanCont ext interface and
provides a context for the beans it contains. Many bean contexts define one or more services, such asa
printing service, that beans can query and use. These bean contexts implement the

BeanCont ext Ser vi ces interface. All bean contexts are also BeanCont ext Chi | d
Implementations, so contexts can be nested within each other.

Many beans never need to know about the contexts that contain them. A bean that does want to take
advantage of its context and the services it provides implements the BeanCont ext Chi | d interface.
When a bean context child is added to a bean context, the set BeanCont ext () method of the
BeanCont ext Chi | d interface isinvoked by the bean context. The implementation of this method
should store the reference to the bean context for future use. The set BeanCont ext () methodisa
bound and constrained property, so it must notify Vet oabl eChangeli st ener and

Propert yChangelLi st ener objects. For this reason, many beans delegate these responsibilitiesto a
BeanCont ext Chi | dSuport object.

If abean (or bean context) is nested within a bean context that implements BeanCont ext Ser vi ces,
the bean can use the services provided by the bean context. A serviceisidentified by the Java class that
definesit. So aprinting service isidentified by the Cl ass object of the

java. awt . print. Print er Job class, for example, and the system clipboard service is represented
by thej ava. awt . dat at ransfer. C i pboar d class. A bean can call thehasSer vi ce()
method of its containing BeanCont ext Ser vi ces object to determine whether a specified serviceis
available. If so, it can useget Ser vi ce() to obtain an appropriate instance of the service class. If a
bean context is nested within another context, it can passthese hasSer vi ce() and get Ser vi ce()
methods to its containing context.

In additionto get Ser vi ce() and hasSer vi ce(),aBeanCont ext provides severa other
methods beans can rely on. get Resour ce() and get Resour ceAsSt r ean() replace the methods
by the same name defined by Cl ass and Cl assLoader . Thei sDesi gnTi me() method (from the
Desi gnMode interface) allows a bean to determine whether it is being displayed within a beanbox or
run in an application or applet. The BeanCont ext method is preferred to the static

Beans. i sDesi gnTi ne() method because it is context-specific rather than global.

file:///C]/orielly/jnut/ch06_03.htm (1 of 2) [2/5/2003 7:49:16 PM]

Bean Contexts and Services (Javain a Nutshell)

BeanCont ext and BeanCont ext Ser vi ces are large interfaces; implementations must adhere to
fairly complex specifications that govern the ways they interact with the beans they contain and the
contexts within which they are nested. For these reasons, bean devel opers do not often create custom
bean contexts. Instead, they rely on the contexts provided by the vendor of their beanbox tool. Advanced
bean devel opers who do need to create bean contexts can delegate many of their methods to the
BeanCont ext Support and BeanCont ext Ser vi cesSupport classesthat implement the basic
framework and protocols.

41 PREVIOUS HOME HEXT B

6.2. JavaBeans Conventions BOOK INDEX 7. Java Programming and
Documentation Conventions

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch06_03.htm (2 of 2) [2/5/2003 7:49:16 PM]

file:///C|/orielly/jnut/copyrght.htm

Java Programming and Documentation Conventions (Javain an Nutshell)

41 PREVIOUS Part 1: Introducing Java HEXT »

Chapter 7. Java Programming and
Documentation Conventions

Contents:

Naming and Capitalization Conventions
Portability Conventions and Pure Java Rules
Java Documentation Comments

This chapter explains a number of important and useful Java programming conventions. If you follow
these conventions, your Java code will be self-documenting, easier to read and maintain, and more
portable.

7.1. Naming and Capitalization Conventions

The following widely adopted naming conventions apply to packages, classes, methods, fields, and
constants in Java. Because these conventions are amost universally followed and because they affect the
public API of the classes you define, they should be followed carefully:

Packages

Ensure that your package names are unique by prefixing them with the inverted name of your
Internet domain (e.g., com davi df | anagan. ut i | s). All package names, or at |least their
unique prefixes, should be lowercase.

Classes

A class name should begin with a capital letter and be written in mixed case (e.g., St ri ng). If a
class name consists of more than one word, each word should begin with a capital letter (e.g.,

St ri ngBuf f er). If aclass name, or one of the words of a class name, is an acronym, the
acronym can be written in al capital letters (e.g., URL, HTMLPar ser).

Since classes are designed to represent objects, you should choose class names that are nouns

file://IC|/orielly/jnut/ch07_01.htm (1 of 3) [2/5/2003 7:49:19 PM]

Java Programming and Documentation Conventions (Javain an Nutshell)

(eg., Thr ead, Teapot , For mat Converter).
I nterfaces

Interface names follow the same capitalization conventions as class names. When an interface is
used to provide additional information about the classes that implement it, it is common to choose
an interface name that is an adjective (e.g., Runnabl e, Cl oneabl e, Seri al i zabl e,

Dat al nput). When an interface works more like an abstract superclass, use anamethat isa
noun (e.g., Docunent , Fi | eNanmeMap, Col | ecti on).

M ethods

A method name always begins with a lowercase letter. If the name contains more than one word,
every word after the first begins with a capital letter (e.g.,i nsert () ,insert OGbject (),

I nsert Qbj ect At ()). Method names are typically chosen so that the first word is averb.
Method names can be aslong as is necessary to make their purpose clear, but choose succinct
names where possible.

Fields and constants

Nonconstant field names follow the same capitalization conventions as method names. If afieldis
astatic final constant, it should bewritten in uppercase. If the name of a constant includes

more than one word, the words should be separated with underscores (e.g., MAX_VALUE). A field

name should be chosen to best describe the purpose of the field or the value it holds.

Parameters

The names of method parameters appear in the documentation for a method, so you should choose
names that make the purpose of the parameters as clear as possible. Try to keep parameter names
to asingle word and use them consistently. For example, if aW dget Pr ocessor class defines
many methods that accept aW dget object asthe first parameter, name this parameter wi dget
or even win each method.

Local variables

Local variable names are an implementation detail and never visible outside your class.
Nevertheless, choosing good names makes your code easier to read, understand, and maintain.
Variables are typically named following the same conventions as methods and fields.

In addition to the conventions for specific types of names, there are conventions regarding the characters
you should usein your names. Java allowsthe $ character in any identifier, but, by convention, itsuseis
reserved for synthetic names generated by source-code processors. (It is used by the Java compiler, for

file:///C]/orielly/jnut/ch07_01.htm (2 of 3) [2/5/2003 7:49:19 PM]

Java Programming and Documentation Conventions (Javain an Nutshell)

example, to make inner classes work.) Also, Java allows names to use any aphanumeric characters from
the entire Unicode character set. While this can be convenient for non-English-speaking programmers,
the use of Unicode characters should typically be restricted to local variables, private methods and fields,
and other names that are not part of the public API of aclass.

4 PREVIOUS HOME MEXT »
6.3. Bean Contexts and BOOK INDEX 7.2. Portability Conventions
Services and Pure Java Rules

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch07_01.htm (3 of 3) [2/5/2003 7:49:19 PM]

file:///C|/orielly/jnut/copyrght.htm

Portability Conventions and Pure Java Rules (Javain a Nutshell)

41 PREVIOUS Chapter 7: Java HEXT
Programming and
Documentation Conventions

7.2. Portability Conventions and Pure Java Rules

Sun's motto, or core value proposition, for Javais "Write once, run anywhere." Java makesit easy to
write portable programs, but Java programs do not automatically run successfully on any Java platform.
To ensure portability, you must follow afew fairly ssmple rules that can be summarized as follows:

Native methods

Portable Java code can use any methods in the core Java APIs, including methods implemented as
nat i ve methods. However, portable code must not define its own native methods. By their very
nature, native methods must be ported to each new platform, so they directly subvert the "Write
once, run anywhere" promise of Java.

The Runtime.exec() method

Cdlingthe Runt i me. exec() method to spawn a process and execute an external command on
the native system israrely allowed in portable code. Thisis because the native OS command to be
executed is never guaranteed to exist or behave the same way on all platforms. The only timeitis
legal to use Runt i ne. exec() iswhen the user is allowed to specify the command to run,
either by typing the command at runtime or by specifying the command in a configuration file or
preferences dialog box.

The System.getenv() method

Using Syst em get env() isnonportable, without exception. The method has actually been
deprecated for this reason.

Undocumented classes
Portable Java code must use only classes and interfaces that are a documented part of the Java
platform. Most Java implementations ship with additional undocumented public classes that are

part of the implementation, but not of the Java platform specification. There is nothing to prevent
a program from using and relying on these undocumented classes, but doing so is not portable

file:///C]/orielly/jnut/ch07_02.htm (1 of 4) [2/5/2003 7:49:22 PM]

Portability Conventions and Pure Java Rules (Javain a Nutshell)

because the classes are not guaranteed to exist in al Javaimplementations or on al platforms.
Thejava.awt.peer package

Theinterfacesinthej ava. awt . peer package are part of the Java platform, but are
documented for use by AWT implementors only. Applications that use these interfaces directly
are not portable.

| mplementation-specific features

Portable code must not rely on features specific to a single implementation. For example, in a
widely controversial move, Microsoft distributed a version of the Java runtime system that
included a number of additional methods that were not part of the Java platform as defined by
Sun. Legal action between Sun and Microsoft is pending because of this. Any program that
depends on the Microsoft-specific extensions is obviously not portable to other platforms.

| mplementation-specific bugs

Just as portable code must not depend on implementation-specific features, it must not depend on
implementation-specific bugs. If aclass or method behaves differently than the specification says
it should, a portable program cannot rely on this behavior, which may be different on different
platforms.

I mplementation-specific behavior

Sometimes different platforms and different implementations may present different behaviors, all
of which are legal according to the Java specification. Portable code must not depend on any one
specific behavior. For example, the Java specification does not specify whether threads of equal
priority share the CPU or if one long-running thread can starve another thread at the same priority.
If an application assumes one behavior or the other, it may not run properly on all platforms.

Standard extensions

Portable code can rely on standard extensions to the Java platform, but, if it does so, it should
clearly specify which extensionsit uses and exit cleanly with an appropriate error message when
run on a system that does not have the extensions installed.

Complete programs

Any portable Java program must be complete and self-contained: it must supply all the classes it
uses, except core platform and standard extension classes.

file:///C]/orielly/jnut/ch07_02.htm (2 of 4) [2/5/2003 7:49:22 PM]

Portability Conventions and Pure Java Rules (Javain a Nutshell)

Defining system classes

Portable Java code never defines classesin any of the system or standard extension packages.
Doing so violates the protection boundaries of those packages and exposes package-visible
implementation details.

Har dcoded filenames

A portable program contains no hardcoded file or directory names. Thisis because different
platforms have significantly different filesystem organizations and use different directory
separator characters. If you need to work with afile or directory, have the user specify the
filename, or at least the base directory beneath which the file can be found. This specification can
be done at runtime, in a configuration file, or as a command-line argument to the program. When
concatenating afile or directory name to a directory name, usethe Fi | e() constructor or the

Fi | e. separ at or constant.

Line separators

Different systems use different characters or sequences of characters as line separators. Do not
hardcode "\n", "\r", or "\r\n" as the line separator in your program. Instead, usethepri nt |l n()
method of Pri nt St r eamor Pri nt Wi t er , which automatically terminates a line with the
line separator appropriate for the platform, or use the value of thel i ne. separ at or system

property.
Mixed event models

The AWT event model changed dramatically between Java 1.0 and Java 1.1. Although it is often
possible to mix these two event modelsin a program, doing so is not technically portable.

The previous rules are the focus of Sun's "100% Pure Java" portability certification program; you can
find out more about this program and read more about the "Pure Java" requirements at
http://java.sun.com/100percent/.

41 PREVIOUS HOME HEXT %
7.1. Naming and BOOK INDEX 7.3. Java Documentation
Capitalization Conventions Comments

file://IC|/orielly/jnut/ch07_02.htm (3 of 4) [2/5/2003 7:49:22 PM]

http://java.sun.com/100percent/

Portability Conventions and Pure Java Rules (Javain a Nutshell)

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch07_02.htm (4 of 4) [2/5/2003 7:49:22 PM]

file:///C|/orielly/jnut/copyrght.htm

Java Documentation Comments (Javain a Nutshell)

41 PREVIOUS Chapter 7: Java HEXT o
Programming and
Documentation Conventions

7.3. Java Documentation Comments

Most ordinary comments within Java code explain the implementation details of that code. In contrast, the Java
language specification defines a specia type of comment known as a doc comment that serves to document the AP
of your code. A doc comment is an ordinary multiline comment that beginswith/ ** (instead of the usual / *) and
endswith */ . A doc comment appears immediately before a class, interface, method, or field definition and
contains documentation for that class, interface, method, or field. The documentation can include smple HTML
formatting tags and other special keywords that provide additional information. Doc comments are ignored by the
compiler, but they can be extracted and automatically turned into online HTML documentation by the javadoc
program. (See Chapter 8, "Java Development Tools', for more information about javadoc.) Here is an example class

that contains appropriate doc comments:

/**

* This imutabl e class represents <i>conpl ex
* nunbers</i>.

*

* @ut hor David Fl anagan

* @ersion 1.0

*/

public class Conpl ex {
/**
* Holds the real part of this conplex nunber.
* @Bee #y
*/
prot ected doubl e x;

/**

* Holds the inmaginary part of this conplex nunber.
* @Bee #x

*/

prot ected doubl e vy;

/**

* Creates a new Conpl ex object that represents the conpl ex nunber
* OX+yi .

* @aram x The real part of the conpl ex nunber.

* @aramy The imaginary part of the conpl ex nunber.

*/

publ i c Conpl ex(doubl e x, double y) {

file://IC|/orielly/jnut/ch07_03.htm (1 of 8) [2/5/2003 7:49:25 PM]

Java Documentation Comments (Javain a Nutshell)

this.x
this.y
}

/

X,
'

*

Adds two Conpl ex objects and produces a third object that represents
their sum * @aramcl A Conpl ex object
@ar am c2 Anot her Conpl ex obj ect
@eturn A new Conpl ex object that represents the sum of

<code>c1</ code> and
<code>c2</ code>.
@xception java.lang. Nul | Poi nt er Excepti on

I f either argunent is <code>null </ code>.

b T A R T N T S

~

publ i c Conpl ex add(Conpl ex cl, Conplex c2) {
return new Conplex(cl.x + c2.x, cl.y + c2.y);
}
}

7.3.1. Structure of a Doc Comment

The body of adoc comment should begin with a one-sentence summary of the class, interface, method, or field
being documented. This sentence may be displayed by itself, as summary documentation, so it should be written to
stand on itsown. The initial sentence can be followed by any number of other sentences and paragraphs that
describe the class, interface, method, or field.

After the descriptive paragraphs, a doc comment can contain any number of other paragraphs, each of which begins
with a special doc-comment tag, such as @ut hor , @ar am or @ et ur ns. These tagged paragraphs provide
specific information about the class, interface, method, or field that the javadoc program displaysin a standard way.
The full set of doc-comment tagsislisted in the next section.

The descriptive material in a doc comment can contain ssmple HTML markup tags, such as such as<I > for
emphasis, <CODE> for class, method, and field names, and <PRE> for multiline code examples. It can also contain
<P> tagsto break the description into separate paragraphs and , <LI| >, and related tags to display bulleted
lists and similar structures. Remember, however, that the material you write is embedded within alarger, more
complex HTML document. For this reason, doc comments should not contain major structural HTML tags, such as
<H2> or <HR>, that might interfere with the structure of the larger document.

Avoid the use of the <A> tag to include hyperlinks or cross references in your doc comments. Instead, use the
specia { @ i nk} doc-comment tag, which, unlike the other doc-comment tags, can appear anywhere within adoc
comment. As described in the next section, the{ @ i nk} tag allows you to specify hyperlinks to other classes,
interfaces, methods, and fields without knowing the HTML-structuring conventions and filenames used by javadoc.

If you want to include an image in a doc comment, place the image file in a doc-files subdirectory of the source
code directory. Give the image the same name as the class, with an integer suffix. For example, the second image
that appears in the doc comment for aclassnamed Ci r ¢l e can be included with thisHTML tag:

file:///CJ/orielly/jnut/ch07_03.htm (2 of 8) [2/5/2003 7:49:25 PM]

Java Documentation Comments (Javain a Nutshell)

<I M5 src="doc-files/Circle-2.gif">

Because the lines of a doc comment are embedded within a Java comment, any |leading spaces and asterisks (*) are
stripped from each line of the comment before processing. Thus, you don't need to worry about the asterisks
appearing in the generated documentation or about the indentation of the comment affecting the indentation of code
examples included within the comment with a <PRE> tag.

7.3.2. Doc-Comment Tags

As | mentioned earlier, javadoc recognizes a number of specia tags, each of which begins with an @character.
These doc-comment tags alow you to encode specific information into your comments in a standardized way, and
they allow javadoc to choose the appropriate output format for that information. For example, the @ar amtag lets
you specify the name and meaning of a single parameter for a method. javadoc can extract this information and
display it usingan HTML <DL> list, an HTML <TABLE>, or however it seesfit.

The doc-comment tags recognized by javadoc are the following; a doc comment should typically use these tagsin
the order listed here:

@ut hor name

Adds an "Author:" entry that contains the specified name. Thistag should be used for every class or interface
definition, but must not be used for individual methods and fields. If a class has multiple authors, use
multiple @ut hor tags on adjacent lines. For example:

@ut hor Davi d Fl anagan
@ut hor Paul a Fer guson

List the authorsin chronological order, with the original author first. If the author is unknown, you can use
"unascribed"”. javadoc does not output authorship information unless the - aut hor command-line argument is
specified.

@er si on text
Insertsa"Version:" entry that contains the specified text. For example:
@ersion 1.32, 08/26/99

This tag should be included in every class and interface doc comment, but cannot be used for individual methods
and fields. Thistag is often used in conjunction with the automated version-numbering capabilities of aversion-
control system, such as SCCS, RCS, or CVS. javadoc does not output version information in its generated
documentation unless the - ver si on command-line argument is specified.

@par amparameter-name description

Adds the specified parameter and its description to the "Parameters:" section of the current method. The doc

file:///C]/orielly/jnut/ch07_03.htm (3 of 8) [2/5/2003 7:49:25 PM]

Java Documentation Comments (Javain a Nutshell)

comment for amethod or constructor must contain one @ar amtag for each parameter the method expects.
These tags should appear in the same order as the parameters specified by the method. The tag cannot be
used in class, interface, or field doc comments. Y ou are encouraged to use phrases and sentence fragments
where possible, to keep the descriptions brief. However, if a parameter requires detailed documentation, the
description can wrap onto multiple lines and include as much text as necessary. Y ou can aso use spacesto
align the descriptions with each other. For example:

@par am o the object to insert
@aramindex the position to insert it at

@ et ur n description

Inserts a"Returns:" section that contains the specified description. This tag should appear in every doc
comment for a method, unless the method returnsvoi d or is aconstructor. The tag must not appear in class,
interface, or field doc comments. The description can be as long as necessary, but consider using a sentence
fragment to keep it short. For example:

@eturn <code>true</code> if the insertion is successful, or
<code>fal se</code> if the list already contains the
speci fied object.

@xcept i on full-classname description

Addsa"Throws:" entry that contains the specified exception name and description. A doc comment for a
method or constructor should contain an @xcept i on tag for every checked exception that appearsin its
t hr ows clause. For example:

@xception java.io. Fi |l eNot FoundExcepti on
If the specified file could not be found

The @xcept i on tag can optionally be used to document unchecked exceptions (i.e., subclasses of

Runt i meExcept i on) the method may throw, when these are exceptions that a user of the method may
reasonably want to catch. If amethod can throw more than one exception, use multiple @xcept i on tagson
adjacent lines and list the exceptions in aphabetical order. The description can be as short or as long as necessary to
describe the significance of the exception. This doc-comment tag cannot be used in class, interface, or field
comments. The @ hr ows tag isasynonym for @xcepti on.

@ hr ows full-classname description
Thistag isasynonym for @xcept i on. It wasintroduced in Java 1.2.
G ee reference

Adds a"See Also:" entry that contains the specified reference. Thistag can appear in any kind of doc
comment. reference can take three different forms. If it begins with a quote character, it is taken to be the
name of a book or some other printed resource and is displayed asis. If reference begins with a < character,

file:///C]/orielly/jnut/ch07_03.htm (4 of 8) [2/5/2003 7:49:25 PM]

Java Documentation Comments (Javain a Nutshell)

it istaken to be an arbitrary HTML hyperlink that uses the <A> tag and the hyperlink isinserted into the
output documentation asis. This form of the @ ee tag can insert links to other online documents, such asa
programmer's guide or user's manual.

If reference is not a quoted string or a hyperlink, the @ ee tag is expected to have the following form:
@ee feature | abel

In this case, javadoc outputs the text specified by label and encodes it as a hyperlink to the specified feature. If label
isomitted (asit usually is), javadoc uses the name of the specified feature instead.

feature can refer to a package, class, interface, method, constructor, or field, using one of the following forms:
pkgname
A reference to the named package. For example:
@ee java.l ang.refl ect
pkgname. classname
A reference to aclass or interface specified with its full package name. For example:
@ee java. util.List
classname
A reference to aclass or interface specified without its package name. For example:
@& ee Li st

javadoc resolves this reference by searching the current package and the list of imported classes for a class with this
name.

classnamet#methodname
A reference to anamed method or constructor within the specified class. For example:

@ee java.i o. | nput Strean¥reset
@ee | nput St ream#cl ose

If the classis specified without its package name, it is resolved as described for classname. Thissyntax is
ambiguous if the method is overloaded or the class defines afield by the same name.

classname# methodname(paramtypes)

file:///C]/orielly/jnut/ch07_03.htm (5 of 8) [2/5/2003 7:49:25 PM]

Java Documentation Comments (Javain a Nutshell)

A reference to amethod or constructor with the type of its parameters explicitly specified. Thisform of the
@ ee tag is useful when cross-referencing an overloaded method. For example:

@ee | nput Streamtread(byte[], int, int)

#methodname

A reference to a non-overloaded method or constructor in the current class or interface or one of the
containing classes, superclasses, or superinterfaces of the current class or interface. Use this concise form to
refer to other methods in the same class. For example:

@ee #set Backgr oundCol or
#methodname(paramtypes)

A reference to amethod or constructor in the current class or interface or one of its superclasses or
containing classes. Thisform works with overloaded methods because it lists the types of the method
parameters explicitly. For example:

@ee #setPosition(int, int)
classnamettfieldname
A reference to anamed field within the specified class. For example:
@ee java.i o. Bufferedl nput St r eam#buf
If the classis specified without its package name, it is resolved as described for classname.

