
A Deskop Quick Reference (Java in a Nutshell: Java™ in a Nutshell)

by David Flanagan
ISBN 1-56592-487-8E
Third edition, published November 1999.
(See the catalog page for this book.)

Search the text of Java™ in a Nutshell: A Deskop Quick Reference.

Table of Contents

Copyright
Preface

Part 1: Introducing Java

Chapter 1: Introduction
Chapter 2: Java Syntax from the Ground Up
Chapter 3: Object-Oriented Programming in Java
Chapter 4: The Java Platform
Chapter 5: Java Security
Chapter 6: JavaBeans
Chapter 7: Java Programming and Documentation Conventions
Chapter 8: Java Development Tools

Part 2: API Quick Reference

How To Use This Quick Reference
Chapter 9: The java.beans Package
Chapter 10: The java.beans.beancontext Package
Chapter 11: The java.io Package
Chapter 12: The java.lang Package
Chapter 13: The java.lang.ref Package
Chapter 14: The java.lang.reflect Package
Chapter 15: The java.math Package

file:///C|/orielly/jnut/index.htm (1 of 2) [2/5/2003 7:45:15 PM]

http://www.oreilly.com/catalog/javanut3
file:///C|/orielly/jnut/jobjects/fsearch.htm
file:///C|/orielly/jnut/copyrght.htm

A Deskop Quick Reference (Java in a Nutshell: Java™ in a Nutshell)

Chapter 16: The java.net Package
Chapter 17: The java.security Package
Chapter 18: The java.security.acl Package
Chapter 19: The java.security.cert Package
Chapter 20: The java.security.interfaces Package
Chapter 21: The java.security.spec Package
Chapter 22: The java.text Package
Chapter 23: The java.util Package
Chapter 24: The java.util.jar Package
Chapter 25: The java.util.zip Package
Chapter 26: The javax.crypto Package
Chapter 27: The javax.crypto.interfaces Package
Chapter 28: The javax.crypto.spec Package
Chapter 29: Class, Method, and Field Index
Index
Colophon

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/index.htm (2 of 2) [2/5/2003 7:45:15 PM]

file:///C|/orielly/jnut/colophon.htm
file:///C|/orielly/jnut/copyrght.htm

Preface (Java in a Nutshell)

Java™ in a Nutshell: A

Deskop Quick Reference

Preface
This book is a desktop quick reference for Java™ programmers, designed to sit faithfully by your
keyboard while you program. Part 1, "Introducing Java" of the book is a fast-paced, "no-fluff"
introduction to the Java programming language and the core APIs of the Java platform. Part 2, "API
Quick Reference" is a quick-reference section that succinctly details every class and interface of those
core APIs. The book covers Versions 1.0, 1.1, 1.2, and 1.3 beta of Java.

0.1. Changes Since the Second Edition

Readers who are familiar with the second edition of this book will notice a number of changes in this
edition. Most notably, the AWT and applet APIs are no longer documented in this book. The Java
platform tripled in size between Java 1.1 and Java 1.2. Accordingly, and unavoidably, Java in a Nutshell
has been split into three volumes. The volume you are now reading documents only the essential APIs of
the platform, including the basic language and utility classes, as well as classes for input/output,
networking, and security. See the Table of Contents for a complete list of the packages documented here.

If you are a client-side programmer who is working with graphics or graphical user interfaces, you will
probably want to supplement this book with Java Foundation Classes in a Nutshell, which documents all
the graphics- and GUI-related classes, including the AWT, Swing, Java 2D, and applet APIs. And, if you
are an server-side or enterprise programmer, you will likely be interested in Java Enterprise in a
Nutshell.

Another big change is that Part 1, "Introducing Java" of this book has been almost entirely rewritten. The
first and second editions of this book assumed knowledge of and experience with C or C++. Now that
Java has come thoroughly into its own, that assumption no longer seems appropriate, so I have rewritten
and expanded Chapters 2 and 3 to explain Java without any reference to C, C++, or any other
programming language. Programmers with a modest amount of experience should now be able to learn
Java programming from this book. These introductory chapters are written in a tight, concise style, so
programmers who already know Java should find them useful as a language reference.