#fieldname

A reference to afield in the current class or interface or one of the containing classes, superclasses, or
superinterfaces of the current class or interface. For example:

Gee #x

{ @1 nk reference}

The @i nk tagislikethe @ ee tag except that, instead of placing alink to the specified referencein a
specia "See Also:" section, it insertsthe link inline. A @ i nk tag can appear anywhere that HTML text
appears in adoc comment. In other words, it can appear in theinitial description of the class, interface,
method, or field and in the descriptions associated with the @ar am @ et ur ns, @xcepti on, and
@lepr ecat ed tags. Becausethe @ i nk tag can appear within arbitrary HTML text, the curly braces are
required to delimit it. The reference for the @ i nk tag uses the same syntax as the @ ee tag documented
previously. For example:

file:///C]/orielly/jnut/ch07_03.htm (6 of 8) [2/5/2003 7:49:25 PM]

Java Documentation Comments (Javain a Nutshell)

@par am regexp The regul ar expression to search for. This string
argunment nust follow the syntax rul es described for
{@ink RegExpParser}.

@lepr ecat ed explanation
Asof Javal.l, thistag specifies that the following class, interface, method, or field has been deprecated and
that its use should be avoided. javadoc adds a prominent "Deprecated” entry to the documentation and
includes the specified explanation text. This text should specify when the class or member was deprecated,

and, if possible, suggest a replacement class or member and include alink to it. For example:

@leprecated As of Version 3.0, this nethod is repl aced
by {@ink #setCol or}.

Although the Java compiler ignores all comments, it does take note of the @lepr ecat ed tag in doc comments.
When this tag appears, the compiler notes the deprecation in the classfileit produces. Thisallowsit to issue
warnings for other classes that rely on the deprecated feature.

@i nce version

Used to specify when the class, interface, method, or field was added to the API. It should be followed by a
version number or other version specification. For example:

@ince JNUT 3.0

Every class and interface doc comment should include a @i nce tag, and any methods or fields added after the
initial release of the class or interface should have @i nce tagsin their doc comments.

@eri al description

This tag should appear in the doc comment for any field that is part of the serialized state of a

Seri al i zabl e class. For classes that use the default serialization mechanism, this means all fields that are
not declared t r ansi ent , even fields declared pr i vat e. The description should be a brief description of
the field and of its purpose within a serialized object.

@eri al Fi el d name type description

A Seri al i zabl e class can defineits serialized format by declaring an array of Qbj ect St r eanti el d
objectsinafield named ser i al Per si st ent Fi el ds. For such aclass, the doc comment for

seri al Persi stent Fi el ds shouldincludea@eri al Fi el d tag for each element of the array. Each
tag specifies the name, type, and description for a particular field in the serialized state of the class.

@eri al Dat a description
A Seri al i zabl e classcan defineawr i t eCbj ect () method to write additional data besides that

file:///C|/orielly/jnut/ch07_03.htm (7 of 8) [2/5/2003 7:49:25 PM]

Java Documentation Comments (Javain a Nutshell)

written by the default serialization mechanism. An Ext er nal i zabl e classdefinesa

wri t eExt er nal () method that is responsible for writing the complete state of an object to the
serialization stream. The @er i al Dat a tag should be used in the doc comments for these
writeCbject() andwiteExternal () methods, and the description should document the
serialization format used by the method.

@eani nf o info

This nonstandard tag provides information about JavaBeans components and their methods. Thistag is not
used by javadoc, but it is apparently used by atool internal to Sun that extracts information from

@eani nf o tagsfor aclass and outputs an appropriatej ava. beans. Beanl nf o class. Thistag appears
in the source code of the Swing component classesin Java 1.2. A typical usage looks like this:

@eani nfo bound: true
description: the background color of this JavaBeans conponent

7.3.3. Doc Comments for Packages

Documentation comments for classes, interfaces, methods, constructors, and fields appear in Java source code
immediately before the definitions of the features they document. javadoc can also read and display summary
documentation for packages. Since a package is defined in adirectory, not in asingle file of source code, javadoc
looks for the package documentation in afile named package.html in the directory that contains the source code for
the classes of the package.

The package.html file should contain simple HTML documentation for the package. It can also contain @& ee,
@i nk, @epr ecat ed, and @i nce tags. Since package.html is not afile of Java source code, the
documentation it contains should not be a Java comment (i.e., it should not be enclosed within/ ** and */
characters). Finally, any @ee and @ i nk tags that appear in package.html must use fully qualified class names.

In addition to defining a package.html file for each package, you can aso provide high-level documentation for a
group of packages by defining an overview.html file in the source tree for those packages. When javadoc is run over
that sourcetree, it uses overview.html as the highest level overview it displays.

4 PREVIOUS HOME MEXT
7.2. Portability Conventions BOOK INDEX 8. Java Development Tools
and Pure Java Rules

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch07_03.htm (8 of 8) [2/5/2003 7:49:25 PM]

file:///C|/orielly/jnut/copyrght.htm

Java Development Tools (Javain a Nutshell)

41 PREVIOUS Part 1: Introducing Java HEXT mp

Chapter 8. Java Development Tools

Sun's implementation of Javaincludes a number of tools for Java developers. Chief among these are the Javainterpreter
and the Java compiler, of course, but there are a number of others aswell. This chapter documents all the tools shipped with
the Java 2 SDK (formerly known as the JDK), except for the RMI and IDL tools that are specific to enterprise
programming. Those tools are documented in Java Enterprise in a Nutshell (O'Reilly).

The tools documented here are part of Sun's development kit; they are implementation details and not part of the Java
specification itself. If you are using a Java devel opment environment other than Sun's SDK (or a port of it), you should
consult your vendor's tool documentation.

Some examples in this chapter use Unix conventions for file and path separators. If Windows is your development
platform, change forward slashes in filenames to backward slashes, and colonsin path specifications to semicolons.

appletviewer JDK 1.0 and later

The Java Applet Viewer

Synopsis
appl etviewer [options] url | file...

Description

appletviewer reads or downloads the one or more HTML documents specified by the filename or URL on the command
line. Next, it downloads any applets specified in any of those files and runs each applet in a separate window. If the
specified document or documents do not contain any applets, appletviewer does nothing.

appletviewer recognizes applets specified with the <APPLET> tag and, in Java 1.2 and later, the <OBJECT> and
<EMBED> tags.

Options
appletviewer recognizes the following options:

- debug

If this option is specified, appletviewer is started within jdb (the Java debugger). This alows you to debug the

file:/lIC|/orielly/jnut/ch08_01.htm (1 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

applets referenced by the document or documents.
- encodi ngenc

This option specifies the character encoding that appletviewer should use when reading the contents of the specified
filesor URLSs. It isused in the conversion of applet parameter values to Unicode. Java l.1 and later.

- Jjavaoption

This option passes the specified javaoption as a command-line argument to the Javainterpreter. javaoption should
not contain spaces. If a multiword option must be passed to the Java interpreter, multiple - J options should be used.
Seejavafor alist of valid Javainterpreter options. Java 1.1 and later.

appletviewer also recognizesthe - cl assi ¢, - nati ve, and - gr een options that the Java interpreter recognizes. See
java for details on these options.

Commands
Each window displayed by appletviewer contains a single Applet menu, with the following commands available:
Restart
Stops and destroys the current applet, then reinitializes and restartsiit.
Reload
Stops, destroys, and unloads the applet, then reloads, reinitializes, and restartsiit.
Stop
Stops the current applet. Java 1.1 and later.
Save

Serializes the applet and saves the serialized applet in the file Applet.ser in the user's home directory. The applet
should be stopped before selecting this option. Java 1.1 and | ater.

Start
Restarts a stopped applet. Javal.1l and later.
Clone
Creates a new copy of the applet in a new appletviewer window.
Tag
Pops up a dialog box that displays the <APPLET> tag and all associated <PARAM> tags that created the current

file:/lIC|/orielly/jnut/ch08_01.htm (2 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

applet.

Info
Pops up a dialog box that contains information about the applet. Thisinformation is provided by the
get Appl et I nf o() and get Par anet er | nf o() methods implemented by the applet.

Edit

This command is not implemented. The Edit menu item is disabled.
Character Encoding

Displays the current character encoding in the status line. Java 1.1 and later.
Print

Prints the applet. Java 1.1 and later.
Properties

Displays adiaog that allows the user to set appletviewer preferences, including settings for firewall and caching
proxy Servers.

Close

Closes the current appletviewer window.
Quit

Quits appletviewer, closing all open windows.
CLASSPATH

In Java 1.0 and Java 1.1, appletviewer uses the CLASSPATH environment variable in the same way the Java
interpreter does. See java for details. In Java 1.2 and later, however, appletviewer ignores this environment variable
to better simulate the action of aweb browser.

Properties

When it starts up, appletviewer reads property definitions from the file ~/.hotjava/properties (Unix) or .hotjava\properties
relative to the HOVE environment variable (Windows). These properties are stored in the system properties list and can
specify the various error and status messages the applet viewer displays, aswell asits security policies and use of proxy
servers. The properties that affect security and proxies are described in the following sections. Most users of appletviewer
do not need to use these properties.

Security Properties

file:/lIC|/orielly/jnut/ch08_01.htm (3 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

The following properties specify the security restrictions appletviewer places on untrusted applets:

acl . read
A list of files and directories an untrusted applet is allowed to read. The elements of the list should be separated with
colons on Unix systems and semicolons on Windows systems. On Unix systems, the ~ character is replaced with the
home directory of the current user. If the plus character appears as an element inthe list, it is replaced by the value
of theacl . read. def aul t property. This provides an easy way to enable read access--by simply setting
acl . read to"+". By default, untrusted applets are not allowed to read any files or directories.

acl . read. defaul t

A list of files and directories that are readable by untrusted appletsif theacl . r ead property contains a plus
character.

acl .wite
A list of files and directories an untrusted applet is allowed to write to. The elements of the list should be separated
with colons on Unix systems and semicolons on Windows systems. On Unix systems, the ~ character is replaced
with the home directory of the current user. If the plus character appears as an element in the list, it is replaced by

thevalueof theacl . wri t e. def aul t property. This provides an easy way to enable write access--by simply
settingacl . wri t e to"+". By default, untrusted applets are not allowed to write to any files or directories.

acl.wite.default

A list of files and directories that are writable by untrusted appletsif theacl . wri t e property contains a plus
character.

appl et vi ewer . security. node

Specifies the types of network access an untrusted applet is allowed to perform. If it is set to "none", the applet can
perform no networking at all. The value "host" is the default; it specifies that the applet can connect only to the host
from which it was loaded. The value "unrestricted" specifies that an applet can connect to any host without
restrictions.

package. restrict. access. package-prefix

Properties of thisform can be set to t r ue to prevent untrusted applets from using classes in any package that has
the specified package name prefix as the first component of its name. For example, to prevent applets from using
any of the Sun classes (such as the Java compiler and the applet viewer itself) that are shipped with the Java SDK,
you can specify the following property:

package.restrict.access. sun=true
appletviewer setsthis property tot r ue by default for thesun. * and net scape. * packages.

package. restrict. definition. package-prefix

file:/lIC|/orielly/jnut/ch08_01.htm (4 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

Properties of thisform can be set to t r ue to prevent untrusted applets from defining classes in a package that has
the specified package name prefix as the first component of its name. For example, to prevent an applet from
defining classesin any of the standard Java packages, you can specify the following property:

package.restrict.definition.java=true
appletviewer setsthis property tot r ue by default for thej ava. *, sun. *, and net scape. * packages.
property. appl et

When a property of thisformissettot r ue (asof Javal.l), it specifiesthat an applet should be allowed to read the
property named pr oper t y from the system properties list. By default, applets are allowed to read only 10 standard
system properties (as detailed in Java Foundation Classes in a Nutshell (O'Reilly)). For example, to alow an applet
toread theuser . hone property, specify a property of the form:

user. hone. appl et =t rue

Proxy Properties
appletviewer uses the following properties to configure its use of firewall and caching proxy servers:
firewal | Host

The firewall proxy host to connect toif fi r ewal | Set istrue.
firewal | Port

The port of the firewall proxy host to connect toif fi r ewal | Set ist r ue.
firewal | Set

Whether the applet viewer should use afirewall proxy. Valuesaret r ue or f al se.
pr oxyHost

The caching proxy host to connect to if pr oxy Set istr ue.
pr oxyPort

The port of the caching proxy host to connect to if pr oxySet ist r ue.
pr oxy Set

Whether the applet viewer should use a caching proxy. Vauesaret r ue or f al se.

See Also: java, javac, jdb

file:/lIC|/orielly/jnut/ch08_01.htm (5 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

Java 2 SDK 1.2

extcheck and later

JAR Version Conflict Utility

Synopsis
extcheck -verbose jarfile

Description

extcheck checksto see if the extension contained in the specified jarfile (or a newer version of that extension) has aready
been installed on the system. It does this by reading the Speci fi cati on-Ti t| e and Speci fi cati on-Versi on
manifest attributes from the specified jarfile and from all of the JAR files found in the system extensions directory.
extcheck is designed for use in automated installation scripts. Without the - ver bose option, it does not print the results of
its check. Instead, it setsits exit codeto O if the specified extension does not conflict with any installed extensions and can
be safely installed. It setsits exit code to a non-zero value if an extension with the same name is already installed and has a
specification version number equal to or greater than the version of the specified file.

-ver bose

Liststhe installed extensions as they are checked and displays the results of the check.

See Also: jar

jar JDK 1.1 and later

Java Archive Tool

Synopsis

jar c|t|ulx[f][mM[M[O][v] [ejar] [manifest] [-C directory] [files]
jar -i [jar]

Description

jar isatool that can create and manipulate Java Archive (JAR) files. A JAR fileisaZIP file that contains Java classfiles,
auxiliary resource files required by those classes, and optional meta-information. This meta-information includes a manifest
file that lists the contents of the JAR archive and provides auxiliary information about each file.

file:///C|/orielly/jnut/ch08_01.htm (6 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

The jar command can create JAR files, list the contents of JAR files, and extract filesfrom a JAR archive. In Java 1.2 and
later, it can also add files to an existing archive or update the manifest file of an archive. In Java 1.3 and later, jar can aso
add an index entry to aJAR file.

Options

The syntax of the jar command is reminiscent of the Unix tar (tape archive) command. Most optionsto jar are specified as
ablock of concatenated letters passed as a single argument, rather than as individual command-line arguments. The first
letter of the first argument specifies what action jar isto perform; it is required. Other letters are optional. The variousfile
arguments depend on which letters are specified.

Command Options

The first letter of the first option to jar specifies the basic operation jar isto perform. Here are the four possible options:

c
Createsanew JAR archive. A list of input files and/or directories must be specified as the final argumentsto jar.
The newly created JAR file hasa META-INF/MANIFEST.MF file asits first entry. This automatically created
manifest lists the contents of the JAR file and contains a message digest for each file.

t
Lists the contents of a JAR archive.

u
Updates the contents of a JAR archive. Any fileslisted on the command line are added to the archive. When used
with the moption, this adds the specified manifest information to the JAR file. Java 1.2 and later.

X

Extracts the contents of a JAR archive. The files and directories specified on the command line are extracted and
created in the current working directory. If no file or directory names are specified, all the files and directoriesin the
JAR file are extracted.

Modifier Options

Each of the four command specifier letters can be followed by additional |etters that provide further detail about the
operation to be performed:

f
Indicates that jar is to operate on a JAR file whose name is specified on the command line. If this option is not
present, jar reads a JAR file from standard input and/or writes a JAR file to standard output. If thef optionis
present, the command line must contain the name of the JAR file to operate on.

m

file:/lIC|/orielly/jnut/ch08_01.htm (7 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

When jar creates or updates a JAR file, it automatically creates (or updates) a manifest file named META-
INF/MANIFEST.MF in the JAR archive. This default manifest smply lists the contents of the JAR file. Many JAR
files require additional information to be specified in the manifest; the moption tells the jar command that a
manifest template is specified on the command line. jar reads this manifest file and stores all the information it
contains into the META-INF/MANIFEST.MF file it creates. This moption should be used only with the ¢ or u
commands, not with thet or x commands.

Used with the ¢ and u commandsto tell jar not to create a default manifest file.

Tellsjar to produce verbose output.

Used with the ¢ and u commandsto tell jar to store filesin the JAR archive without compressing them. Note that
this option is the digit zero, not the letter O.

Files

Thefirst option to jar consists of an initial command letter and various option letters. Thisfirst option isfollowed by alist
of files:

jar

If the first option contains the letter f , that option must be followed by the name of the JAR file to create or
manipul ate.

manifest

files

If the first option contains the letter m that option must be followed by the name of the file that contains manifest
information. If the first option contains both the lettersf and m the JAR and manifest files should be listed in the
same order thef and moptions appear. In other words, if f comes before m the JAR filename should come before
the manifest filename. Otherwise, if mcomes before f , the manifest filename should be specified before the JAR
filename.

The list of one or more files and/or directories to be inserted into or extracted from the JAR archive.

Additional Options

In addition to all the options listed previoudly, jar also supports the following:

- Cdir

file:/lIC|/orielly/jnut/ch08_01.htm (8 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

Used within the list of filesto process; it tellsjar to change to the specified dir while processing the subsequent files
and directories. The subsequent file and directory names are interpreted relative to dir and are inserted into the JAR
archive without dir as a prefix. Any number of - C options can be used; each remainsin effect until the next is
encountered. The directory specified by a- C option isinterpreted relative to the current working directory, not the
directory specified by the previous - C option. Java 1.2 and later.

-i jarfile

The-i optionisused instead of thec, t , u, and x commands. It tellsjar to produce an index of all JAR files
referenced by the specified jarfile. The index is stored in afile named META-INF/INDEX.LIST ; a Javainterpreter
or applet viewer can use the information in thisindex to optimize its class and resource |ookup algorithm and avoid
downloading unnecessary JAR files. Java 1.3 and later.

Examples

The jar command has a confusing array of options, but, in most cases, its use is quite ssmple. To create asimple JAR file
that contains all the classfilesin the current directory and al filesin a subdirectory called images, you can type:

%jar cf my.jar *.class inages
Examples: To verbosely list the contents of a JAR archive:
% jar tvf your.jar
Examples: To extract the manifest file from a JAR file for examination or editing:
% jar xf the.jar META-I NF/ MANI FEST. MF
Examples: To update the manifest of aJAR file:
%jar ufmny.jar manifest.tenplate

See Also: jarsigner

Java 2 SDK

Jarsgnet 1.2 and later

JAR Signing and Verification
Tool

Synopsis

file:///C|/orielly/jnut/ch08_01.htm (9 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

jarsigner [options] jarfile signer
jarsigner -verify jarfile

Description

jarsigner adds a digital signature to the specified jarfile, or, if the- ver i f y option is specified, it verifiesthe digital
signature or signatures already attached to the JAR file. The specified signer is a case-insensitive nickname or alias for the
entity whose signature isto be used. The specified signer name is used to look up the private key that generates the
signature.

When you apply your digital signatureto a JAR file, you are implicitly vouching for the contents of the archive. You are
offering your personal word that the JAR file contains only nonmalicious code, files that do not violate copyright laws, and
so forth. When you verify adigitally signed JAR file, you can determine who the signer or signers of the file are and (if the
verification succeeds) that the contents of the JAR file have not been changed, corrupted, or tampered with since the
signature or signatures were applied. Verifying adigital signature is entirely different from deciding whether or not you
trust the person or organization whose signature you verified.

jarsigner and the related keytool program replace the javakey program of Java 1.1.
Options

jarsigner defines a number of options, many of which specify how a private key isto be found for the specified signer.
Most of these options are unnecessary when using the - ver i f y option to verify asigned JAR file:

-certs

If this option is specified along with either the- veri fy or - ver bose option, it causesjarsigner to display details
of the public-key certificates associated with the signed JAR file.

- Jjavaoption
Passes the specified javaoption directly to the Javainterpreter.
- keypass password

Specifies the password that encrypts the private key of the specified signer. If this option is not specified, jarsigner
prompts you for the password.

- keyst or e url

A keystoreis afile that contains keys and certificates. This option specifies the filename or URL of the keystore in
which the private- and public-key certificates of the specified signer are looked up. The default is the file named
.keystore in the user's home directory (the value of the system property user . hone). Thisis aso the default
location of the keystore managed by keytool.

-si gf i | e basename

Specifies the base names of the .S and .DSA files added to the META-INF/ directory of the JAR file. If you leave

file://IC|/orielly/jnut/ch08_01.htm (10 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

this option unspecified, the base filename is chosen based on the signer name.
- si gnedj ar outputfile

Specifies the name for the signed JAR file created by jarsigner. If thisoption is not specified, jarsigner overwrites
the jarfile specified on the command line.

- st or epass password

Specifies the password that verifies the integrity of the keystore (but does not encrypt the private key). If this option
is omitted, jarsigner prompts you for the password.

- st or et ype type

Specifies the type of keystore specified by the - keyst or e option. The default is the system-default keystore type,
which on most systemsis the Java Keystore type, known as "JKS". If you have the Java Cryptography Extension
installed, you may want to use a"JCEKS' keystore instead.

-ver bose

Displays extrainformation about the signing or verification process.
-verify

Specifies that jarsigner should verify the specified JAR file rather than sign it.

See Also: jar, keytool, javakey

java JDK 1.0 and later

TheJava Interpreter

Synopsis

java [interpreter-options] classname [program argunments]
java [interpreter-options] -jar jarfile [programargunents]

Description

javaisthe Java byte-code interpreter; it runs Java programs. The program to be run is the class specified by classname.
This must be afully qualified name: it must include the package name of the class, but not the .class file extension. For
example:

% j ava davi d. ganes. Checkers
% j ava Test

file:///C|/orielly/jnut/ch08_01.htm (11 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

The specified class must define armai n() method with exactly the following signature:
public static void main(String[] args)
This method serves as the program entry point: the interpreter begins execution here.

In Java 1.2 and later, a program can be packaged in an executable JAR file. To run a program packaged in this fashion, use
the-j ar option to specify the JAR file. The manifest of an executable JAR file must contain aMai n- C ass attribute
that specifies which class within the JAR file contains the mai n() method at which the interpreter is to begin execution.
Any command-line options that precede the name of the class or JAR file to execute are options to the Javainterpreter
itself. Any options that follow the class name or JAR filename are options to the program; they are ignored by the Java
interpreter and passed as an array of stringsto the mai n() method of the program.

The Javainterpreter runs until the mai n() method exits, and any threads (except for threads marked as daemon threads)
created by the program have aso exited.

Interpreter Versions

The java program is the basic version of the Java interpreter. In addition to this program, however, there are several other
versions of the Javainterpreter. Each of these versionsis similar to java, but has a specialized function. The various
interpreter programs are the following:

java

Thisisthe basic version of the Javainterpreter; it is usually the correct one to use. The behavior and set of supported
options changed between Java 1.1 and Java 1.2.

oldjava

Thisversion of the interpreter isincluded in Java 1.2 and Java 1.3x for compatibility with the Java 1.1 interpreter. It
loads classes using the Java 1.1 class-loading scheme. Very few Java applications need to use this version of the
interpreter.

javaw
Thisversion of the interpreter isincluded only on Windows platforms. Use javaw when you want to run a Java
program (from a script, for example) without forcing a console window to appear. In Java 1.2 and Java 1.3, thereis
also an oldjavaw program that combines the features of oldjava and javaw.

java_g
InJaval.0 and Java 1.1, java_gisadebugging version of the Javainterpreter. It includes afew specialized
command-line options, but is rarely used. Windows platforms also define ajavaw_g program. java_g is not included

inJaval.2 or later versions.

Client or Classic VM

file://IC|/orielly/jnut/ch08_01.htm (12 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

In Java 1.3, the java application launcher tool can run a program using either of two VM implementations. The
"Client VM" uses Sun's Hotspot incremental compilation technology and is highly tuned for running client-side Java
applications (as opposed to server applications). Thisisthe default VM. The "Classic VM" is essentially the same
VM used by Java 1l.2. To select the "Classic VM," specify the- cl assi ¢ option.

Just-In-Time Compiler

InJava 1.2, and in Java 1.3 when you specify the - cl assi ¢ option, the Javainterpreter uses ajust-in-time
compiler (if oneisavailable for your platform). A JT converts Java byte codes to native machine instructions at
runtime and significantly speeds up the execution of atypical Java program. If you do not want to use the JIT, you
can disableit by setting the JAVA_COVPI LER environment variable to "NONE" or thej ava. conpi | er system
property to "NONE" using the - D option:

% set env. JAVA_COWVPI LER NONE /1 Uni x syntax
% j ava -Djava. conpi | er=NONE MyPr ogr am

If you want to use a different JIT compiler implementation, set the environment variable or system property to the name of
the desired implementation.

Threading systems
On Solaris and related Unix platforms, you have a choice of the type of threads used by the Java 1.2 interpreter and
the"Classic VM" of Java 1.3. To use native OS threads, specify - nat i ve. To use nonnative, or green, threads (the

default), specify - gr een. In Java 1.3, the default "Client VM" uses native threads. Specifying - gr een or -
nati ve inJaval.3implicitly specifies- cl assi ¢ aswell.

Options
-classic
Runsthe "Classic VM" instead of the default high-performance "Client VM." Java 1.3 and later.
- ¢l asspat h path
Specifies the directories, JAR files, and ZIP files java searches when trying to load a class. In Java 1.0 and 1.1, and

with the oldjava interpreter, this option specifies the location of system classes, extension classes, and application
classes. In Java 1.2 and later, this option specifies only the location of application classes. See Loading Classes for

further details.

-cp
A synonym for - cl asspat h. Java1l.2 and later.

-Ccs,-checksource
Both options tell java to check the modification times on the specified classfile and its corresponding sourcefile. If

the classfile cannot be found or if it is out of date, it is automatically recompiled from the source. Java 1.0 and Java
1.1 only; these options are not availablein Java 1.2 and later.

file://IC|/orielly/jnut/ch08_01.htm (13 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

- Dpropertyname=value

Defines propertyname to equal value in the system properties list. Y our Java program can then look up the specified
value by its property name. Y ou can specify any number of - D options. For example:

% java -Daw . button. col or=gray -Dny.cl ass. poi ntsize=14 ny. cl ass
- debug

Causesjavato start up in away that allows the jdb debugger to attach itself to the interpreter session. In Java 1.2 and
later, this option has been replaced with - Xdebug.

-green
On operating systems such as Solaris that support multiple styles of threading, this option selects nonnative, or
green, threads. Thisisthe default in Java 1.2. In Java 1.3, using this option also selectsthe - cl assi ¢ option. See
aso-native. Javal.2 and later.

- hel p,-?

Prints a usage message and exits. See also - X.

-j ar jarfile

Runs the specified executable jarfile. The manifest of the specified jarfile must contain aMai n- Cl ass attribute
that identifies the classwith the mai n() method at which program execution is to begin. Java 1.2 and later.

- | digit
Sets the logging level for trace output. See-t and - t m java_g only.
-ms initmem[k| m

Specifies how much memory is allocated for the heap when the interpreter starts up. In Java 1.2 and later, this option
has been renamed - Xns.

- mx maxmem[k| nj

Specifies the maximum heap size the interpreter can use for dynamically allocated objects and arrays. In Java 1.2
and later, this option has been renamed - Xnx.

-nati ve

On operating systems such as Solaris that support multiple styles of threading, this option selects native threads,
instead of the default green threads. Using native threads can be advantageous in some circumstances, such as when
running on a multi-CPU computer. In Java 1.3, the default Hotspot virtual machine uses native threads. Selecting
thisoption in Java 1.3 implicitly selectsthe - cl assi ¢ option aswell. Java 1.2 and later.

file://IC|/orielly/jnut/ch08_01.htm (14 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)
- hoasyncgc

Do not do garbage collection asynchronously. With this option specified, java performs garbage collection only
when it runs out of memory or when the garbage collector is explicitly invoked. Without this option, java runs the
garbage collector as a separate, low-priority thread. Java 1.0 and Java 1.1 only; this option has been removed in Java
1.2 and later versions.

- nocl assgc

Do not garbage-collect |oaded classes no longer in use. This option was added in Java 1.1; it has been renamed to -
Xnocl assgc asof Javal.2.

-noverify

Never run the byte-code verifier. Java 1.0 and Java 1.1 only; this option has been removed in Java 1.2 and later
versions.

- 0Ss stacksize] k| n]
Sets the size of each thread's Java code stack. By default, stacksize is specified in bytes. Y ou can specify itin
kilobytes by appending the letter k or in megabytes by appending the letter m The default value is 400 KB. Y ou

must specify at least 1000 bytes. Java 1.0 and Java 1.1 only; this option has been removed in Java 1.2 and later
versions.

- prof [: file]

Outputs profiling information to the specified file or to the file java.prof in the current directory. The format of this
profiling information is not well-documented. Prior to Java 1.1, no file can be specified; profiling information is
always output to ./java.prof. Java 1.0 and Java 1.1 only; this option has been superseded in Java 1.2 by the -
Xr unhpr of optionandinJaval.3 by - Xpr of .

- shower si on

This option works like the - ver si on option, except that the interpreter continues running after printing the version
information. Java 1.3 and later.

- ss stacksize] k| m

Sets the size of each thread's native code stack. By default, stacksize is specified in bytes. Y ou can specify it in
kilobytes by appending the letter k or in megabytes by appending the letter m The default valueis 128 KB. You
must specify at least 1000 bytes. Java 1.0 and Java 1.1 only; this option has been removed in Java 1.2 and later
versions.

Outputs atrace of all byte codes executed. java_g only.

-tm

file://IC|/orielly/jnut/ch08_01.htm (15 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

Outputs a trace of all methods executed. java_g only.
-ver bose, -v,-verbose: cl ass

Prints a message each time java loads aclass. In Java 1.0 and Java 1.1, you can use - v asasynonym. In Java 1.2
and later, you can use - ver bose: cl ass asasynonym.

-ver bosegc

Prints a message when garbage collection occurs. In Java 1.2 and later, this option has been renamed -
ver bose: gc.

-ver bose: gc

Prints a message when garbage collection occurs. Java 1.2 and later. Prior to Java 1.2, use- ver bosegc.
-ver bose: j ni

Prints a message when native methods are called. Java 1.2 and later.
-verify

Runs the byte-code verifier on all classesthat are loaded. Java 1.0 and Java 1.1 only; this option has been removed
inJava 1.2 and later.

-verifyrenote

Runs the byte-code verifier on all classes that are |loaded through a class loader. (This generaly refers to classes that
are dynamically loaded from an untrusted location.) Thisis the default behavior for java. Java 1.0 and Java 1.1 only;
this option has been removed in Java 1.2 and later.

-Vversion

Prints the version of the Javainterpreter and exits.

-X
Displays usage information for the nonstandard interpreter options (those beginning with - X) and exits. See also -
hel p. Javal.2 and later.

- Xbat ch

Tells the Hotspot VM to perform all just-in-time compilation in the foreground, regardless of the time required for
compilation. Without this option, the VM compiles methods in the background while interpreting them in the
foreground. Java 1.3 and later.

- Xboot cl asspat h: path

file://IC|/orielly/jnut/ch08_01.htm (16 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

Specifies a search path consisting of directories, ZIP files, and JAR files the java interpreter should use to look up
system classes. With oldjava, use - cl asspat h to specify thisinformation. Use of this optionisvery rare. Java 1.2
and later.

- Xcheck: j ni
Performs additional checks when using Java Native Interface functions. Java 1.2 and later.
- Xdebug

Starts the interpreter in away that allows a debugger to communicate with it. Java 1.2 and later. Prior to Java 1.2,
use - debug.

-Xfuture

Strictly checks the format of al class files loaded. Without this option, java performs the same checks that were
performed in Java 1.1. Java 1.2 and | ater.

- Xi ncgc
Uses incremental garbage collection. In this mode the garbage collector runs continuously in the background, and a
running program israrely, if ever, subject to noticeable pauses while garbage collection occurs. Using this option
typicaly resultsin a 10% decrease in overall performance, however. Java 1.3 and later.

- Xi nt

Tells the Hotspot VM to operate in interpreted mode only, without performing any just-in-time compilation. Java
1.3 and later.

- Xm xed

Tells the Hotspot VM to perform just-in-time compilation on frequently used methods ("hotspots') and execute
other methods in interpreted mode. Thisis the default behavior. Java 1.3 and later.

- X initmem[k| m

Specifies how much memory is allocated for the heap when the interpreter starts up. By default, initmem is specified
in bytes. Y ou can specify it in kilobytes by appending the letter k or in megabytes by appending the letter m The
default is 1 MB. For large or memory-intensive applications (such as the Java compiler), you can improve runtime
performance by starting the interpreter with alarger amount of memory. Y ou must specify aninitial heap size of at
least 1000 bytes. Java 1.2 and later. Prior to Java 1.2, use - ns.

- Xmx maxmem[k| nj

Specifies the maximum heap size the interpreter uses for dynamically alocated objects and arrays. maxmemis
specified in bytes by default. Y ou can specify maxmem in kilobytes by appending the letter k and in megabytes by
appending the letter m The default is 16 MB. Y ou cannot specify a heap size less than 1000 bytes. Java 1.2 and
later. Prior to Java 1.2, use - nx.

file://IC|/orielly/jnut/ch08_01.htm (17 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

- Xnocl assgc
Do not garbage-collect classes. Java 1.2 and later. In Java 1.1, use- nocl assgc.
- Xpr of

Prints profiling output to standard output. Java 1.3 and later. In Java 1.2, or when using the - cl assi ¢ option, use -
Xrunhpr of . Prior to Java 1.2, use - pr of .

-Xrs

Requests that the interpreter use fewer operating system signals. This option may improve performance on some
systems. Java 1.2 and later.

- Xr unhpr of : suboptions

Turns on CPU, heap, or monitor profiling. suboptions is acomma-separated list of nane=val ue pairs. Use -
Xrunhpr of : hel p for alist of supported options and values. Java 1.2 and later. Prior to Java 1.2, rudimentary
profiling support is available with the - pr of option. In Java 1.3, this option is supported if - cl assi ¢ isused, but
is not supported by the new Hotspot VM. See - Xpr of .

Loading Classes

The Java interpreter knows where to find the system classes that comprise the Java platform. In Java 1.2 and later, it also
knows where to find the class files for all extensionsinstalled in the system extensions directory. However, the interpreter
must be told where to find the nonsystem classes that comprise the application to be run.

Classfiles are stored in directories that correspond to their package name. For example, the class
com davi df | anagan. utils. Uil isstoredin afile com/davidflanagan/utils/Util.class. By default, the interpreter
uses the current working directory as the root and looks for all classesin and beneath this directory.

The interpreter can also search for classes within ZIP and JAR files. To tell the interpreter where to look for classes, you
specify aclasspathe: alist of directories and ZIP and JAR archives. When looking for a class, the interpreter searches each
of the specified locations in the order in which they are specified.

The easiest way to specify a classpath isto set the CLASSPATH environment variable, which works much like the PATH
variable used by a Unix shell or aWindows command-interpreter path. To specify a classpath in Unix, you might type a
command like this:

% set env CLASSPATH .:~/nyclasses:/usr/lib/javautils.jar:/usr/lib/javaapps
On aWindows system, you might use a command like the following:
C.\> set CLASSPATH=.;c:\nycl asses;c:\javat ool s\cl asses. zi p; d: \j avaapps

Note that Unix and Windows use different characters to separate directory and path components.

file://IC|/orielly/jnut/ch08_01.htm (18 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

Y ou can also specify a classpath with the - cl asspat h or - cp options to the Javainterpreter. A path specified with one
of these options overrides any path specified by the CLASSPATH environment variable. In Java 1.2 and later, the -

cl asspat h option specifies only the search path for application and user classes. Prior to Java 1.2, or when using the
oldjava interpreter, this option specifies the search path for all classes, including system classes and extension classes.

See Also: javac, jdb

javac JDK 1.0 and later

The Java Compiler

Synopsis

javac [options | files
ol djavac [options] files

Description

javac is the Java compiler; it compiles Java source code (in .java files) into Java byte codes (in .classfiles). The Java
compiler isitself written in Java. The Java compiler has been completely rewritten in Java 1.3, and its performance has
been substantially improved. Although the new javac is substantially compatible with previous versions of the compiler,
the old version of the compiler is provided as oldjavac.

javac can be passed any number of Java source files, whose names must all end with the .java extension. javac produces a
separate .class classfile for each class defined in the source files. Each source file can contain any number of classes,
although only one can be apubl i ¢ top-level class. The name of the source file (minus the .java extension) must match the
name of the publ i ¢ classit contains.

In Java 1.2 and later, if afilename specified on the command line begins with the character @ that file is taken not as a Java
sourcefile, but asalist of Javasourcefiles. Thus, if you keep alist of Java source filesfor a particular project in afile
named project.list, you can compile all those files at once with the command:

% javac @roject.|ist

To compile a sourcefile, javac must be able to find definitions of all classes used in the source file. It looks for definitions
in both source-file and class-file form, automatically compiling any source files that have no corresponding class files or
that have been modified since they were most recently compiled.

Options
- boot cl asspat h path

Specifies the search pathjavac uses to ook up system classes. This option is handy when you are using javac as a
cross-compiler to compile classes against different versions of the Java API. For example, you might use the Java
1.3 compiler to compile classes against the Java 1.2 runtime environment. This option does not specify the system

file:///C|/orielly/jnut/ch08_01.htm (19 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

classes used to run the compiler itself, only the system classes read by the compiler. Seeaso - ext di r s and -
t ar get . Javal.2 and later.

- cl asspat h path
Specifies the path javac usesto look up classes referenced in the specified source code. This option overrides any
path specified by the CLASSPATH environment variable. The path specified is an ordered list of directories, ZIP
files, and JAR archives, separated by colons on Unix systems or semicolons on Windows systems. If the -
sour cepat h option is not set, this option also specifies the search path for source files.
Prior to Java 1.2, this option specifies the path to system and extension classes, as well as user and application

classes, and must be used carefully. In Java 1.2 and later, it specifies only the search path for application classes. See
the discussion of "Loading Classes' in the documentation for the java command for further information.

- d directory
Specifies the directory in which (or beneath which) class files should be stored. By default, javac stores the .class
filesit generates in the same directory asthe .java files those classes were defined in. If the - d option is specified,
however, the specified directory is treated as the root of the class hierarchy, and .class files are placed in this
directory or the appropriate subdirectory below it, depending on the package name of the class. Thus, the following
command:

% javac -d /javalcl asses Checkers.java

places the file Checkers.classin the directory /java/classes if the Checkers.java file hasno package statement. On the
other hand, if the source file specifies that it isin a package:

package com davi df | anagan. ganes;

the .classfileis stored in /javal/classes/convdavidflanagan/games. When the - d option is specified, javac automatically
creates any directories it needs to store its class files in the appropriate place.

- depend
Tellsjavac to recursively search for out-of-date class filesin need of recompilation. This option forces athorough
compilation, but can slow the process down significantly. In Java 1.2 and later, this option has been renamed -
Xdepend.

- deprecation

Tellsjavac to issue awarning for every use of a deprecated API. By default, javac issues only a single warning for
each source file that uses deprecated APIs. Java 1.1 and later.

- extdi rs path

Specifies alist of directoriesto search for extension JAR files. It isused along with - boot cl asspat h when
doing cross-compilation for different versions of the Java runtime environment. Java 1.2 and | ater.

-9

file://IC|/orielly/jnut/ch08_01.htm (20 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

Tellsjavac to add line number, source file, and local variable information to the output class files, for use by
debuggers. By default, javac generates only the line numbers.

- g: hone
Tellsjavac to include no debugging information in the output classfiles. Java 1.2 and later.
- 9: keyword-list

Tellsjavac to output the types of debugging information specified by the comma-separated keyword-list. The valid
keywords are: sour ce, which specifies source-file information; | i nes, which specifies line number information;
and var s, which specifies local variable debugging information. Java 1.2 and later.

- Jjavaoption
Passes the argument javaoption directly through to the Java interpreter. For example: - J- Xmx32m javaoption
should not contain spaces; if multiple arguments must be passed to the interpreter, use multiple - J options. Javal.l
and later.

- nowar n
Tellsjavac not to print warning messages. Errors are still reported as usual .

-nowrite
Tellsjavac not to create any class files. Source files are parsed as usual, but no output iswritten. This optionis

useful when you want to check that afile will compile without actually compiling it. Java 1.0 and Java 1.1 only; this
option is not available in Java 1.2 and later.

Enables optimization of class filesto improve their execution speed. Using this option can result in larger classfiles
that are difficult to debug and cause longer compilation times. Prior to Java 1.2, this option is incompatible with - g;
turning on - Oimplicitly turns off - g and turnson - depend.

- sour cepat h path

Specifiesthelist of directories, ZIP files, and JAR archives that javac searches when looking for sourcefiles. The
files found in this source path are compiled if no corresponding class files are found or if the source files are newer
than the classfiles. By default, source files are searched for in the same places class files are searched for. Java 1.2
and later.

-target version

Specifies the class-file-format version to use for the generated classfiles. The default version is 1.1, which generates
classfilesthat can be read and executed by Java 1.0 and later virtual machines. If you specify version as 1.2, javac
increments the class file version number, producing a class file that does not run with aJava 1.0 or Javal.l

file://IC|/orielly/jnut/ch08_01.htm (21 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

interpreter. There have not been any actual changes to the Java class-file format; the new version number issimply a
convenient way to prevent classes that depend on the many new features of Java 1.2 from being run on out-of-date
interpreters.

-ver bose

Tells the compiler to display messages about what it is doing. In particular, it causes javac to list all the source files
it compiles, including files that did not appear on the command line.

-X
Tellsthe javac compiler (and, in Java 1.3, the oldjavac compiler) to display usage information for its nonstandard
options (all of which begin with - X). Java 1.2 and oldjavac only.

- Xdepend
Tellsjavac to recursively search for source files that need recompilation. This causes a very thorough but time-
consuming compilation process. Java 1.2 and oldjavac only.

- Xst dout

Tellsjavac to send warning and error messages to the standard output stream instead of the standard error stream.
Java 1.2 and oldjavac only.