Another new feature of Part 1, "Introducing Java" is Chapter 4, "The Java Platform". This chapter is an
introduction to the APIs documented in the reference section of the book. It includes more than 60

file:///C|/orielly/jnut/ch00_01.htm (1 of 2) [2/5/2003 7:45:25 PM]

file:///C|/orielly/jnut/copyrght.htm

Preface (Java in a Nutshell)

detailed API usage examples that show how to accomplish common tasks with the predefined classes of
the Java platform.

Finally, the quick-reference section in Part 2, "API Quick Reference" of the book has a new look that
dramatically improves the readability of the reference material and packs even more API information
into a small space. Even if you are already familiar with the second edition, you should take the time to
read the "How To Use This Quick Reference" section at the beginning of Part 2, "API Quick Reference";
it explains the new quick-reference format and shows you how to get the most out of it.

Copyright 0.2. Contents of This Book

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch00_01.htm (2 of 2) [2/5/2003 7:45:25 PM]

file:///C|/orielly/jnut/copyrght.htm
file:///C|/orielly/jnut/copyrght.htm

Contents of This Book (Java in a Nutshell)

Preface

0.2. Contents of This Book

The first eight chapters of this book document the Java language, the Java platform, and the Java
development tools that are supplied with Sun's Java SDK (software development kit):

Chapter 1, "Introduction"

This chapter is an overview of the Java language and the Java platform that explains the important
features and benefits of Java. It concludes with an example Java program and walks the new Java
programmer through it line by line.

Chapter 2, "Java Syntax from the Ground Up"

This chapter explains the details of the Java programming language. It is a long and detailed
chapter. Experienced Java programmers can use it as a language reference. Programmers with
substantial experience with languages such as C and C++ should be able to pick up Java syntax by
reading this chapter. The chapter does not assume years of programming experience, or even
familiarity, with C or C++, however. Even beginning programmers, with only modest experience,
should be able to learn Java programming by studying this chapter carefully.

Chapter 3, "Object-Oriented Programming in Java"

This chapter describes how the basic Java syntax documented in Chapter 2, "Java Syntax from the
Ground Up" is used to write object-oriented programs in Java. The chapter assumes no prior
experience with OO programming. It can be used as a tutorial by new programmers or as a
reference by experienced Java programmers.

Chapter 4, "The Java Platform"

This chapter is an overview of the essential Java APIs covered in this book. It contains numerous
short examples that demonstrate how to perform common tasks with the classes and interfaces
that comprise the Java platform. Programmers who are new to Java, and especially those who
learn best by example, should find this a valuable chapter.

Chapter 5, "Java Security"

file:///C|/orielly/jnut/ch00_02.htm (1 of 2) [2/5/2003 7:45:33 PM]

Contents of This Book (Java in a Nutshell)

This chapter explains the Java security architecture that allows untrusted code to run in a secure
environment from which it cannot do any malicious damage to the host system. It is important for
all Java programmers to have at least a passing familiarity with Java security mechanisms.

Chapter 6, "JavaBeans"

This chapter documents the JavaBeans™ component framework and explains what programmers
need to know to create and use the reusable, embeddable Java classes known as beans.

Chapter 7, "Java Programming and Documentation Conventions"

This chapter documents important and widely adopted Java programming conventions and also
explains how you can make your Java code self-documenting by including specially formatted
documentation comments.

Chapter 8, "Java Development Tools"

The Java SDK shipped by Sun includes a number of useful Java development tools, most notably
the Java interpreter and the Java compiler. This chapter documents those tools.

These first eight chapters teach you the Java language and get you up and running with the Java APIs.
The bulk of the book, however, is the API quick reference, Chapters 9 through 29, which is a succinct
but detailed API reference formatted for optimum ease of use. Please be sure to read the How To Use
This Quick Reference section, which appears at the beginning of the reference section; it explains how to
get the most out of this section.

0.1. Changes Since the
Second Edition

0.3. Related Books

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch00_02.htm (2 of 2) [2/5/2003 7:45:33 PM]

file:///C|/orielly/jnut/copyrght.htm

Related Books (Java in a Nutshell)

Preface

0.3. Related Books

O'Reilly & Associates, Inc. publishes an entire series of books on Java programming. These books
include Java Foundation Classes in a Nutshell and Java Enterprise in a Nutshell, which, as mentioned
earlier, are companions to this book.

A related reference work is the Java Power Reference. It is an electronic Java quick reference on CD-
ROM that uses the Java in a Nutshell style. But since it is designed for viewing in a web browser, it is
fully hyperlinked and includes a powerful search engine. It is wider in scope but narrower in depth than
the Java in a Nutshell books. The Java Power Reference covers all the APIs of the Java 2 platform, plus
the APIs of many standard extensions. But it does not include tutorial chapters on the various APIs, nor
does it include descriptions of the individual classes.

You can find a complete list of Java books from O'Reilly & Associates at http://java.oreilly.com/. Books
that focus on the core Java APIs, as this one does, include:

Exploring Java, by Pat Niemeyer and Joshua Peck

A comprehensive tutorial introduction to Java, with an emphasis on client-side Java
programming.

Java Threads, by Scott Oaks and Henry Wong

Java makes multithreaded programming easy, but doing it right can still be tricky. This book
explains everything you need to know.

Java I/O, by Elliotte Rusty Harold

Java's stream-based input/output architecture is a thing of beauty. This book covers it in the detail
it deserves.

Java Network Programming, by Elliotte Rusty Harold

This book documents the Java networking APIs in detail.

file:///C|/orielly/jnut/ch00_03.htm (1 of 2) [2/5/2003 7:45:36 PM]

http://java.oreilly.com/

Related Books (Java in a Nutshell)

Java Security, by Scott Oaks

This book explains the Java access-control mechanisms in detail and also documents the
authentication mechanisms of digital signatures and message digests.

Java Cryptography, by Jonathan Knudsen

Thorough coverage of the Java Cryptography Extension, the javax.crypto.* packages, and
everything you need to know about cryptography in Java.

Developing Java Beans, by Robert Englander

A complete guide to writing components that work with the JavaBeans API.

0.2. Contents of This Book 0.4. Java Programming
Resources Online

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch00_03.htm (2 of 2) [2/5/2003 7:45:36 PM]

file:///C|/orielly/jnut/copyrght.htm

Java Programming Resources Online (Java in a Nutshell)

Preface

0.4. Java Programming Resources Online

This book is a quick reference designed for speedy access to frequently needed information. It does not,
and cannot, tell you everything you need to know about Java. In addition to the books listed earlier, there
are several valuable (and free) electronic sources of information about Java programming.

Sun's main web site for all things related to Java is http://java.sun.com/. The web site specifically for
Java developers is http://developer.java.sun.com/. Much of the content on this developer site is password-
protected, and access to it requires (free) registration.

Sun distributes electronic documentation for all Java classes and methods in its javadoc HTML format.
Although this documentation is somewhat difficult to navigate and is rough or outdated in places, it is
still an excellent starting point when you need to know more about a particular Java package, class,
method, or field. If you do not already have the javadoc files with your Java distribution, see
http://java.sun.com/docs/ for a link to the latest available version. Sun also distributes its excellent Java
Tutorial online. You can browse and download it from http://java.sun.com/docs/books/tutorial/.

For Usenet discussion (in English) about Java, try the comp.lang.java.programmer and related
comp.lang.java.* newsgroups. You can find the very comprehensive comp.lang.java.programmer FAQ
by Peter van der Linden at http://www.afu.com/javafaq.htm.