- Xver bosepat h

Displays verbose output explaining where various class files and source files were found. Java 1.2 and oldjavac
only.

Environment

CLASSPATH

Specifies an ordered list (colon-separated on Unix, semicolon-separated on Windows systems) of directories, ZIP
files, and JAR archivesin which javac should look for user class files and source files. This variable is overridden
by the - cl asspat h option.

See Also: java, jdb

JDK 1.0

Javadoc and later

The Java Documentation
Gener ator

file:///C|/orielly/jnut/ch08_01.htm (22 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

Synopsis
javadoc [options] package... sourcefiles... @ists...

Description

javadoc generates APl documentation, in HTML format (by default), for any number of packages and classes you specify.
The javadoc command line can list any number of package names and any number of Java source files. For convenience,
when working with alarge number of packages or source files, you can list them al in an auxiliary file and specify the
name of that file on the command line, preceded by an @character.

javadoc uses the javac compiler to process all the specified Java source files and al the Java sourcefilesin all the specified
packages. It uses the information it gleans from this processing to generate detailed APl documentation. Most importantly,
the generated documentation includes the contents of all documentation comments included in the source files. See Chapter
7, "Java Programming and Documentation Conventions”, for information about writing doc comments in your own Java
code.

When you specify a Java source file for javadoc to process, you must specify the name of the file that contains the source,
including a complete path to the file. It is more common, however, to use javadoc to create documentation for entire
packages of classes. When you specify a package for javadoc to process, you specify the package name, not the directory
that contains the source code for the package. In this case, you may need to specify the - sour cepat h option so that
javadoc can find your package source code correctly if it is not stored in alocation aready listed in your default classpath.

javadoc creates HTML documentation by default, but you can customize its behavior by defining a doclet class that
generates documentation in whatever format you desire. Y ou can write your own doclets using the doclet API defined by
thecom sun. j avadoc package. Documentation for this package is included in the standard documentation bundle for
Java 1.2 and later.

javadoc has significant new functionality as of Java 1.2. This reference page documents the Java 1.2 and later versions of
the program, but makes no attempt to distinguish new features of the Java 1.2 version from the features that existed in
previous versions.

Options

javadoc defines a large number of options. Some are standard options that are aways recognized by javadoc. Other options
are defined by the doclet that produces the documentation. The options for the standard HTML doclet are included in the
following list:

-1.1
Simulates the output style and directory structure of the Java 1.1 version of javadoc.
- aut hor
Includes authorship information specified with @ut hor in the generated documentation. Default doclet only.

- boot cl asspat h

file://IC|/orielly/jnut/ch08_01.htm (23 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

Specifies the location of an alternate set of system classes. This can be useful when cross-compiling. See javac for
more information on this option.

- bot t omtext

Displaystext at the bottom of each generated HTML file. text can contain HTML tags. See also - f oot er . Default
doclet only.

- char set encoding

Specifies the character encoding for the output. This depends on the encoding used in the documentation comments
of your source code, of course. The encoding valueis used in a<META> tag in the HTML output. Default doclet
only.

- ¢l asspat h path

Specifies a path javadoc uses to look up both class files and, if you do not specify the - sour cepat h option,
source files. Because javadoc uses the javac compiler, it needsto be able to locate class files for all classes
referenced by the packages being documented. See java and javac for more information about this option and the
default value provided by the CLASSPATH environment variable.

- d directory

Specifies the directory in and beneath which javadoc should store the HTML filesit generates. If thisoption is
omitted, the current directory is used. Default doclet only.

- docencodi ng encoding

Specifies the encoding to be used for output HTML documents. The name of the encoding specified here may not
exactly match the name of the charset specified with the - char set option. Default doclet only.

-docl et classname

Specifies the name of the doclet class to use to generate the documentation. If this option is not specified, javadoc
generates documentation using the default HTML doclet.

- docl et pat h classpath

If the class specified by the - docl et tag is not available from the default classpath, this option specifies a path
from which it can be |oaded.

-doctitl e text

Provides atitle to display at the top of the documentation overview file. Thisfileis often the first thing readers see
when they browse the generated documentation. The title can contain HTML tags. Default doclet only.

- encodi ng encoding-name

file://IC|/orielly/jnut/ch08_01.htm (24 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

Specifies the character encoding of the input source files and the documentation comments they contain. This can be
different from the desired output encoding specified by - docencodi ng. The default is the platform default
encoding.

-extdirsdirlist

Specifies alist of directories to search for standard extensions. Only necessary when cross-compiling with -
boot cl asspat h. Seejavac for details.

-f oot er text

Specifies text to be displayed near the bottom of each file, to the right of the navigation bar. text can contain HTML
tags. Seedso - bot t omand - header . Default doclet only.

- gr oup title packagelist
javadoc generates atop-level overview page that lists al packages in the generated document. By default, these
packages are listed in alphabetical order in asingle table. Y ou can break them into groups of related packages with
this option, however. Thetitle specifies the title of the package group, such as "Core Packages." The packagelist isa

colon-separated list of package names, each of which can include atrailing * character as awildcard. The javadoc
command line can contain any number of - gr oup options. For example:

j avadoc -group "AW Packages" java.aw*
-group "Sw ng Packages" javax.accessibility:javax.sw ng*

- header text

Specifies text to be displayed near the top of each file, to the right of the upper navigation bar. text can contain
HTML tags. Seedso-footer,-doctitle,and-w ndow i tl e. Default doclet only.

- hel p
Displays a usage message for javadoc.
-hel pfil efile

Specifies the name of an HTML file that contains help for using the generated documentation. javadoc includes
linksto thishelp filein all files it generates. If this option is not specified, javadoc creates a default help file. Default
doclet only.

- Jjavaoption

Passes the argument javaoption directly through to the Java interpreter. When processing alarge number of

packages, you may need to use this option to increase the amount of memory javadoc is alowed to use. For
example:

% j avadoc -J- Xnmx64m

file://IC|/orielly/jnut/ch08_01.htm (25 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

-1ink url

Specifies an absolute or relative URL of the top-level directory of another javadoc-generated document. javadoc
uses this URL asthe base URL for links from the current document to packages, classes, methods, and fields that are
not documented in the current document. For example, when using javadoc to produce documentation for your own
packages, you can use this option to link your documentation to the javadoc documentation for the core Java APIs.
Default doclet only.

The directory specified by url must contain afile named package-list, and javadoc must be able to read thisfile at
runtime. Thisfile is automatically generated by a previous run of javadoce; it contains alist of all packages
documented at the url.

Morethan one- | i nk option can be specified, athough this does not work properly in early releases of Java 1.2. If
no - | i nk option is specified, references in the generated documentation to classes and members that are external to
the documentation are not hyperlinked.

-1 i nkof f | i ne url packagelist

Thisoptionislikethe- | i nk option, except that the packagelist fileis explicitly specified on the command line.
Thisis useful when the directory specified by url does not have a package-list file or when that file is not available
when javadoc is run. Default doclet only.

- | ocal e language country variant

Specifies the locale to use for generated documentation. Thisis used to look up aresource file that contains
localized messages and text for the output files.

- nodepr ecat ed

Tells javadoc to omit documentation for deprecated features. This option implies- nodepr ecat edl i st . Default
doclet only.

- nodepr ecat edl i st

Tells javadoc not to generate the deprecated-list.html file and not to output alink to it on the navigation bar. Default
doclet only.

-nohel p

Tellsjavadoc not to generate ahelp file or alink to it in the navigation bar. Default doclet only.
- noi ndex

Tells javadoc not to generate index files. Default doclet only.
- nonavbar

Tellsjavadoc to omit the navigation bars from the top and bottom of every file. Also omits the text specified by -

file://IC|/orielly/jnut/ch08_01.htm (26 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

header and - f oot er . Thisis useful when generating documentation to be printed. Default doclet only.
-notree

Tells javadoc not to generate the tree.html class hierarchy diagram or alink to it in the navigation bar. Default doclet
only.

-over vi ewfilename

Reads an overview doc comment from filename and uses that comment in the overview page. This file does not
contain Java source code, so the doc comment should not actually appear between/ ** and */ delimiters.

- package

Includes package-visible classes and members in the output, aswell aspubl i ¢ and pr ot ect ed classes and
members.

-private

Includes all classes and members, including pr i vat e and package-visible classes and members, in the generated
documentation.

- protected
Includespubl i ¢ and pr ot ect ed classes and membersin the generated output. Thisis the default.
-public

Includes only publ i ¢ classes and members in the generated output. Omits pr ot ect ed, pri vat e, and package-
visible classes and members.

-seri al warn

I ssues warnings about serializable classes that do not adequately document their serialization format with @er i al
and related doc-comment tags. Default doclet only.

- sour cepat h path

Specifies a search path for source files, typically set to asingle root directory. javadoc uses this path when looking
for the Java source files that implement a specified package.

-splitindex

Generates multiple index files, one for each letter of the alphabet. Use this option when documenting large amounts
of code. Otherwise, the single index file generated by javadoc will be too large to be useful. Default doclet only.

-styl esheetfil efile

file://IC|/orielly/jnut/ch08_01.htm (27 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

Specifies afile to use as a CSS stylesheet for the generated HTML. javadoc inserts appropriate links to thisfilein
the generated documentation. Default doclet only.

-use

Generates and inserts links to an additional file for each class and package that lists the uses of the class or package.
-ver bose

Displays additional messages while processing sourcefiles.
-version

Includes information from @ er si on tags in the generated output. This option does not tell javadoc to print its
own version number. Default doclet only.

-wi ndowti tl e text

Specifies text to be output in the <Tl TLE> tag of each generated file. Thistitle typically appearsin the web-
browser titlebar and its history and bookmarks lists. text should not contain HTML tags. Seealso- doctitl e and -
header . Default doclet only.

Environment
CLASSPATH

This environment variable specifies the default classpath javadoc uses to find the class files and sourcefiles. It is
overridden by the - cl asspat h and - sour cepat h options. See java and javac for further discussion of the

classpath.

See Also: java, javac

JDK 1.0 and

javah \ater

Native Method C Stub
Generator

Synopsis
javah [options] classnanes

Description

file:///C|/orielly/jnut/ch08_01.htm (28 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

javah generates C header and source files (.h and .c files) that are used when implementing Java native methodsin C. The
preferred native method interface has changed between Java 1.0 and Java 1.1. In Java 1.1 and earlier, javah generatesfiles
for old-style native methods. In Java 1.1, the - j ni option specifies that javah should generate new-style files. In Java 1.2
and later, this option becomes the defaullt.

This reference page describes only how to use javah. A full description of how to implement Java native methodsin Cis
beyond the scope of this book.

Options
- boot cl asspat h

Specifies the path to search for system classes. See javac for further discussion. Java 1.2 and | ater.
- cl asspat h path

The path javah uses to look up the classes named on the command line. This option overrides any path specified by
the CLASSPATH environment variable. Prior to Java 1.2, this option can specify the location of the system classes
and extensions. In Java 1.2 and later, it specifies only the location of application classes. See - boot cl asspat h.
See dso java for further discussion of the classpath.

- d directory

Specifies the directory into which javah stores the filesit generates. By default, it stores them in the current
directory. This option cannot be used with - 0.

-force

Always write output files, even if they contain no useful content.
- hel p

Causes javah to display a simple usage message and exit.
-jni

Specifies that javah should output header files for use with the new Java Native Interface (INI), rather than using the
old JDK 1.0 native interface. This option isthe default in Java 1.2 and later. See also - ol d. Java 1.1 and later.

- 0 outputfile
Combines al output into asingle file, outputfile, instead of creating separate files for each specified class.
-old

Outputs files for Java 1.0-style native methods. Prior to Java 1.2, this was the default. Seeaso-j ni . Javal.2 and
later.

file://IC|/orielly/jnut/ch08_01.htm (29 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

- st ubs

Generates .c stub files for the class or classes, instead of header files. Thisoption is only for the Java 1.0 native
methods interface. See - ol d.

- t d directory
Specifies the directory where javah should store temporary files. On Unix systems, the default is /tmp.
-trace

Specifies that javah should include tracing output commands in the stub files it generates. In Java 1.2 and later, this
option is obsolete and has been removed. Inits place, you can usethe - ver bose: j ni option of the Java
interpreter.

-V,-verbose

Verbose mode. Causes javah to print messages about what it is doing. In Java 1.2 and later, - ver bose isa
synonym.

-version

Causes javah to display its version number.

Environment
CLASSPATH

Specifies the default classpath javah searches to find the specified classes. See java for afurther discussion of the
classpath.

See Also: java, javac

JDK 1.1; Superseded

Javakey in Java2 SDK 1.2

Key Management and
Digital Signatures

Synopsis

j avakey options

file:///C|/orielly/jnut/ch08_01.htm (30 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

Description

javakey provides a command-line interface to a number of complex key and certificate generation and management tasks,
including the generation of digital signatures. In Java 1.2 and later, javakey has been superseded by two new tools, keytool
for managing keys and certificates and jarsigner for digitally signing code. Dueto bugsin Java 1.1, digital signatures
generated by javakey are not recognized in Java 1.2. Likewise, signatures generated by the new jarsigner tool are not
recognized by Java 1.1.

javakey manages a system database of entities. Each entity can have public and private keys and/or certificates associated
with it. In addition, each entity can be declared to be trusted or not. Any entity in the database can be an identity or asigner.
Identities have only a public key associated with them, while signers have both a public and private key and thus can sign
files.

Options
javakey defines alarge number of options that perform anumber of distinct operations:
- ¢ identity-name [t rue| f al se]

Creates and adds a new identity entity to the database, using the specified name. If identity-name is followed by
t r ue, it declares the identity to be trusted. Otherwise, it is untrusted.

- cs signer-name[true| f al se]

Creates and adds a new signer entity to the database, using the specified name. If signer-nameisfollowed by t r ue,
declares the signer to be trusted. Otherwise, it is untrusted.

-t entity-namet r ue| f al se

Specifies whether the named entity istrusted (t r ue) or not (f al se).

Lists the names of all entitiesin the security database.

Lists the names and other details about all entitiesin the security database.
-1i entity-name

Lists detailed information about the named entity from the security database.
- r entity-name

Removes the named entity from the security database.
- i k identity-name keyfile

file://IC|/orielly/jnut/ch08_01.htm (31 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

Imports akey by reading a public key from the specified file and associating it with the named identity. The key
must be in X.509 format.

- i kp signer-name pubkeyfile privkeyfile

Imports akey pair by reading the specified public-key and private-key files and associating them with the named
signer entity. The keys must be in X.509 format.

- 1 ¢ entity-name certificate-file

Imports a certificate by reading a certificate from the named certificate file and associating it with the named entity.
If the entity already has a public key, comparesit to the key in the certificate and issues awarning if they don't
match. If the entity has no public key assigned, uses the public key from the certificate.

-1 1 entity-name
Imports information, allowing you to enter arbitrary textual information about an entity into the database.
- gk signer algorithm size [pubfile [privfile]]

Generates a public and private key and associates them with the named signer. Uses the specified algorithm.
Currently, the only supported algorithm is"DSA". Generates keys of the specified number of bits, which must be
between 512 and 1024. If pubfileis specified, writes the public key to the specified file. If privfileis specified,
writes the private key to the specified file.

- g signer algorithm size [pubfile [privfile]]
A synonym for the - gk command.
- gc directivefile

Generates a certificate according to the parameters specified in the directive file. The directivefileisa
Properti es filethat must provide values for the following named properties:

i ssuer . nane
The name of the entity issuing the certificate
i ssuer. cert

The issuer's certificate number to be used to sign the generated certificate (unless the certificate is self-
signed)

subj ect . nane

The database name of the entity to which the certificate is being issued

file://IC|/orielly/jnut/ch08_01.htm (32 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

subj ect . real . nanme
The real name of the entity to which the certificate is being issued
subj ect. country
The country the subject entity isin
subj ect.org
The organization with which the subject entity is affiliated
subj ect.org. unit
A division within the subject's organization
start.date
The starting date (and time) of the certificate
end. dat e
The ending date (and time) of the certificate
seri al . nunber
A serial number for the certificate; this number must be unique among all certificates generated by the issuer
out.file
An optional filename that specifies the file to which the certificate should be written
- dc certfile
Displays the contents of the certificate stored in certfile.
- ec entity certificate-number file

Exports the numbered certificate of the specified entity into the specified file. Usethe- 1 i command to inspect the
certificate numbers for a given entity.

- ek entity pubfile [privfile]

Exports the public key of the specified entity into the specified file. If the entity isasigner and the privfileis
specified, additionally exports the private key of the entity to that file.

- gs directivefilejarfile

file://IC|/orielly/jnut/ch08_01.htm (33 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

Generates, or applies, adigital signature to the specified JAR file, using the directives in the specified directivefile.
ThedirectivefileisaPr operti es filethat must provide values for the following named properties:

si gner
The entity name of the signer
cert
The certificate number to use for the signature
chain
The length of achain of certificates to include (not currently supported; specify 0)
signature.file

The basename of the signature file and signature block to be inserted into the JAR file; must be eight
characters or less and should not conflict with any other digital signatures that may be inserted into the JAR
file

out.file
This optional property specifies the name that should be used for the signed JAR file that is generated.

See Also: jar, jarsigner, keytool

javap JDK 1.0 and later

The Java Class Disassembler

Synopsis
javap [options] classnanes
Description

javap reads the class files specified by the class names on the command line and prints a human-readable version of the
API defined by those classes. javap can aso disassemble the specified classes, displaying the JavaVM byte codes for the
methods they contain.

Options

-b

file:///C|/orielly/jnut/ch08_01.htm (34 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

Enables backward compatibility with the output of the Java 1.1 version of javap. This option exists for program that
depends on the precise output format of javap. Java 1.2 and later.

- boot cl asspat h path

Specifies the search path for the system classes. See javac for information about this rarely used option. Java 1.2 and
later.

Displaysthe code (i.e., Java VM byte codes) for each method of each specified class. This option aways
disassembles all methods, regardiess of their visibility level.

- cl asspat h path

Specifies the path javap uses to look up the classes named on the command line. This option overrides the path
specified by the CLASSPATH environment variable. Prior to Java 1.2, this argument specifies the path for all system
classes, extensions, and application classes. In Java 1.2 and later, it specifies only the application classpath. See also -
boot cl asspat h and - ext di r s. Seejava and javac for more information on the classpath.

-extdirsdirs

Specifies one or more directories that should be searched for extension classes. See javac for information about this
rarely used option. Java 1.2 and later.

Displays tables of line numbers and local variables, if available in the classfiles. This option istypically useful only
when used with - ¢. The javac compiler does not include local variable information in its class files by default. See
the - g and related optionsto javac.

-hel p

Prints a usage message and exits.
- Jjavaoption

Passes the specified javaoption directly to the Javainterpreter.
- package

Displays package-visible, pr ot ect ed, and publ i ¢ class members, but not pri vat e members. Thisisthe
default.

-private

Displays all class members, including pri vat e members.

file://IC|/orielly/jnut/ch08_01.htm (35 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

- protected
Displaysonly pr ot ect ed and publ i ¢ members.
-public

Displaysonly publ i ¢ members of the specified classes.

Outputs the class member declarations using the internal VM type and method signature format, instead of the more
readabl e source-code format.

-ver bose

Verbose mode. Outputs additional information (in the form of Java comments) about each member of each specified
class.

-verify

Causes javap to perform partial class verification on the specified class or classes and display the results. Java 1.0
and 1.1. only; this option has been removed in Java 1.2 and later because it does not perform a sufficiently thorough
verification.

-version

Causes javap to display its version number.
Environment

CLASSPATH

Specifies the default search path for application classes. The - cl asspat h option overrides this environment
variable. See java for a discussion of the classpath.

See Also: java, javac

jdb JDK 1.0 and later

The Java Debugger

Synopsis

jdb [options] class [program options |
j db connect options

file:///C|/orielly/jnut/ch08_01.htm (36 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

Description

jdb is adebugger for Java classes. It is text-based, command-line-oriented, and has a command syntax like that of the Unix
dbx or gdb debuggers used with C and C++ programs.

jdbiswritten in Java, so it runs within a Java interpreter. When jdb is invoked with the name of a Java class, it starts
another copy of the java interpreter, using any interpreter options specified on the command line. The new interpreter is
started with special options that enable it to communicate with jdb. The new interpreter |oads the specified class file and
then stops and waits for debugging commands before executing the first byte code.

jdb can also debug a program that is already running in another Java interpreter. Doing so requires special options be
passed to both the java interpreter and to jdb. The Java debugging architecture has changed dramatically with the
introduction of Java 1.3, and so have the java and jdb options used to allow jdb to connect to a running interpreter.

jdb Expression Syntax

jdb debugging commands such aspr i nt , dunp, and suspendx alow you to refer to classes, objects, methods, fields,
and threads in the program being debugged. Y ou can refer to classes by name, with or without their package names. Y ou
can also refer to st at i ¢ class members by name. Y ou can refer to individual objects by object ID, which is an eight-digit
hexadecimal integer. Or, when the classes you are debugging contain local variable information, you can often use local
variable names to refer to objects. Y ou can use normal Java syntax to refer to the fields of an object and the elements of an
array; you can also use this syntax to write quite complex expressions. In Java 1.3, jdb even supports method invocation
using standard Java syntax.

A number of jdb commands require you to specify athread. Each thread is given an integer identifier and is named using
the syntax t @, where nisthethread ID.

Options

When invoking jdb with a specified classfile, any of the java interpreter options can be specified. See the java reference
page for an explanation of these options. In addition, jdb supports the following options:

- att ach [host:]port

Specifies that jdb should connect to the Java"Client VM" that is already running on the specified host (or the local
host, if unspecified) and listening for debugging connections on the specified port. Java 1.3 and later.

In order to use jdb to connect to arunning VM in thisway, the VM must have been started with a command line
something like this:

% j ava - Xdebug - Xrunj dwp: transport =dt_socket, addr ess=8000, server =y, suspend=n

The Java 1.3 jdb architecture allows a complex set of interpreter-to-debugger connection options, and java and jdb provide
acomplex set of options and suboptions to enableit. A detailed description of those optionsis beyond the scope of this
book.

-hel p

file://IC|/orielly/jnut/ch08_01.htm (37 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

Displays a usage message listing supported options.
- host hostname

In Java 1.2 and earlier, this option is used to connect to an already running interpreter. It specifies the name of the
host upon which the desired interpreter session is running. If omitted, the default is the local host. This option must
be used with - passwor d. In Java 1.3, this option has been replaced by the - at t ach option.

-l aunch

Starts the specified application when jdb starts. This avoids the need to explicitly use ther un command to start it.
Java 1.3 and later.

- passwor d password

In Java 1.2 and earlier, this option specifies a password that uniquely identifies a Java VM on a particular host.
When used in conjunction with - host nane, this option enables jdb to connect to arunning interpreter. The
interpreter must have been started with the - debug or - Xdebug option, which causesit to display an appropriate
password for use with this option. In Java 1.3, this option has been replaced by the - at t ach option.

- sour cepat h path

Specifies the locations jdb searches when attempting to find source files that correspond to the class files being
debugged. If unspecified, jdb uses the classpath by default. Java 1.3 and later.

-tclassic

Tellsjdb to invoke the "Classic VM" instead of the "Client VM" (Hotspot), which isthe default VM in Java 1.3.
Java 1.3 and later.

-version

Displays the jdb version number and exits.
Commands
jdb understands the following debugging commands:
? or hel p

Lists al supported commands, with a short explanation of each.

A shorthand command that is replaced with the text of the last command entered. 1t can be followed with additional
text that is appended to that previous command.

file://IC|/orielly/jnut/ch08_01.htm (38 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

cat ch [exception-class|

Causes a breakpoint whenever the specified exception is thrown. If no exception is specified, the command lists the
exceptions currently being caught. Usei gnor e to stop these breakpoints from occurring.

cl asses
Lists all classes that have been loaded.
cl ear
Listsall currently set breakpoints.
cl ear classmethod [(param-type...)]
Clears the breakpoint set in the specified method of the specified class.
cl ear [classiline]
Removes the breakpoint set at the specified line of the specified class.
cont
Resumes execution. This command should be used when the current thread is stopped at a breakpoint.
down[n]
Moves down n frames in the call stack of the current thread. If n isnot specified, moves down one frame.
dump id...

Prints the value of all fields of the specified object or objects. If you specify the name of aclass, dunp displaysall
class (static) methods and variables of the class, and also displays the superclass and list of implemented interfaces.
Objects and classes can be specified by name or by their eight-digit hexadecimal 1D numbers. Threads can also be
specified with the shorthand t @hread-number.

exit orquit

Quits jdb.
gc

Runs the garbage collector to force unused objects to be reclaimed.
i gnor e exception-class

Does not treat the specified exception as a breakpoint. This command turns off acat ch command. This command
does not cause the Javainterpreter to ignore exceptions; it merely tellsjdb to ignore them.

file://IC|/orielly/jnut/ch08_01.htm (39 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

['ist [line-number]

Lists the specified line of source code as well as several lines that appear before and after it. If no line number is
specified, uses the line number of the current stack frame of the current thread. The lines listed are from the source
file of the current stack frame of the current thread. Use the use command to tell jdb where to find source files.

l'i st method

Displays the source code of the specified method.
| oad classname

L oads the specified classinto jdb.
| ocal s

Displays alist of local variables for the current stack frame. Java code must be compiled with the - g option in order
to contain local variable information.

menory
Displays a summary of memory usage for the Java program being debugged.
met hods class

Lists al methods of the specified class. Use dunp to list the instance variables of an object or the class (static)
variables of aclass.

print id..
Prints the value of the specified item or items. Each item can be a class, object, field, or local variable, and can be
specified by name or by eight-digit hexadecimal ID number. Y ou can also refer to threads with the special syntax
t @hread-number. The pri nt command displays an object's value by invoking itst oSt ri ng() method.

next
Executes the current line of source code, including any method calls it makes. See also st ep.

resune [thread-id...]

Resumes execution of the specified thread or threads. If no threads are specified, all suspended threads are resumed.
See also suspend.

run|class] [args]

Runsthe mai n() method of the specified class, passing the specified arguments to it. If no class or arguments are
specified, uses the class and arguments specified on the jdb command line.

file://IC|/orielly/jnut/ch08_01.htm (40 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)
step

Runs the current line of the current thread and stops again. If the line invokes a method, steps into that method and
stops. See also next .

st epi
Executes asingle Java VM instruction.
step up
Runs until the current method returns to its caller and stops again.
stop
Lists current breakpoints.
st op at classline

Sets a breakpoint at the specified line of the specified class. Program execution stops when it reaches thisline. Use
cl ear toremove abreakpoint.

st op i n class.method [(param-type...)]

Sets a breakpoint at the beginning of the specified method of the specified class. Program execution stops when it
enters the method. Use cl ear to remove a breakpoint.

suspend [thread-id...]

Suspends the specified thread or threads. If no threads are specified, suspends all running threads. User esune to
restart them.

t hr ead thread-id

Sets the current thread to the specified thread. This thread is used implicitly by a number of other jdb commands.
The thread can be specified by name or number.

t hr eadgr oup name
Sets the current thread group.
t hr eadgr oups
Listsall thread groups running in the Javainterpreter session being debugged.

t hr eads [threadgroup]

file://IC|/orielly/jnut/ch08_01.htm (41 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

Listsall threads in the named thread group. If no thread group is specified, lists al threads in the current thread
group (specified by t hr eadgr oup).

up[n]
Moves up n frames in the call stack of the current thread. If n is not specified, moves up one frame.
use [source-file-path]

Sets the path used by jdb to look up source files for the classes being debugged. If no path is specified, displays the
current source path.

wher e [thread-id] [al |]

Displays a stack trace for the specified thread. If no thread is specified, displays a stack trace for the current thread.
If al | isspecified, displays astack trace for all threads.

wher ei [thread-id X]

Displays a stack trace for the specified or current thread, including detailed program counter information.

Environment

CLASSPATH

Specifies an ordered list (colon-separated on Unix, semicolon-separated on Windows systems) of directories, ZIP
files, and JAR archives in which jdb should look for class definitions. When a path is specified with this
environment variable, jdb always implicitly appends the location of the system classes to the end of the path. If this
environment variable is not specified, the default path is the current directory and the system classes. Thisvariableis
overridden by the - cl asspat h option.

See Also: java

Java 2 SDK

keytool 1.2 and later

Key and Certificate M anagement
Tool

Synopsis

keyt ool conmand opti ons

file:///C|/orielly/jnut/ch08_01.htm (42 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

Description

keytool manages and manipulates a keystore : arepository for public and private keys and public-key certificates. keytool
defines various commands for generating keys, importing data into the keystore, and exporting and displaying keystore
data. Keys and certificates are stored in a keystore using a case-insensitive name, or alias. keytool usesthis aliasto refer to
akey or certificate.

The first option to keytool always specifies the basic command to be performed. Subsequent options provide details about

how the command is to be performed. Only the command must be specified. If acommand requires an option that does not
have a default value, keytool prompts you interactively for the value.

Commands

-certreq
Generates a certificate signing request in PK CS#10 format for the specified alias. The request is written to the
specified file or to the standard output stream. The request should be sent to a certificate authority (CA), which
authenticates the requestor and sends back a signed certificate authenticating the requestor's public key. This signed
certificate can then be imported into the keystore with the - i npor t command. This command uses the following
options: - al i as,-fil e,-keypass,-keystore,-sigal g,-storepass,-storetype,and-v.

-del ete

Deletes a specified alias from a specified keystore. This command uses the following options: - al i as, -
keyst or e, - st orepass,-storetype,and-v.

- export

Writes the certificate associated with the specified alias to the specified file or to standard output. This command
usesthefollowing options: - al i as,-fil e,-keystore,-rfc,-storepass,-storetype,and-v.

- genkey
Generates a public/private key pair and a self-signed X.509 certificate for the public key. Self-signed certificates are
not often useful by themselves, so this command is often followed by - cer t r eq. This command uses the
following options:. - al i as, - dnane, - keyal g, - keypass, - keysi ze, - keyst ore, -si gal g, -
st orepass,-storetype,-v,and-validity.
- hel p
Listsall available keytool commands and their options. This command is not used with any other options.
-identitydb
Reads keys and certificates from a Java 1.1 identity database managed with javakey and stores them into a keystore
so they can be manipulated by keytool. The identity database is read from the specified file or from standard input if

no fileis specified. The keys and certificates are written into the specified keystore file, which is automatically
created if it does not exist yet. This command uses the following options: - fi | e, - keyst or e, - st or epass, -

file://IC|/orielly/jnut/ch08_01.htm (43 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

storetype,and-v.

-i nmpor t
Reads a certificate or PK CS#7-formatted certificate chain from a specified file or from standard input and stores it
as atrusted certificate in the keystore with the specified alias. This command uses the following options: - al i as, -
file,-keypass,-keystore,-nopronpt,-storepass,-storetype,-trustcacerts,and-v.

- keycl one
Duplicates the keystore entry of a specified alias and storesit in the keystore under a new alias. This command uses

thefollowing options: - al i as, - dest , - keypass, - keyst or e, - new, - st or epass, - st or et ype, and -
V.

- keypasswd

Changes the password that encrypts the private key associated with a specified alias. This command uses the
following options:. - al i as, - keypass, - new, - st or et ype, and - v.

-11i st
Displays (on standard output) the fingerprint of the certificate associated with the specified alias. With the - v
option, prints certificate details in human-readable format. With - r f ¢, prints certificate contents in a machine-
readable, printable-encoding format. This command uses the following options: - al i as, - keystore,-rfc,-
st orepass,-storetype,and-v.

-printcert
Displays the contents of a certificate read from the specified file or from standard input. Unlike most keytool
commands, this one does not use a keystore. This command uses the following options. - fi | e and - v.

-sel fcert

Creates a self-signed certificate for the public key associated with the specified alias and uses it to replace any
certificate or certificate chain already associated with that alias. This command uses the following options:. - al i as,
- dnane, - keypass, - keystore,-si gal g,-storepass,-storetype,-v,and-validity.

- st orepasswd

Changes the password that protects the integrity of the keystore as a whole. The new password must be at least six
characterslong. This command uses the following options: - keyst or e, - new, - st or epass, - st or et ype,
and-v.

Options
The various keytool commands can be passed various options from the following list. Many of these options have

reasonabl e default values. keytool interactively prompts for any unspecified options that do not have defaults:

file://IC|/orielly/jnut/ch08_01.htm (44 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

-al i as name
Specifies the alias to be manipulated in the keystore. The default is"mykey".
- dest newalias

Specifies the new alias name (the destination alias) for the - keycl one command. If not specified, keytool prompts
for avalue.

- dnane X.500-distinguished-name

Specifies the X.500 distinguished name to appear on the certificate generated by - sel f cert or - genkey. A
distinguished name is a highly qualified name intended to be globally unique. For example:

CN=Davi d Fl anagan, OU=Editorial, O=OReilly, L=Canbridge, S=Massachusetts, C=US

The - genkey command of keytool prompts for a distinguished name if noneis specified. The- sel f cert command
uses the distinguished name of the current certificate if no replacement name is specified.

-filefile

Specifies the input or output file for many of the keytool commands. If left unspecified, keytool reads from the
standard input or writes to the standard output.

- keyal g algorithm-name

Used with - genkey to specify what type of cryptographic keysto generate. In the default Java implementation
shipped from Sun, the only supported algorithm is"DSA"; thisis the default if this option is omitted.

- keypass password

Specifies the password that encrypts a private key in the keystore. If this option is unspecified, keytool first tries the -
st or epass password. If that does not work, it prompts for the appropriate password.

-keysi ze size

Used with the - genkey command to specify the length in bits of the generated keys. If unspecified, the default is
1024.

- keyst or e filename
Specifies the location of the keystore file. If unspecified, afile named .keystore in the user's home directory is used.
- new new-password-or-alias

Used with the - keycl one command to specify the new alias name and with - keypasswd and - st or epasswd
to specify the new password. If unspecified, keytool prompts for the value of this option.

file://IC|/orielly/jnut/ch08_01.htm (45 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)
- nopr onpt

Used with the- i mport command to disable interactive prompting of the user when a chain of trust cannot be
established for an imported certificate. If this option is not specified, the - i mpor t command prompts the user.

-rfc

Used withthe-1i st and- export commands to specify that certificate output should be in the printable
encoding format specified by RFC-1421. If thisoption is not specified, - expor t outputs the certificate in binary
format, and - | i st listsonly the certificate fingerprint. This option cannot be combined with - v inthe- | i st
command.

- si gal g algorithm-name
Specifies adigital signature algorithm that signs a certificate. If omitted, the default for this option depends on the
type of underlying public key. If it isa DSA key, the default algorithm is"SHA1withDSA". If the key isan RSA
key, the default signature algorithm is "M D5withRSA".

- st or epass password
Specifies a password that protects the integrity of the entire keystore file. This password also serves as a default
password for any private keys that do not have their own - keypass specified. If - st or epass isnot specified,
keytool prompts for it. The password must be at least six characters long.

- st or et ype type

Specifies the type of the keystore to be used. If this option is not specified, the default is taken from the system
security propertiesfile. Often, the default is Sun's"JKS" Java Keystore type.

-trustcacerts

Used with the- i mport command to specify that the self-signed certificate authority certificates contained in the
keystore in the jre/lib/security/cacerts file should be considered trusted. If this option is omitted, keytool ignores that
file.

This option specifies verbose mode, if present, and makes many keytool commands produce additional output.
-validitytime

Used with the - genkey and - sel f cert commands to specify the period of validity (in days) of the generated
certificate. If unspecified, the default is 90 days.

See Also: jarsigner, javakey, policytool

file://IC|/orielly/jnut/ch08_01.htm (46 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

JDK 1.1 and

native2ascii
later

Converts Java Source Codeto
ASCI |

Synopsis
native2ascii [options] [inputfile [outputfile]]
Description

javac can only process files encoded in the eight-bit Latin-1 encoding, with any other characters encoded using the \ uxxxx
Unicode notation. native2ascii isasimple program that reads a Java source file encoded using alocal encoding and
convertsit to the Latin-1-plus-A SCl1-encoded-Unicode form required by javac.

The inputfile and outputfile are optional. If unspecified, standard input and standard output are used, making native2ascii
suitable for usein pipes.

OPtions

- encodi ng encoding-name

Specifies the encoding used by sourcefiles. If this option is not specified, the encoding is taken from the
fil e.encodi ng system property.

-reverse

Specifies that the conversion should be done in reverse--from encoded \ uxxxx charactersto charactersin the native
encoding.

SeeAlso:j ava. i 0. | nput St reanReader,j ava.i o. Qut put Streamiter

Java 2 SDK

policytool 1.2 and later

Policy File Creation and
M anagement T ool

file:///C|/orielly/jnut/ch08_01.htm (47 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

Synopsis
pol i cyt ool
Description

policytool displays a Swing user interface that makes it easy to edit security policy configuration files. The Java security
architecture is based on policy files, which specify sets of permissions to be granted to code from various sources. By
default, the Java security policy is defined by a system policy file stored in the jre/lib/security/java.policy file and a user
policy file stored in the .java.policy file in the user's home directory. System administrators and users can edit these files
with atext editor, but the syntax of the file is somewhat complex, so it isusually easier to use policytool to define and edit
security policies.

Selecting the Policy File to Edit

When policytool starts up, it opensthe .java.palicy file in the user's home directory by default. Use the New, Open, and
Save commands in the File menu to create a new policy file, open an existing file, and save an edited file, respectively.

Editing the Policy File

The main policytool window displays alist of the entries contained in the policy file. Each entry specifies a code source and
the permissions that are to be granted to code from that source. The window also contains buttons that allow you to add a
new entry, edit an existing entry, or delete an entry from the policy file. If you add or edit an entry, policytool opens a new
window that displays the details of that policy entry.

Editing the Policy File

Every policy file has an associated keystore, from which it obtains the certificates it needs when verifying the digital
signatures of Java code. You can usually rely on the default keystore, but if you need to specify the keystore explicitly for a
policy file, use the Change K eystore command in the Edit menu of the main policytool window.

Adding or Editing a Policy Entry:

The policy entry editor window displays the code source for the policy entry and alist of permissions associated with that
code source. It also contains buttons that allow you to add a new permission, delete a permission, or edit an existing
permission.

Adding or Editing a Policy Entry: When defining a new policy entry, the first step isto specify the code source. A code
sourceis defined by a URL from which the code is downloaded and/or alist of digital signatures that must appear on the
code. Specify one or both of these values by typing in a URL and/or acomma-separated list of aliases. These aliases
identify trusted certificates in the keystore associated with the policy file.

After you have defined the code source for apolicy entry, you must define the permissions to be granted to code from that
source. Use the Add Permission and Edit Permission buttons to add and edit permissions. These buttons bring up yet
another policytool window.

Defining a Permission

file://IC|/orielly/jnut/ch08_01.htm (48 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

To define a permission in the permission editor window, first select the desired permission type from the Permission drop-
down menu. Then, select an appropriate target value from the Target Name menu. The choices in this menu are
customized depending on the permission type you selected. For some types of permission, such asFi | ePer m ssi on,
there is not afixed set of possible targets, and you usually have to type in the specific target you want. For example, you
might type "/tmp" to specify the directory /tmp, "/tmp/*" to specify al thefilesin that directory, or "/tmp/-" to specify all
the filesin the directory, and, recursively, any subdirectories. See the documentation of the individual Per m ssi on
classes for a description of the targets they support.

Depending on the type of permission you select, you may also have to select one or more action values from the Actions
menu. When you have selected a permission and appropriate target and action values, click the Okay button to dismiss the
window.

See Also: jarsigner, keytool

JDK 1.1 and

serialver
|later

Class Version Number
Generator

Synopsis
serialver [-show] classnane...
Description:

serialver displays the version number of aclass or classes. This version number is used for the purposes of serialization: the
version number must change each time the serialization format of the class changes.

If the specified classdeclaresal ongser i al Ver si onUl D constant, the value of that field is displayed. Otherwise, a
unique version number is computed by applying the Secure Hash Algorithm (SHA) to the API defined by the class. This
program is primarily useful for computing an initial unique version number for a class, which is then declared as a constant
in the class. The output of serialver isaline of legal Java code, suitable for pasting into a class definition.

Options
- show

When the - show option is specified, serialver displays asimple graphical interface that allows the user to typein a
single classname at atime and obtain its serialization UID. When using - show, no class names can be specified on
the command-line,

Environment

file:///C|/orielly/jnut/ch08_01.htm (49 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Javain a Nutshell)

CLASSPATH

serialver iswritten in Java, so it is sensitive to the CLASSPATH environment variable in the same way the java
interpreter is. The specified classes are looked up relative to this classpath.

See Also: j ava. i 0. Obj ect St reanC ass

4 PREVIOUS HOME NEXT »
7.3. Java Documentation BOOK INDEX Part 2. APl Quick Reference
Comments

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch08_01.htm (50 of 50) [2/5/2003 7:49:33 PM]

file:///C|/orielly/jnut/index/
file:///C|/orielly/jnut/copyrght.htm

API Quick Reference (Javain a Nutshell)

Java™ in aNutshdll: A MEXT B

41 PREVIOUS
Deskop Quick Reference

Part 2. APl Quick Reference

Part |1 istherea heart of this book: quick-reference material for the essential APIs of the Java platform.
Please read the following section, "How To Use This Quick Reference”, to learn how to get the most out

of this material.

41 PREVIOUS HOME MEXT »
8. Java Development Tools BOOK INDEX How To Use This Quick
Reference

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/part2.htm [2/5/2003 7:49:39 PM]

file:///C|/orielly/jnut/copyrght.htm

How To Use This Quick Reference (Javain a Nutshell)

41 PREVIOUS Part 2: APl Quick Reference HEXT

How To Use This Quick Reference

Contents:

Finding a Quick-Reference Entry
Reading a Quick-Reference Entry

The quick-reference section that follows packs alot of information into a small space. Thisintroduction
explains how to get the most out of that information. It describes how the quick reference is organized
and how to read the individual quick-ref entries.

1. Finding a Quick-Reference Entry

The quick reference is organized into chapters, one per package. Each chapter begins with an overview
of the package and includes a hierarchy diagram for the classes and interfaces in the package. Following
this overview are quick-reference entries for all of the classes and interfaces in the package.

Entries are organized alphabetically by class and package name, so that related classes are grouped near
each other. Thus, in order to look up a quick reference entry for a particular class, you must also know
the name of the package that contains that class. Usually, the package name is obvious from the context,
and you should have no trouble looking up the quick-reference entry you want. Use the tabs on the
outside edge of the book and the dictionary-style headers on the upper outside corner of each pageto
help you find the package and class you are looking for.

Occasionally, you may need to look up aclass for which you do not already know the package. In this
case, refer to Chapter 29, "Class, Method, and Field Index". Thisindex allows you to look up aclass by

class name and find out what package it is part of.

41 PREVIOUS HOME MEXT B
Part 2. APl Quick Reference BOOK INDEX 2. Reading a Quick-
Reference Entry

file:/lIC|/orielly/jnut/howto_01.htm (1 of 2) [2/5/2003 7:49:41 PM]

How To Use This Quick Reference (Javain a Nutshell)

Copyright © 2001 O'Rellly & Associates. All rights reserved.

file:/lIC|/orielly/jnut/howto_01.htm (2 of 2) [2/5/2003 7:49:41 PM]

file:///C|/orielly/jnut/copyrght.htm

Reading a Quick-Reference Entry (Javain a Nutshell)

41 PREVIOUS How To Use This Quick HEXT o
Reference

2. Reading a Quick-Reference Entry

Each quick-reference entry contains quite a bit of information. The sections that follow describe the structure of a
guick-reference entry, explaining what information is available, where it is found, and what it means. While reading
the descriptions that follow, you will find it helpful to flip through the reference section itself to find examples of
the features being described.

2.1. Class Name, Package Name, Availability, and Flags

Each quick-reference entry begins with afour-part title that specifies the name, package, and availability of the
class, and may also specify various additional flags that describe the class. The class name appearsin bold at the
upper left of the title. The package name appears, in smaller print, in the lower |eft, below the class name.

The upper-right portion of the title indicates the availability of the class; it specifies the earliest release that
contained the class. If aclass was introduced in Java 1.1, for example, this portion of thetitlereads"Java 1.1". If a
classwasintroduced in Version 1.2 of the Java 2 platform, the availability reads "Java 1.2"x for simplicity's sake.
The availability section of thetitle is also used to indicate whether a class has been deprecated, and, if so, in what
release. For example, it might read "Java 1.1; Deprecated in Java 1.2".

In the lower-right corner of thetitle you may find alist of flags that describe the class. The possible flags and their
meanings are as follows:

checked

The classis a checked exception, which meansthat it extends| ava. | ang. Except i on, but not
j ava. | ang. Runt i neExcept i on. In other words, it must be declared in thet hr ows clause of any
method that may throw it.

cloneable
The class, or asuperclass, implements| ava. | ang. Cl oneabl e.
collection
The class, or asuperclass, implementsj ava. util . Col | ectionorjava. util. Map.

comparable

file:/lIC|/orielly/jnut/howto_02.htm (1 of 9) [2/5/2003 7:49:46 PM]

Reading a Quick-Reference Entry (Javain a Nutshell)

The class, or asuperclass, implementsj ava. | ang. Conpar abl e.

error
The classextendsj ava. | ang. Error.
event
Theclassextendsj ava. uti | . Event Qbj ect.
event adapter
The class, or asuperclass, implementsj ava. uti | . Event Li st ener, and the class name ends with
"Adapter”.
event listener
The class, or asuperclass, implementsj ava. uti | . Event Li st ener.
PJ1.1
The class or interface is part of the Personal Java 1.1 platform.
PJ1.1(mod)
The class or interface is supported, in modified form, by the Personal Java 1.1 platform.
PJ1.1(opt)
The class or interface is an optional part of the Personal Java 1.1 platform. Support for the classis
implementati on-dependent.
runnable
The class, or asuperclass, implementsj ava. | ang. Runnabl e.
serializable
The class, or asuperclass, implementsj ava. i 0. Seri al i zabl e and may be serialized.
unchecked

The classis an unchecked exception, which means it extendsj ava. | ang. Runt i neExcepti on and
therefore does not need to be declared in thet hr ows clause of a method that may throw it.

file:/lIC|/orielly/jnut/howto_02.htm (2 of 9) [2/5/2003 7:49:46 PM]

Reading a Quick-Reference Entry (Javain a Nutshell)

2.2. Description

The title of each quick-reference entry is followed by a short description of the most important features of the class
or interface. This description may be anywhere from a couple of sentencesto several paragraphs long.

2.3. Synopsis

The most important part of every quick-reference entry is the class synopsis, which follows the title and description.
The synopsis for a class looks alot like the source code for the class, except that the method bodies are omitted and
some additional annotations are added. If you know Java syntax, you know how to read the class synopsis.

Thefirst line of the synopsis contains information about the classitself. It beginswith alist of class modifiers, such
aspubl i c,abstract,andfi nal . These modifiers are followed by thecl ass ori nt er f ace keyword and
then by the name of the class. The class name may be followed by an ext ends clause that specifies the superclass
and ani npl enent s clause that specifies any interfaces the class implements.

The class definition lineis followed by alist of the fields and methods that the class defines. Once again, if you
understand basic Java syntax, you should have no trouble making sense of these lines. The listing for each member
includes the modifiers, type, and name of the member. For methods, the synopsis also includes the type and name of
each method parameter and an optional t hr ows clause that lists the exceptions the method can throw. The member
names are in boldface, so it is easy to scan the list of members |looking for the one you want. The names of method
parameters are in italicsto indicate that they are not to be used literally. The member listings are printed on
alternating gray and white backgrounds to keep them visually separate.

2.3.1. Member availability and flags

Each member listing isasingle line that defines the API for that member. These listings use Java syntax, so their
meaning isimmediately clear to any Java programmer. There is some auxiliary information associated with each
member synopsis, however, that requires explanation.

Recall that each quick-reference entry begins with atitle section that includes the release in which the class was first
defined. When amember isintroduced into a class after the initial release of the class, the version in which the
member was introduced appears, in small print, to the left of the member synopsis. For example, if a class wasfirst
introduced in Java 1.1, but had a new method added in Version 1.2 of Java 2, the title contains the string "Java 1.1",
and the listing for the new member is preceded by the number "1.2". Furthermore, if amember has been deprecated,
that fact isindicated with a hash mark (#) to the left of the member synopsis.

The areato the right of the member synopsisis used to display avariety of flags that provide additional information
about the member. Some of these flags indicate additional specification details that do not appear in the member
API itself. Other flags contain implementation-specific information. This information can be quite useful in
understanding the class and in debugging your code, but be aware that it may differ between implementations. The
implementation-specific flags displayed in this book are based on Sun's implementation of Javafor Microsoft
Windows.

The following flags may be displayed to the right of a member synopsis:

file:///C]/orielly/jnut/howto_02.htm (3 of 9) [2/5/2003 7:49:46 PM]

Reading a Quick-Reference Entry (Javain a Nutshell)

native

An implementation-specific flag that indicates that a method isimplemented in native code. Although

nat i ve isaJavakeyword and can appear in method signatures, it is part of the method implementation, not
part of its specification. Therefore, thisinformation isincluded with the member flags, rather than as part of
the member listing. Thisflag is useful as a hint about the expected performance of a method.

synchronized

An implementation-specific flag that indicates that a method implementation is declared synchr oni zed,
meaning that it obtains alock on the object or class before executing. Likethe nat i ve keyword, the
synchr oni zed keyword is part of the method implementation, not part of the specification, so it appears
as aflag, not in the method synopsisitself. Thisflag isauseful hint that the method is probably implemented
in a thread-safe manner.

Whether or not a method is thread-safe is part of the method specification, and this information should
appear (athough it often does not) in the method documentation. There are anumber of different waysto
make a method thread-safe, however, and declaring the method with the synchr oni zed keyword is only
one possible implementation. In other words, a method that does not bear the synchr oni zed flag can till
be thread-safe.

Overrides:

Indicates that a method overrides a method in one of its superclasses. The flag is followed by the name of the
superclass that the method overrides. Thisis a specification detail, not an implementation detail. Aswelll see
in the next section, overriding methods are usually grouped together in their own section of the class
synopsis. TheOverri des: flagisonly used when an overriding method is not grouped in that way.

| mplements:
Indicates that a method implements a method in an interface. The flag is followed by the name of the
interface that isimplemented. Thisis a specification detail, not an implementation detail. Aswe'll seein the
next section, methods that implement an interface are usually grouped into a specia section of the class
synopsis. Thel npl enment s: flag isonly used for methods that are not grouped in this way.

empty

Indicates that the implementation of the method has an empty body. This can be a hint to the programmer
that the method may need to be overridden in a subclass.

constant

An implementation flag that indicates that a method has atrivial implementation. Only methods with avoi d
return type can be truly empty. Any method declared to return avalue must have at least ar et ur n
statement. The "constant” flag indicates that the method implementation is empty except for ar et ur n
statement that returns a constant value. Such a method might have abody liker et urn nul | ; orreturn

file:///C]/orielly/jnut/howto_02.htm (4 of 9) [2/5/2003 7:49:46 PM]

Reading a Quick-Reference Entry (Javain a Nutshell)

f al se; . Likethe"empty" flag, thisflag indicates that a method may need to be overridden.
default:

Thisflag is used with property accessor methods that read the value of a property (i.e., methods whose
names begins with "get" and take no arguments). The flag is followed by the default value of the property.
Strictly speaking, default property values are a specification detail. In practice, however, these defaults are
not always documented, and care should be taken, because the default values may change between
implementations.

Not all property accessors have a"default:" flag. A default value is determined by dynamically loading the
classin question, instantiating it using a no-argument constructor, and then calling the method to find out
what it returns. This technique can be used only on classes that can be dynamically loaded and instantiated
and that have no-argument constructors, so default values are shown for those classes only. Furthermore,
note that when a classisinstantiated using a different constructor, the default values for its properties may be
different.

Forstatic final fields, thisflagisfollowed by the constant value of the field. Only constants of
primitive and St r i ng types and constants with the value nul | are displayed. Some constant values are
specification details, while others are implementation details. The reason that symbolic constants are defined,
however, is so you can write code that does not rely directly upon the constant value. Use thisflag to help
you understand the class, but do not rely upon the constant values in your own programs.

2.3.2. Functional grouping of members

Within aclass synopsis, the members are not listed in strict alphabetical order. Instead, they are broken down into
functional groups and listed al phabetically within each group. Constructors, methods, fields, and inner classes are
all listed separately. Instance methods are kept separate from static (class) methods. Constants are separated from
non-constant fields. Public members are listed separately from protected members. Grouping members by category
breaks a class down into smaller, more comprehensible segments, making the class easier to understand. This
grouping also makesit easier for you to find a desired member.

Functional groups are separated from each other in a class synopsis with Java comments, such as"// Public
Constructors', "// Inner Classes’, and "// Methods Implementing Servlet”". The various functional categories are as

follows (in the order in which they appear in a class synopsis):
Constructors

Displays the constructors for the class. Public constructors and protected constructors are displayed
separately in subgroupings. If aclass defines no constructor at all, the Java compiler adds a default no-
argument constructor that is displayed here. If aclass defines only private constructors, it cannot be
instantiated, so a special, empty grouping entitled "No Constructor” indicates this fact. Constructors are
listed first because the first thing you do with most classesisinstantiate them by calling a constructor.

file:///C]/orielly/jnut/howto_02.htm (5 of 9) [2/5/2003 7:49:46 PM]

Reading a Quick-Reference Entry (Javain a Nutshell)

Constants

Displays al of the constants (i.e., fields that are declared st at i ¢ and f i nal) defined by the class. Public
and protected constants are displayed in separate subgroups. Constants are listed here, near the top of the
class synopsis, because constant values are often used throughout the class as legal values for method
parameters and return values.

Inner Classes

Groups all of theinner classes and interfaces defined by the class or interface. For each inner class, thereisa
single-line synopsis. Each inner class also has its own quick-reference entry that includes afull class
synopsis for theinner class. Like constants, inner classes are listed near the top of the class synopsis because
they are often used by a number of other members of the class.

Static Methods

Lists the static methods (class methods) of the class, broken down into subgroups for public static methods
and protected static methods.

Event Listener Registration Methods

Lists the public instance methods that register and deregister event listener objects with the class. The names
of these methods begin with the words "add" and "remove" and end in "Listener". These methods are always
passed aj ava. ut il . Event Li st ener object. The methods are typically defined in pairs, so the pairs
are listed together. The methods are listed al phabetically by event name rather than by method name.

Property Accessor Methods

Lists the public instance methods that set or query the value of a property or attribute of the class. The names
of these methods begin with the words "set", "get”, and "is", and their signatures follow the patterns set out
in the JavaBeans specification. Although the naming conventions and method signature patterns are defined
for JavaBeans, classes and interfaces throughout the Java platform define property accessor methods that
follow these conventions and patterns. Looking at a classin terms of the propertiesit defines can be a
powerful tool for understanding the class, so property methods are grouped together in this section. Property
accessor methods are listed alphabetically by property name, not by method name. This means that the "set",
"get", and "is' methods for a property all appear together.

Public I nstance Methods
Contains al of the public instance methods that are not grouped elsewhere.
I mplementing Methods

Groups the methods that implement the same interface. There is one subgroup for each interface
implemented by the class. Methods that are defined by the same interface are ailmost always related to each
other, so thisis a useful functional grouping of methods.

file:///C]/orielly/jnut/howto_02.htm (6 of 9) [2/5/2003 7:49:46 PM]

Reading a Quick-Reference Entry (Javain a Nutshell)

Note that if an interface method is also an event registration method or a property accessor method, it is
listed both in this group and in the event or property group. This situation does not arise often, but when it
does, al of the functional groupings are important and useful enough to warrant the duplicate listing. When
an interface method islisted in the event or property group, it displays an "Implements." flag that specifies
the name of the interface of which it is part.

Overriding Methods

Groups the methods that override methods of a superclass broken down into subgroups by superclass. Thisis
typically auseful grouping, because it helps to make it clear how a class modifies the default behavior of its
superclasses. In practice, it is also often true that methods that override the same superclass are functionally
related to each other.

Sometimes a method that overrides a superclassis also a property accessor method or (more rarely) an event
registration method. When this happens, the method is grouped with the property or event methods and
displays aflag that indicates which superclass it overrides. The method is not listed with other overriding
methods, however. Note that thisis different from interface methods, which, because they are more strongly
functionally related, may have duplicate listings in both groups.

Protected | nstance Methods
Contains al of the protected instance methods that are not grouped elsewhere.
Fields

Listsal the non-constant fields of the class, breaking them down into subgroups for public and protected
static fields and public and protected instance fields. Many classes do not define any publicly accessible
fields. For those that do, many object-oriented programmers prefer not to use those fields directly, but
instead to use accessor methods when such methods are available.

Deprecated Members

Deprecated methods and deprecated fields are grouped at the very bottom of the class synopsis. Use of these
membersis strongly discouraged.

2.4. Class Hierarchy

For any class or interface that has a non-trivial class hierarchy, the class synopsisisfollowed by a"Hierarchy"
section. This section lists al of the superclasses of the class, aswell as any interfaces implemented by those
superclasses. It may also list any interfaces extended by an interface. In the hierarchy listing, arrows indicate
superclass to subclass relationships, while the interfaces implemented by a class follow the class namein
parentheses. For example, the following hierarchy indicatesthat j ava. i 0. Dat aQut put St r eamimplements
Dat aQut put and extendsFi | t er Qut put St r eam which itself extends Qut put St r eam which extends
(bj ect :

file:///C|/orielly/jnut/howto_02.htm (7 of 9) [2/5/2003 7:49:46 PM]

Reading a Quick-Reference Entry (Javain a Nutshell)

(bj ect - ->Qut put Stream - >Fi | t er Qut put St r eam - >Dat aCQut put St r ean(Dat aCut put)

If aclass has subclasses, the "Hierarchy" section isfollowed by a"Subclasses’ section that lists those subclasses. If
an interface has implementations, the "Hierarchy" section is followed by an "Implementations” section that lists
those implementations. While the "Hierarchy" section shows ancestors of the class, the " Subclasses' or
"Implementations’ section shows descendants.

2.5. Cross References

The class hierarchy section of a quick-reference entry is followed by a number of optional "cross reference” sections
that indicate other, related classes and methods that may be of interest. These sections are the following:

Passed To

This section lists al of the methods and constructors that are passed an object of this type as an argument.
Thisis useful when you have an object of a given type and want to figure out what you can do with it.

Returned By

This section lists al of the methods (but not constructors) that return an object of thistype. Thisis useful
when you know that you want to work with an object of this type, but don't know how to obtain one.

Thrown By

For checked exception classes, this section lists all of the methods and constructors that throw exceptions of
thistype. This material helps you figure out when a given exception or error may be thrown. Note, however,
that this section is based on the exception typeslisted in thet hr ows clauses of methods and constructors.
Subclasses of Runt i meExcepti on and Er r or do not haveto belisted int hr ows clauses, soit is not
possible to generate a compl ete cross reference of methods that throw these types of unchecked exceptions.

Type Of

This section lists al of the fields and constants that are of this type, which can help you figure out how to
obtain an object of thistype.

2.6. A Note About Class Names

Throughout the quick reference, you'll notice that classes are sometimes referred to by class name alone and at other
times referred to by class name and package name. If package names were always used, the class synopses would
become long and hard to read. On the other hand, if package names were never used, it would sometimes be
difficult to know what class was being referred to. The rules for including or omitting the package name are
complex. They can be summarized approximately as follows, however:

. If the class name alone is ambiguous, the package name is always used.

file:///C]/orielly/jnut/howto_02.htm (8 of 9) [2/5/2003 7:49:46 PM]

Reading a Quick-Reference Entry (Javain a Nutshell)

. Iftheclassispart of thej ava. | ang package or isavery commonly used class like
java.io. Serializabl e, the package name is omitted.

. If the class being referred to is part of the current package (and has a quick-reference entry in the current

chapter), the package name is omitted. The package name is also omitted if the class being referred to is part
of apackage that contains the current package.

4 PREVIOUS HOME MHEXT »

1. Finding a Quick-Reference BOOK INDEX 9. The java.beans Package
Entry

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:/lIC|/orielly/jnut/howto_02.htm (9 of 9) [2/5/2003 7:49:46 PM]

file:///C|/orielly/jnut/copyrght.htm

The java.beans Package (Javain a Nutshell)

41 PREVIOUS Part 2: APl Quick Reference MEXT »

Chapter 9. The java.beans Package

Thej ava. beans package contains classes and interfaces related to JavaBeans components. Most of the classes and
interfaces are used by tools that manipulate beans, rather than by the beans themselves. They are also used or
implemented by auxiliary classes provided by bean implementors for the benefit of bean-manipulation tools. Figure 9-

1 showsthe class hierarchy for this package.

— Boans - EventSetboscriptor
| FeatureDescriptor — MethodDescriptor
| Intraspoctor | ParameterDescriptor
Object 3
] PropertyChangosappert | L{ ProportyDosarptor [IndaxedPropertyDesciptor
1 | PropertyditorMenager
1 Hproprytitorsoppert |
M Simplobominfe J-ooonoooooeo
Exception] Inirespoctionéxcspfion
L[Papertptetotapie
| EventOBject PropertyChangeEvent
-~ —

Figure 9-1. The java.beans package

The Beans class defines several generally useful static methods. Itsi nst ant i at e() method is particularly

file:/lIC|/orielly/jnut/ch09_01.htm (1 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Javain a Nutshell)

important. Thel nt r ospect or classisused to obtain information about a bean and the properties, events, and
methods it exports. Most of thisinformation is returned using the Feat ur eDescr i pt or classand its various
subclasses. Thej ava. beans package also definesthe Pr oper t yChangeEvent classand the

Pr opert yChangelLi st ener interface that are widely used by AWT and Swing to provide notification when a
bound property of a GUI component changes.

See Chapter 6, "JavaBeans', for a complete introduction to the JavaBeans component model.

Appletinitializer Java 1.2

java.beans

Thisinterface defines general methods to initialize a newly instantiated Appl et object. AnAppl etlnitializer
can be passed to the Beans. i nst ant i at e() method so that when a bean that is also an applet is created, it can be
properly initialized. Thei ni ti al i ze() method should associate the applet object with an appropriate

Appl et Cont ext and Appl et St ub, place it within an appropriate Cont ai ner , and call itsi ni t () method.
Theact i vat e() method should make the applet active by callingitsst art () method. Thisinterfaceistypicaly
used by bean context implementors. Applications writers may need to use Appl et I ni ti al i zer objects, but
should not usually have to invoke or implement the methods directly.

public interface Appletinitializer {
/I Public Instance Methods
public abstract void activate (java.applet.Applet newApplet);
public abstract void initialize (java.applet.Applet newAppletBean, java.beans.beancontext.BeanContext bCtxt);

Passed To: Beans. i nstanti at e()

BeanDescriptor Java ll

java.beans PJ1.1

A BeanDescr i pt or objectisatypeof Feat ur eDescri pt or that describes a JavaBeans component. The
Beanl nf o classfor abean optionally creates and initializesaBeanDescr i pt or object to describe the bean.
Typically, only application builders and similar tools use the BeanDescr i pt or . To create aBeanDescr i pt or,
you must specify the class of the bean and, optionally, the classof aCust om zer for the bean. Y ou can use the
methods of Feat ur eDescr i pt or to provide additional information about the bean.

public class BeanDescriptor extends FeatureDescriptor {
/I Public Constructors

file:///C|/orielly/jnut/ch09_01.htm (2 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Javain a Nutshell)

public BeanDescriptor (Class beanClass);

public BeanDescriptor (Class beanClass, Class customizerClass);
I/ Public Instance Methods

public Class getBeanClass ();

public Class getCustomizer Class ();

Hierarchy: Cbj ect - - >Feat ur eDescri pt or - - >BeanDescri pt or

Returned By: Beanl nf 0. get BeanDescri ptor (), Sinpl eBeanl nfo. get BeanDescri ptor ()

Beanl nfo Javal.l

java.beans PJ1.1

The Beanl nf o interface defines the methods a class must implement in order to export information about a
JavaBeans component. Thel nt r ospect or class knows how to obtain all the basic information required about a
bean. A bean that wants to be more programmer-friendly can provide a class that implements this interface, and
provide additional information about itself (such as an icon and description strings for each of its properties, events,
and methods). Note that a bean developer defines a class that implements the methods of thisinterface. Typically,
only builder applications and similar tools actually invoke the methods defined here.

Theget BeanDescri ptor (), get Event Set Descri ptors(),get PropertyDescriptors(),and
get Met hodDescr i pt or s() methods should return appropriate descriptor objects for the bean or nul | if the
bean does not provide explicit bean, event set, property, or method descriptor objects. The

get Def aul t Event | ndex() and get Def aul t Propertyl ndex() methods return values that specify the
default event and property (i.e., those most likely to be of interest to a programmer using the bean). These methods
should return -1 if there are no defaults. Theget | con() method should return an image object suitable for
representing the bean in a palette or menu of available beans. The argument passed to this method is one of the four
constants defined by the class; it specifies the type and size of icon requested. If the requested icon cannot be
provided, get | con() should returnnul | .

A Beanl nf o classisalowed toreturn nul | or -1if it cannot provide the requested information. In this case, the
I nt r ospect or class provides basic values for the omitted information from its own introspection of the bean. See
Si npl eBeanl nf o for atrivial implementation of thisinterface suitable for convenient subclassing.

public interface Beanl nfo {
/I Public Constants

public static final int ICON_COLOR_16x16 ; =1
public static final int ICON_COLOR_32x32; =2
public static final int ICON_MONO_16x16 ; =3
public static final int ICON_MONO_32x32; =4

file:///C|/orielly/jnut/ch09_01.htm (3 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Javain a Nutshell)

/I Property Accessor Methods (by property name)
public abstract Beaninfo[| getAdditionalBeanInfo ();
public abstract BeanDescriptor getBeanDescriptor ();
public abstract int getDefaultEventindex ();
public abstract int getDefaultPropertylndex ();
public abstract EventSetDescriptor[] getEventSetDescriptors ();
public abstract MethodDescriptor|] getM ethodDescriptors ();
public abstract PropertyDescriptor| | getPropertyDescriptors ();
/I Public Instance Methods
public abstract java.awt.Image getl con (int iconKind);

Implementations: Si npl eBeanl nf o,
j ava. beans. beancont ext . BeanCont ext Ser vi cePr ovi der Beanl nf o

Returned By: Beanl nf 0. get Addi ti onal Beanl nfo(), Introspector. getBeanlnfo(),
Si npl eBeanl nf 0. get Addi ti onal Beanl nfo(),
] ava. beans. beancont ext . BeanCont ext Ser vi cePr ovi der Beanl nf 0. get Ser vi cesBeanl nf o()

Beans Javall

java.beans PJ1.1

The Beans classis not meant to be instantiated; its static methods provide miscellaneous JavaBeans features. The
I nstanti at e() method creates an instance of a bean. The specified bean name represents either a serialized bean
file or abean classfile; it isinterpreted relative to the specified Cl assLoader object.

Theset Desi gnTi me() andi sDesi gnTi nme() methods can set and query aflag that indicates whether beans

are being used in a application builder environment. Similarly, set Gui Avai | abl e() andi sGui Avai | abl e()
set and query aflag that indicates whether the Java Virtual Machine is running in an environment in which aGUI is
available. (Note that untrusted applet code cannot call set Desi gnTi me() or set Gui Avai | abl e() .)

Thei sl nst anceO () method isareplacement for the Javai nst anceof operator to use with beans. Currently,
it behaveslikei nst anceof , but in the future it may work with beans that consist of a set of Java objects, each of
which provides adifferent view of abean. Similarly, theget | nst anceCf () method is areplacement for the Java
cast operator. This method converts a bean to a superclass or interface type, and currently, it behaves like a cast, but
in the future, it will be compatible with multiclass beans.

public class Beans {
I/l Public Constructors
public Beans ();

file:///C|/orielly/jnut/ch09_01.htm (4 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Javain a Nutshell)

/I Public Class Methods
public static Object getl nstanceOf (Object bean, ClasstargetType);

public static Object instantiate (ClassL oader cls, String beanName) throws
java.io.l OExceptionClassNotFoundException;

1 public static Object instantiate (ClassL oader cls, String beanName, java.beans.beancontext.BeanContext
"~ beanContext) throws java.io.l OExceptionClassNotFoundException;

public static Object instantiate (ClassL oader cls, String beanName, java.beans.beancontext.BeanContext
"~ beanContext, Appletinitializer initializer) throws java.io.l OExceptionClassNotFoundException;

public static boolean isDesignTime ();

public static boolean isGuiAvailable ();

public static boolean isl nstanceOf (Object bean, Class targetType);

public static void setDesignTime (boolean isDesignTime) throws SecurityException;

public static void setGuiAvailable (boolean isGuiAvailable) throws SecurityException,;
}

Customizer Java l.l

java.beans PJ1.1

The Cust om zer interface specifies the methods that must be defined by any class designed to customize a
JavaBeans component. In addition to implementing this interface, a customizer class must be a subclass of

j ava. awt . Conponent and have a constructor that takes no arguments so it can be instantiated by an application
builder.

Customizer classes are typically used by a complex bean to allow the user to easily configure the bean and provide an
aternative to asimple list of properties and their values. If a customizer classis defined for a bean, it must be
associated with the bean through aBeanDescr i pt or object returned by aBeanl nf o classfor the bean. Note that
whileaCust om zer classis created by the author of abean, that classis instantiated and used only by application
builders and similar tools.

After aCust om zer classisinstantiated, itsset Cbj ect () method isinvoked once to specify the bean object to
customize. TheaddPr oper t yChangelLi st ener () andr enovePr opert yChangelLi st ener () methods
can be called to register and deregister Pr oper t yChangelLi st ener objects. The Cust om zer should send a

Pr opert yChangeEvent to all registered listeners any time it changes a property of the bean it is customizing.

public interface Customizer {
/I Event Registration Methods (by event name)
public abstract void addPropertyChangel istener (PropertyChangelListener listener);
public abstract void removePropertyChangel istener (PropertyChangeListener listener);
/I Public Instance Methods
public abstract void setObject (Object bean);

file:///C|/orielly/jnut/ch09_01.htm (5 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Javain a Nutshell)

DesignM ode Javal.z2

java.beans

Thisinterface defines asingle boolean desi gnTi e property that specifies whether abean is running within an
interactive design tool or a standalone application or applet. Thisinterface istypically implemented by a bean
container or bean context, so that children beans can query thedesi gnTi ne property.

public interface DesignM ode {
/I Public Constants

public static final String PROPERTYNAME ; ="designTime"
/I Public Instance Methods

public abstract boolean isDesignTime ();

public abstract void setDesignTime (boolean designTime);

Implementations.] ava. beans. beancont ext . BeanCont ext

EventSetDescriptor Javal.l

java.beans PJ1.1

AnEvent Set Descri pt or objectisatypeof Feat ur eDescri pt or that describesasingle set of events
supported by a JavaBeans component. A set of events corresponds to one or more methods supported by asingle
Event Li st ener interface. The Beanl nf o classfor abean optionally creates Event Set Descr i pt or objects
to describe the event sets the bean supports. Typically, only application builders and similar toolsusetheget andi s
methods of Event Set Descr i pt or objectsto obtain the event-set description information.

To create an Event Set Descr i pt or object, you must specify the class of the bean that supports the event set, the
base name of the event set, the class of the Event Li st ener interface that corresponds to the event set, and the
methods within this interface that are invoked when particular events within the set occur. Optionally, you can also
specify the methods of the bean class that add and remove Event Li st ener objects. The various constructors allow
you to specify methods by name, asj ava. | ang. ref | ect . Met hod objects, or as Met hodDescr i pt or
objects.

Once you have created an Event Set Descr i pt or, useset Uni cast () to specify whether it represents a unicast
event and set | nDef aul t Event Set () to specify whether the event set should be treated as the default event set
by builder applications. The methods of the Feat ur eDescr i pt or superclass allow additional information about
the property to be specified.

public class EventSetDescriptor extends FeatureDescriptor {

file:///C|/orielly/jnut/ch09_01.htm (6 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Javain a Nutshell)

/! Public Constructors

public EventSetDescriptor (Class sourceClass, String eventSetName, Class listener Type, String
listener MethodName) throws I ntrospectionException;

public EventSetDescriptor (String eventSetName, Class listener Type, MethodDescriptor|]
listener MethodDescriptors, java.lang.reflect.Method addListenerMethod, java.lang.reflect.Method
removel.istenerMethod) throws I ntrospectionException,

public EventSetDescriptor (String eventSetName, Class listener Type, java.lang.reflect. Method]]
listenerMethods, java.lang.reflect. M ethod addListener Method, java.lang.reflect. M ethod removeListener Method)
throws IntrospectionException;

public EventSetDescriptor (Class sourceClass, String eventSetName, Class listener Type, String][]
listener MethodNames, String addListener MethodName, String removeListener MethodName) throws
I ntrospectionException;

Il Property Accessor Methods (by property name)
public javalang.reflect.Method getAddL istener M ethod ();
public boolean islnDefaultEventSet ();
public void setl nDefaultEventSet (boolean inDefaultEventSet);
public MethodDescriptor|] getL istener M ethodDescriptors ();
public javalang.reflect. Method[] getL istener M ethods ();
public Class getL istener Type ();
public java.lang.reflect. Method getRemovelL istenerMethod ();
public boolean isUnicast ();
public void setUnicast (boolean unicast);

Hierarchy: Obj ect - - >Feat ur eDescri pt or - - >Event Set Descri pt or

Returned By: Beanl nf 0. get Event Set Descri ptors(),
Si nmpl eBeanl nf 0. get Event Set Descri pt or s()

FeatureDescriptor Java ll

java.beans PJ1.1

The Feat ur eDescri pt or classisthe baseclassfor Met hodDescr i pt or and Pr opertyDescri ptor,as
well as other classes used by the JavaBeans introspection mechanism. It provides basic information about a feature
(e.g., method, property, or event) of a bean. Typically, the methods that begin with get andi s are used by
application builders or other tools to query the features of abean. The set methods, on the other hand, may be used
by bean authors to define information about the bean.

set Nanme() specifiesthe locale-independent, programmatic name of the feature; set Di spl ayNane() specifiesa
localized, human-readable name; and set Shor t Descri pti on() specifiesashort localized string (about 40
characters) that describes the feature. Both the short description and the localized name default to the value of the

file:///C|/orielly/jnut/ch09_01.htm (7 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Javain a Nutshell)

programmatic name. set Expert () and set Hi dden() alow you to indicate that the feature is for use only by
experts or by the builder tool and should be hidden from users of the builder. Finally, the set Val ue() method
allows you to associate an arbitrary named value with the feature.

public class FeatureDescriptor {
/I Public Constructors
public FeatureDescriptor ();
/I Property Accessor Methods (by property name)

public String getDisplayName (); default: null
public void setDisplayName (String displayName);
public boolean isExpert (); default:false
public void setExpert (boolean expert);
public boolean isHidden (); default:false
public void setHidden (boolean hidden);
public String getName (); default: null
public void setName (String name);
1.2 public boolean isPreferred (); default:false
1.2 public void setPreferred (boolean preferred);
public String getShortDescription (); default: null

public void setShortDescription (String text);
/I Public Instance Methods
public java.util.Enumeration attributeNames ();
public Object getValue (String attributeName);
public void setValue (String attributeName, Object value);

Subclasses: BeanDescri pt or, Event Set Descri pt or, Met hodDescri ptor,
Par anet er Descri ptor, PropertyDescri ptor

| ndexedPr opertyDescriptor Javall

java.beans PJ1.1

Anl ndexedPropertyDescri pt or objectisatypeof PropertyDescri pt or that describes abean property
that is (or behaves like) an array. The Beanl nf o classfor abean optionally creates and initializes

| ndexedPr opertyDescri pt or objectsto describe the indexed properties the bean supports. Typically, only
application builders and similar tools use the descriptor objects to obtain indexed property description information.

You create an | ndexedPr opert yDescri pt or by specifying the name of the indexed property and the Cl ass
object for the bean. If you have not followed the standard design patterns for accessor method naming, you can aso

file:///C|/orielly/jnut/ch09_01.htm (8 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Javain a Nutshell)

specify the accessor methods for the property, either as method namesor asj ava. | ang. ref | ect . Met hod
objects. Once you have created an | ndexedPr oper t yDescri pt or object, you can use the methods of
PropertyDescri pt or and Feat ur eDescri pt or to provide additional information about the indexed

property.

public class | ndexedPr opertyDescriptor extends PropertyDescriptor {
/[Public Constructors
public IndexedPr opertyDescriptor (String propertyName, Class beanClass) throws I ntrospectionException;

public I ndexedPropertyDescriptor (String propertyName, javalang.reflect.Method getter,
javalang.reflect.Method setter, javalang.reflect. Method indexedGetter, java.lang.reflect.Method indexedSetter)
throws I ntrospecti onException;

public I ndexedPr opertyDescriptor (String propertyName, Class beanClass, String getter Name, String
setter Name, String indexedGetter Name, String indexedSetter Name) throws I ntrospectionException;

/I Public Instance Methods

public Class getl ndexedPropertyType ();

public javalang.reflect. Method getl ndexedReadM ethod ();

public java.lang.reflect. Method getl ndexedWriteM ethod ();
1.2 public void setl ndexedReadM ethod (java.lang.reflect. M ethod getter) throws I ntrospectionException;
1.2 public void setlndexedWriteM ethod (java.lang.reflect.Method setter) throws IntrospectionException;

}

Hierarchy: Obj ect - - >Feat ur eDescri pt or - - >Pr opert yDescri pt or - -
>| ndexedPr opertyDescri pt or

| ntr ospectionException Javal.l

java.beans serializable checked PJ1.1

Signals that introspection on a JavaBeans component cannot be completed. Typically, thisindicates a bug in the way
the bean or its associated Beanl nf o classis defined.

public class | ntrospectionException extends Exception {
/I Public Constructors
public I ntrospectionException (String mess);

Hierarchy: Cbj ect - - >Thr owabl e(Seri al i zabl e) - - >Excepti on-- >l ntrospecti onExcepti on

Thrown By: Too many methods to list.

file:///C|/orielly/jnut/ch09_01.htm (9 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Javain a Nutshell)

| ntrospector Java ll

java.beans PJ1.1

Thel ntr ospect or isaclassthat is never instantiated. Its static get Beanl nf o() methods provide away to
obtain information about a JavaBeans component and are typically only invoked by application builders or similar
tools. get Beanl nf o() first looksfor aBeanl nf o classfor the specified bean class. For a class named X, it looks

for aBeanl nf o class named xBeanl| nf o, first in the current package and then in each of the packagesin the
Beanl nf o search path.

If no Beanl nf o classisfound, or if the Beanl nf o class found does not provide complete information about the
bean properties, events, and methods, get Beanl nf o() introspects on the bean class by using the

j ava. | ang. r ef | ect packageto fill inthe missing information. When explicit information is provided by a
Beanl nf o class, get Beanl nf o() treatsit as definitive. When determining information through introspection,
however, it examines each of the bean's superclassesin turn, looking for aBeanl nf o class at that level or using
introspection. When calling get Beanl nf o() , you may optionally specify a second class argument that specifiesa
superclass for which, and above which, get Beanl nf o() does not introspect.

public class | ntrospector {
/I No Constructor
/I Public Constants

1.2 public static final int IGNORE_ALL_BEANINFO ; =3
1.2 public static final int IGNORE_IMMEDIATE_BEANINFO ; =2
1.2 public static final int USE_ALL_BEANINFO ; =1

/I Public Class Methods
public static String decapitalize (String name);

1.2 public static void flushCaches ();

1.2 public static void flushFromCaches (Class cl2);
public static Beanlnfo getBeanl nfo (Class beanClass) throws I ntrospectionException;

1.2 public static Beanlnfo getBeanl nfo (Class beanClass, int flags) throws I ntrospectionException;
public static Beanlnfo getBeanlnfo (Class beanClass, Class stopClass) throws

I ntrospectionException;
public static String[] getBeanl nfoSear chPath (); synchronized
public static void setBeanl nfoSear chPath (String[] path); synchronized
}
M ethodDescr iptor Javal.l
java.beans PJ1.1

file:///C|/orielly/jnut/ch09_01.htm (10 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Javain a Nutshell)

A Met hodDescr i pt or objectisatypeof Feat ur eDescri pt or that describes a method supported by a
JavaBeans component. The Beanl nf o classfor a bean optionally creates Met hodDescr i pt or objects that
describe the methods the bean exports. While aBeanl nf o class creates and initializes Met hodDescr i pt or
objects, it istypically only application builders and similar tools that use these objects to obtain information about the
methods supported by a bean.

To createaMet hodDescr i pt or, you must specify thej ava. | ang. r ef | ect . Met hod object for the method
and, optionally, an array of Par anmet er Descr i pt or objectsthat describe the parameters of the method. Once you
have created aMet hodDescr i pt or object, you can use Feat ur eDescr i pt or methods to provide additional
information about each method.

public class M ethodDescriptor extends FeatureDescriptor {
/I Public Constructors

public M ethodDescriptor (javalang.reflect. Method method);

public M ethodDescriptor (javalang.reflect. Method method, ParameterDescriptor| | parameter Descriptors);
I/ Public Instance Methods

public javalang.reflect. Method getM ethod ();

public ParameterDescriptor| | getParameter Descriptors ();

Hierarchy: Cbj ect - - >Feat ur eDescri pt or - - >Met hodDescr i pt or
Passed To: Event Set Descri pt or . Event Set Descri ptor ()

Returned By: Beanl nf 0. get Met hodDescri ptors(),
Event Set Descri pt or. get Li st ener Met hodDescri ptors(),
Si npl eBeanl nf 0. get Met hodDescri pt ors()

Par ameter Descr iptor Java 1.1

java.beans PJ1.1

A Par anet er Descri pt or objectisatypeof Feat ur eDescri pt or that describes an argument or parameter
to amethod of a JavaBeans component. The Beanl nf o class for a JavaBeans component optionally creates

Par anmet er Descr i pt or objectsthat describe the parameters of the methods the bean exports. While the

Beanl nf o class creates and initializes Par anet er Descr i pt or objects, it istypically only application builders
and similar tools that use these objects to obtain information about method parameters supported by the bean.

The Par anet er Descri pt or classisatrivia subclass of Feat ur eDescr i pt or and does not provide any new
methods. Thus, you should use the methods of Feat ur eDescr i pt or to provide information about method
parameters.

file:///C|/orielly/jnut/ch09_01.htm (11 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Javain a Nutshell)

public class Parameter Descriptor extends FeatureDescriptor {
/I Public Constructors
public Parameter Descriptor ();

Hierarchy: Obj ect - - >Feat ur eDescri pt or - - >Par anmet er Descr i pt or
Passed To: Met hodDescri pt or. Met hodDescri pt or ()

Returned By: Met hodDescr i pt or . get Par anet er Descri pt or s()

PropertyChangeEvent Javall

java.beans serializable event PJ1.1

Propert yChangeEvent isasubclassof j ava. uti | . Event Obj ect . Anevent of thistypeis sent to interested
Pr opert yChangeLi st ener objects whenever a JavaBeans component changes a bound property or whenever a
PropertyEdi t or or Cust om zer changesaproperty value. A Pr oper t yChangeEvent isalso sent to
registered Vet oabl eChangeli st ener objects when a bean attempts to change the value of a constrained

property.

When creating aPr oper t yChangeEvent , you normally specify the bean that generated the event, the
programmatic (local e-independent) name of the property that changed, and the old and new values of the property. If
the values cannot be determined, nul | should be passed instead. If the event is a notification that more than one
property value changed, the name should also be nul | . While JavaBeans must generate and send

Pr opert yChangeEvent objects, itistypically only application builders and similar tools that are interested in
receiving them.

public class PropertyChangeEvent extends java.util.EventObject {
// Public Constructors

public PropertyChangeEvent (Object source, String propertyName, Object oldValue, Object newValue);
/I Public Instance Methods

public Object getNewValue ();

public Object getOldValue ();

public Object getPropagationid ();

public String getPropertyName ();

public void setPropagationl d (Object propagationid);

Hierarchy: Cbj ect -->j ava. uti | . Event Gbj ect (Seri al i zabl e) - - >Pr opert yChangeEvent

file:///C|/orielly/jnut/ch09_01.htm (12 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Javain a Nutshell)

Passed To: Pr opert yChangeli st ener . propert yChange(),
PropertyChangeSupport.firePropertyChange(),

Pr opertyVet oException. PropertyVet oException(),
Vet oabl eChangeli st ener . vet oabl eChange(),

Vet oabl eChangeSupport. fireVet oabl eChange(),

j ava. beans. beancont ext . BeanCont ext Support. { propertyChange(), vetoabl eChange()},
j avax. swi ng. JLi st. Accessi bl eJLi st. propertyChange(),

j avax. swi ng. JTabl e. Accessi bl eJTabl e. propert yChange(),

j avax. sw ng. event . Swi ngPr opert yChangeSupport. firePropertyChange(),
j avax. swi ng. t abl e. Def aul t Tabl eCol utmMbdel . pr opert yChange()

Returned By: Pr oper t yVet oExcept i on. get Propert yChangeEvent ()

PropertyChangelL istener Javal.l

java.beans event listener PJ1.1

Thisinterfaceisan extension of j ava. uti | . Event Li st ener ; it defines the method a class must implement in
order to be notified when property changes occur. A Pr oper t yChangeEvent issent to all registered

Pr opert yChangelLi st ener objects when abean changes one of its bound properties or when a

Propert yEdi t or or Cust om zer changesthe value of a property.

public interface PropertyChangel istener extends java.util.EventListener {
/I Public Instance Methods
public abstract void propertyChange (PropertyChangeEvent ewvt);

Hierarchy: (Propert yChangelLi st ener (j ava. util . EventLi stener))

Implementations: j ava. beans. beancont ext . BeanCont ext Support,
j avax. swi ng. JLi st. Accessi bl eJLi st, javax.sw ng.JTabl e. Accessi bl eJTabl e,
j avax. swi ng. t abl e. Def aul t Tabl eCol utmMbdel

Passed To: Too many methodsto list.

Returned By:

j ava. beans. beancont ext . BeanCont ext Support . get Chi | dPropert yChangelLi st ener (),
j avax. swi ng. Abst ract Butt on. cr eat eActi onPr opert yChangelLi st ener (),

] avax. swi ng. JCheckBox. creat eActi onPr opert yChangelLi st ener (),

j avax. swi ng. JConboBox. cr eat eAct i onPr opert yChangelLi st ener (),

j avax. swi ng. JMenu. cr eat eAct i onChangeli st ener (),

j avax. swi ng. JMenul t em cr eat eActi onPr opert yChangelLi st ener (),

j avax. swi ng. JPopupMenu. cr eat eAct i onChangelLi st ener (),

j avax. swi ng. JRadi oBut t on. cr eat eAct i onPr opertyChangelLi st ener (),

file:///C|/orielly/jnut/ch09_01.htm (13 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Javain a Nutshell)

j avax. swi ng. JText Fi el d. cr eat eActi onPr opert yChangelLi st ener (),
j avax. swi ng. JTool Bar . cr eat eAct i onChangelLi st ener ()

PropertyChangeSupport Java ll

java.beans serializable PJ1.1

The Pr oper t yChangeSupport classisaconvenience classthat maintainsalist of registered

Pr opert yChangeLi st ener objectsand providesthef i r ePr opert yChange() method for sending a

Pr opert yChangeEvent object to all registered listeners. Because there are some tricky thread-synchronization
Issues involved in doing this correctly, it is recommended that all JavaBeans that support bound properties either
extend this class or, more commonly, create an instance of this class to which they can delegate the task of

maintaining the list of listeners.

public class PropertyChangeSupport implements Serializable {
// Public Constructors
public PropertyChangeSupport (Object sourceBean);
/I Event Registration Methods (by event name)
public void addPropertyChangel istener (PropertyChangelL istener listener);
public void removePropertyChangel istener (PropertyChangelistener listener);
/I Public Instance Methods

12 public void addPropertyChangel istener (String propertyName, PropertyChangeL istener
" listener);

1.2 public void fireProper tyChange (PropertyChangeEvent evt);

1.2 public void firePropertyChange (String propertyName, int oldValue, int newValue);

1.2 public void firePropertyChange (String propertyName, boolean oldValue, boolean newValue);
public void firePropertyChange (String propertyName, Object oldValue, Object newValue);

1.2 public boolean hasL istener s (String propertyName);

12 public void removePropertyChangelL istener (String propertyName, PropertyChangeL istener
" listener);

}

Hierarchy: Obj ect - - >Pr oper t yChangeSupport (Seri al i zabl e)
Subclasses: j avax. swi ng. event . Swi ngPr oper t yChangeSuppor t

Type Of: j ava. awt . Tool ki t. deskt opPr opsSupport,
] ava. beans. beancont ext . BeanCont ext Chi | dSupport . pcSupport

PropertyDescriptor Javall

file:///C|/orielly/jnut/ch09_01.htm (14 of 22) [2/5/2003 7:49:52 PM]

synchronized
synchronized

synchronized

synchronized
synchronized

The java.beans Package (Javain a Nutshell)

java.beans PJ1.1

A PropertyDescri pt or objectisatypeof Feat ureDescri pt or that describes asingle property of a
JavaBeans component. The Beanl nf o classfor abean optionally creates and initializes Pr oper t yDescr i pt or
objects to describe the properties the bean supports. Typically, only application builders and similar tools use the get
and i s methods to obtain this property description information.

You create aPr opert yDescri pt or by specifying the name of the property and the Cl ass object for the bean. If
you have not followed the standard design patterns for accessor-method naming, you can also specify the accessor
methods for the property. Once aPr opert yDescri pt or iscreated, theset Bound() and

set Const rai ned() methods allow you to specify whether the property is bound and/or constrained.

set Propert yEdi t or O ass() alowsyou to specify a specific property editor that should edit the value of this
property (thisis useful, for example, when the property is an enumerated type with a specific list of supported values).
The methods of the Feat ur eDescr i pt or superclass allow additional information about the property to be
specified.

public class PropertyDescriptor extends FeatureDescriptor {
/I Public Constructors
public PropertyDescriptor (String propertyName, Class beanClass) throws I ntrospectionException;

public PropertyDescriptor (String propertyName, java.lang.reflect.Method getter, java.lang.reflect.Method
setter) throws IntrospectionException;

public PropertyDescriptor (String propertyName, Class beanClass, String getterName, String setterName)
throws I ntrospecti onException;

Il Property Accessor Methods (by property name)
public boolean isBound ();
public void setBound (boolean bound);
public boolean isConstrained ();
public void setConstrained (boolean constrained);
public Class getPropertyEditor Class ();
public void setPropertyEditor Class (Class propertyEditor Class);
public Class getPropertyType ();
public javalang.reflect. Method getReadM ethod ();
1.2 public void setReadM ethod (java.lang.reflect.Method getter) throws IntrospectionException;
public javalang.reflect. Method getWriteM ethod ();
1.2 public void setWriteM ethod (java.lang.reflect.Method setter) throws I ntrospectionException;

}

Hierarchy: Obj ect - - >Feat ur eDescri pt or - - >Pr opert yDescri pt or

Subclasses: | ndexedPr opert yDescri pt or

file:///C|/orielly/jnut/ch09_01.htm (15 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Javain a Nutshell)

Returned By: Beanl nf 0. get PropertyDescri ptors(),
Si nmpl eBeanl nf 0. get PropertyDescri ptors()

PropertyEditor Javal.l

java.beans PJ1.1

The Pr oper t yEdi t or interface defines the methods that must be implemented by a JavaBeans property editor
intended for use within an application builder or similar tool. Pr oper t yEdi t or isacomplex interface because it
defines methods to support different ways of displaying property valuesto the user. It aso defines methods to support
different ways of allowing the user to edit the property value.

For a property of type x, the author of a bean typically implements a property editor of class xEdi t or . While the
editor isimplemented by the bean author, it is usually instantiated or used only by application builders or similar tools
(or by aCust omi zer classfor abean). In addition to implementing the Pr oper t yEdi t or interface, a property
editor must have a constructor that expects no arguments, so that it can be easily be instantiated by an application
builder. Also, it must accept registration and deregistration of Pr oper t yChangelLi st ener objectsand send a

Pr opert yChangeEvent to all registered listeners when it changes the value of the property being edited. The
Propert yEdi t or Support classisatrivial implementation of Pr opert yEdi t or, suitable for subclassing or
for supporting alist of Pr oper t yChangelLi st ener objects.

public interface PropertyEditor {
/I Event Registration Methods (by event name)
public abstract void addPropertyChangel istener (PropertyChangel istener listener);
public abstract void removePropertyChangel istener (PropertyChangelistener listener);
/I Property Accessor Methods (by property name)
public abstract String getAsText ();
public abstract void setAsT ext (String text) throws I1legal ArgumentException;
public abstract java.awt.Component getCustomEditor ();
public abstract String getJaval nitializationString ();
public abstract boolean isPaintable ();
public abstract String[] getTags ();
public abstract Object getValue ();
public abstract void setValue (Object value);
/I Public Instance Methods
public abstract void paintValue (java.awt.Graphics gfx, java.awt.Rectangle box);
public abstract boolean supportsCustomEditor ();

Implementations: Pr oper t yEdi t or Suppor t

file:///C|/orielly/jnut/ch09_01.htm (16 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Javain a Nutshell)

Returned By: Pr oper t yEdi t or Manager . fi ndEdi t or ()

PropertyEditor M anager Javal.l

java.beans PJ1.1

The Pr opert yEdi t or Manager classisnot meant to be instantiated; it defines static methods for registering and
looking up Pr oper t yEdi t or classesfor a specified property type. A bean can specify a particular

Propert yEdi t or classfor agiven property by specifyingitinaPr opertyDescri pt or object for the
property. If it does not do this, the Pr opert yEdi t or Manager isused to register and look up editors. A bean or an
application builder tool can call ther egi st er Edi t or () method to register aPr opert yEdi t or for properties
of aspecified type. Application builders and bean Cust om zer classescan call thef i ndEdi t or () method to
obtain aPr oper t yEdi t or for agiven property type. If no editor has been registered for a given type, the
Propert yEdi t or Manager attemptsto locate one. For atype X, it looks for aclassxEdi t or first in the same
package as x, and then in each package listed in the property editor search path.

public class PropertyEditor Manager {
/I Public Constructors

public PropertyEditor Manager ();
/I Public Class Methods

public static PropertyEditor findEditor (Class targetType); synchronized
public static String[] getEditor Sear chPath (); synchronized
public static void register Editor (ClasstargetType, Class editorClass);
public static void setEditor Sear chPath (String[] path); synchronized
}
PropertyEditor Support Java ll
java.beans PJ1.1

ThePr opert yEdi t or Support classisatrivia implementation of the Pr oper t yEdi t or interface. It provides
no-op default implementations of most methods, so you can define simple Pr oper t yEdi t or subclasses that
override only afew required methods. In addition, Pr oper t yEdi t or Support defines working versions of
addPr opert yChangelLi st ener () andr enovePr opert yChangeli st ener (), along with a
firePropertyChange() method that sendsaPr opert yChangeEvent to al registered listeners.

Propert yEdi t or classesmay chooseto instantiate a Pr oper t yEdi t or Suppor t object smply to handle the
job of managing the list of listeners. When used in thisway, the Pr oper t yEdi t or Suppor t object should be

Instantiated with a source object specified, so that the source object can be used in the Pr oper t yChangeEvent
objects that are sent.

public class PropertyEditor Support implements PropertyEditor {

file:///C|/orielly/jnut/ch09_01.htm (17 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Javain a Nutshell)

/I Protected Constructors

protected PropertyEditor Support ();

protected PropertyEditor Support (Object source);
/I Event Registration Methods (by event name)

public void addPropertyChangel istener (PropertyChangel istener
listener);

public void removePropertyChangel istener (PropertyChangelistener
listener);

/I Public Instance Methods
public void firePropertyChange ();
/I Methods Implementing PropertyEditor

public void addPropertyChangel istener (PropertyChangelL istener
listener);

public String getAsText ();

public java.awt.Component getCustomEditor ();
public String getJaval nitializationString ();
public String[] getTags ();

public Object getValue ();

public boolean isPaintable ();

public void paintValue (java.awt.Graphics gfx, java.awt.Rectangle
box);

public void removePropertyChangel istener (PropertyChangelistener
listener);

public void setAsT ext (String text) throws Illegal ArgumentException;
public void setValue (Object value);
public boolean supportsCustomEditor ();

Hierarchy: Obj ect - - >Pr oper t yEdi t or Support (PropertyEdi t or)

PropertyVetoException Javall

java.beans serializable checked PJ1.1

I mplements: PropertyEditor synchronized

I mplements: PropertyEditor synchronized

synchronized

constant

constant

constant

empty

synchronized

constant

Signalsthat a Vet oabl eChangeli st ener that received aPr oper t yChangeEvent for aconstrained property
of abean has vetoed that proposed change. When this exception is received, the property in question should revert to
itsoriginal value, and any Vet oabl eChangelLi st ener objectsthat have already been notified of the property

change must be renctified to indicate that the property has reverted to its old value. The

Vet oabl eChangeSupport class handles this renotification automatically and rethrows the

Propert yVet oExcept i on tonotify its caller that the change was rejected.

file:///C|/orielly/jnut/ch09_01.htm (18 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Javain a Nutshell)

public class PropertyVetoException extends Exception {
/I Public Constructors

public PropertyVetoException (String mess, PropertyChangeEvent ewvt);
/I Public Instance Methods

public PropertyChangeEvent getPr opertyChangeEvent ();

Hierarchy: Cbj ect - - >Thr owabl e(Seri al i zabl e) - - >Except i on- - >Pr opert yVet oExcepti on

Thrown By: Vet oabl eChangelLi st ener. vet oabl eChange(),

Vet oabl eChangeSupport . fireVet oabl eChange(),

| ava. beans. beancont ext . BeanCont ext Chi | d. set BeanCont ext (),

j ava. beans. beancont ext . BeanCont ext Chi | dSupport. {fireVet oabl eChange(),

set BeanContext ()}, java. beans. beancont ext.BeanCont ext Support.{setLocal e(),
vet oabl eChange()}, javax.sw ng. JConponent. fireVet oabl eChange(),

j avax. swi ng. Jl nternal Frame. {set C osed(), setlcon(), setMxinmun(),

set Sel ect ed() }

SimpleBeaninfo Javall

java.beans PJ1.1

The Si npl eBeanl nf o classisatrivial implementation of the Beanl nf o interface. The methods of this class all
return nul | or -1, indicating that no bean information is available. To use this class, you need to override only the
method or methods that return the particular type of bean information you want to provide. In addition,

Si npl eBeanl nf o provides a convenience method, | oadl mage() , that takes a resource name as an argument
and returnsan | mage obj ect . Thismethod is useful when defining theget | con() method.

public class SimpleBeanl nfo implements Beaninfo {
/I Public Constructors
public SimpleBeaninfo ();
/I Public Instance Methods
public java.awt.Image loadl mage (String resourceName);
/I Methods Implementing Beanl nfo

public BeanInfo[] getAdditionalBeanlnfo (); constant default: null
public BeanDescriptor getBeanDescriptor (); constant default: null
public int getDefaultEventIndex (); constant default:-1
public int getDefaultPropertylndex (); constant default:-1
public EventSetDescriptor[| getEventSetDescriptors(); constant default:null
public java.awt.Image getl con (int iconKind); constant

file:///C|/orielly/jnut/ch09_01.htm (19 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Javain a Nutshell)

public MethodDescriptor|] getM ethodDescriptors(); constant default: null
public PropertyDescriptor|] getPropertyDescriptors(); constant default: null

Hierarchy: Obj ect - - >Si npl eBeanl nf o(Beanl nf 0)

VetoableChangel istener Javal.l

java.beans event listener PJ1.1

Thisinterfaceisan extension of j ava. uti | . Event Li st ener . It defines the method a class must implement in
order to be notified when a Java bean makes a change to a constrained property. A Pr oper t yChangeEvent is
passed to the Vet oabl eChange() method when such a change occurs. If the Vet oabl eChangelLi st ener
wants to prevent the change from occurring, this method should throw a Pr oper t yVet oExcept i on.

public interface VetoableChangel istener extends java.util.EventListener {

/l Public Instance Methods
public abstract void vetoableChange (PropertyChangeEvent evt) throws PropertyV etoException;

Hierarchy: (Vet oabl eChangelLi st ener (j ava. util . EventLi stener))
Implementations: j ava. beans. beancont ext . BeanCont ext Support

Passed To: Vet oabl eChangeSupport. { addVet oabl eChangelLi st ener (),

r emoveVet oabl eChangelLi st ener ()},
j ava. beans. beancont ext . BeanCont ext Chi | d. { addVet oabl eChangelLi st ener (),

r enmoveVet oabl eChangelLi stener ()},
j ava. beans. beancont ext . BeanCont ext Chi | dSupport . {addVet oabl eChangelLi st ener (),

r emoveVet oabl eChangelLi st ener ()},
] avax. swi ng. JConponent . { addVet oabl eChangelLi st ener (),

r enmoveVet oabl eChangelLi st ener ()}

Returned By:
] ava. beans. beancont ext . BeanCont ext Support . get Chi | dVet oabl eChangelLi st ener ()

VetoableChangeSupport Javal.l

java.beans serializable PJ1.1

Vet oabl eChangeSupport isaconvenience class that maintains alist of registered

file:///C|/orielly/jnut/ch09_01.htm (20 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Javain a Nutshell)

Vet oabl eChangelLi st ener objectsand providesaf i r eVet oabl eChange() method for sending a

Pr opert yChangeEvent to all registered listeners. If any of the registered listeners veto the proposed change,
fireVet oabl eChange() sendsout another Pr oper t yChangeEvent notifying previously notified listeners
that the property has reverted to its original value. Because of the extra complexity of correctly handling veto-able
changes and because of some tricky thread-synchronization issues involved in maintaining the list of listeners, itis
recommended that all Java beans that support constrained events create aVet oabl eChangeSupport object to
which they can delegate the tasks of maintaining the list of listeners and of firing events.

public class VetoableChangeSupport implements Serializable {
/I Public Constructors
public VetoableChangeSupport (Object sourceBean);
/I Event Registration Methods (by event name)
public void addV etoableChangeL istener (VetoableChangelistener listener); synchronized
public void removeVetoableChangel istener (VetoableChangelistener listener); synchronized
/I Public Instance Methods
public void addVetoableChangel istener (String propertyName, V etoableChangeL istener

2 istener): synchronized
1.2 public void fireV etoableChange (PropertyChangeEvent evt) throws PropertyV etoException;
public void fireVetoableChange (String propertyName, int oldValue, int newValue) throws
"~ PropertyV etoException;
public void fireVetoableChange (String propertyName, boolean oldValue, boolean newValue)
"~ throws PropertyV etoException;
public void fireVetoableChange (String propertyName, Object oldValue, Object newValue)
throws PropertyV etoException;
1.2 public boolean hasL istener s (String propertyName); synchronized
12 ﬁl;tbelrl]cér \gc;)id removeV etoableChangel istener (String propertyName, V etoableChangel istener synchronized
}

Hierarchy: Cbj ect - - >Vet oabl eChangeSupport (Seri al i zabl e)

Type Of: j ava. beans. beancont ext . BeanCont ext Chi | dSupport. vcSupport

Visbility Javall

java.beans PJ1.1

Thisinterface is intended to be implemented by advanced beans that can run both with and without a GUI present.
The methods it defines allow a bean to specify whether it requires a GUI and allow the environment to notify the bean
whether a GUI isavailable. If abean absolutely requires a GUI, it should returnt r ue fromneedsQui () . If abean
is running without a GUI, it should returnt r ue fromavoi di ngQui () . If no GUI isavailable, the bean can be
notified through acall to dont UseCui (), and if aGUI isavailable, the bean can be notified through a call to

file:///CJ/orielly/jnut/ch09_01.htm (21 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Javain a Nutshell)

okToUseCGui () .

public interface Visibility {

/I Public Instance Methods
public abstract boolean avoidingGui ();
public abstract void dontUseGui ();
public abstract boolean needsGui ();
public abstract void ok ToUseGui ();

Implementations: j ava. beans. beancont ext . BeanCont ext

Returned By: j ava. beans. beancont ext . BeanCont ext Support.get Chil dVisibility()

4 PREVIOUS HOME MEXT o

Reading a Quick-Reference BOOK INDEX 10. The

Entry java.beans.beancontext
Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file://IC|/orielly/jnut/ch09_01.htm (22 of 22) [2/5/2003 7:49:52 PM]

file:///C|/orielly/jnut/copyrght.htm

The java.beans.beancontext Package (Javain a Nutshell)

48 PREVIOUS Part 2: API Quick Reference HEXT &

Chapter 10. The java.beans.beancontext Package

Thej ava. beans. beancont ext package extends the JavaBeans component model to add the notion of a containment hierarchy. It also supports bean containers that provide an execution context for the beans they contain and that may also provide a set of services to those beans. This package is typically used by advanced bean developers and developers of bean-
manipulation tools. Application programmers who are simply using beans do not typically use this package. Figure 10-1 shows the class hierarchy.

!
gt [
BeamContextServiceRevohedEvent :
1 — 5
m s] frosmaans b e o gl

Figure 10-1. The java.beans.beancontext package

BeanCont ext isthe central interface of this package. It is a container for beans and aso defines several methods that specify context information for beans. BeanCont ext Ser vi ces extends BeanCont ext to define methods that allow a contained bean to query and request available services. A bean that wishes to be told about its containing BeanCont ext
implements the BeanCont ext Chi | d interface. BeanCont ext isitself aBeanCont ext Chi | d, which means that contexts can be nested within other contexts.

See Chapter 6, "JavaBeans', for more information on beans and bean contexts.

BeanContext Javal2

java.beans.beancontext collection

This interface defines the methods that must be implemented by any class that wants to act asalogical container for JavaBeans components. Every BeanCont ext isaso aBeanCont ext Chi | d and can therefore be nested within a higher-level bean context. BeanCont ext isextended by BeanCont ext Ser vi ces; any bean context that wants to provide
services to the beans it contains must implement this more specialized interface.

TheBeanCont ext interface extendsthej ava. uti | . Col | ect i on interface; the children it contains are accessed using the methods of that interface. In addition, BeanCont ext defines several important methods of itsown. i nst ant i at eChi | d() instantiates anew bean, in the same manner as the standard Beans. i nst ant i at e() method, and then
makes that new bean a child of the context. Calling this method is typically the same as calling the three-argument version of Beans. i nst anti at e() . get Resour ce() and get Resour ceAsSt r ean() aretheBeanCont ext versionsof thej ava. | ang. C ass andj ava. | ang. Cl assLoader methods of the same name. Some bean-context
implementations may provide special behavior for these methods; others may simply delegate to the Cl ass or Cl assLoader of the bean. The remaining two methods allow the registration and deregistration of event listeners that the BeanCont ext notifies when bean children are added or removed from the context.

Implementing aBeanCont ext isamore specialized task than developing a JavaBeans component. Many bean developers will never have to implement a bean context themselves. If you do implement a bean context, you'll probably find it easier to use BeanCont ext Suppor t , either by extending it or using