Finally, don't forget O'Reilly's Java web site. http://java.oreilly.com/ contains Java news and commentary
and a monthly tips-and-tricks column by O'Reilly Java author Jonathan Knudsen.

0.3. Related Books 0.5. Examples Online

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch00_04.htm [2/5/2003 7:45:38 PM]

http://java.sun.com/
http://developer.java.sun.com/
http://java.sun.com/docs/
http://java.sun.com/docs/books/tutorial/
http://www.afu.com/javafaq.htm
http://java.oreilly.com/
file:///C|/orielly/jnut/copyrght.htm

Examples Online (Java in a Nutshell)

Preface

0.5. Examples Online

The examples in this book are available online and can be downloaded from the home page for the book
at http://www.oreilly.com/catalog/javanut3. You also may want to visit this site to see if any important
notes or errata about the book have been published there.

0.4. Java Programming
Resources Online

0.6. Conventions Used in
This Book

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch00_05.htm [2/5/2003 7:45:41 PM]

http://www.oreilly.com/catalog/javanut3
file:///C|/orielly/jnut/copyrght.htm

Conventions Used in This Book (Java in a Nutshell)

Preface

0.6. Conventions Used in This Book

We use the following formatting conventions in this book:

Italic

Used for emphasis and to signify the first use of a term. Italic is also used for commands, email
addresses, web sites, FTP sites, file and directory names, and newsgroups.

Bold

Occasionally used to refer to particular keys on a computer keyboard or to portions of a user
interface, such as the Back button or the Options menu.

Letter Gothic

Used in all Java code and generally for anything that you would type literally when programming,
including keywords, data types, constants, method names, variables, class names, and interface
names.

Letter Gothic Oblique

Used for the names of function arguments and generally as a placeholder to indicate an item that
should be replaced with an actual value in your program.

Franklin Gothic Book Condensed

Used for the Java class synopses in the quick-reference section. This very narrow font allows us to
fit a lot of information on the page without a lot of distracting line breaks. This font is also used
for code entities in the descriptions in the quick-reference section.

Franklin Gothic Demi Condensed

Used for highlighting class, method, field, property, and constructor names in the quick-reference
section, which makes it easier to scan the class synopses.

file:///C|/orielly/jnut/ch00_06.htm (1 of 2) [2/5/2003 7:45:43 PM]

Conventions Used in This Book (Java in a Nutshell)

Franklin Gothic Book Compressed Italic

Used for method parameter names and comments in the quick-reference section.

0.5. Examples Online 0.7. Request for Comments

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch00_06.htm (2 of 2) [2/5/2003 7:45:43 PM]

file:///C|/orielly/jnut/copyrght.htm

Request for Comments (Java in a Nutshell)

Preface

0.7. Request for Comments

Please help us improve future editions of this book by reporting any errors, inaccuracies, bugs,
misleading or confusing statements, and even plain old typos that you find. Please also let us know what
we can do to make this book more useful to you. We take your comments seriously and will try to
incorporate reasonable suggestions into future editions. You can contact us by writing:

O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
1-800-998-9938 (in the United States or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (fax)

You can also send us messages electronically. To be put on the mailing list or request a catalog, send
email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for the book, where we'll list examples, errata, and any plans for future editions. You
can access this page at:

http://www.oreilly.com/catalog/javanut3/

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

file:///C|/orielly/jnut/ch00_07.htm (1 of 2) [2/5/2003 7:45:46 PM]

http://www.oreilly.com/catalog/javanut3/
http://www.oreilly.com/

Request for Comments (Java in a Nutshell)

0.6. Conventions Used in
This Book

0.8. How the Quick
Reference Is Generated

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch00_07.htm (2 of 2) [2/5/2003 7:45:46 PM]

file:///C|/orielly/jnut/copyrght.htm

How the Quick Reference Is Generated (Java in a Nutshell)

Preface

0.8. How the Quick Reference Is Generated

For the nerdy or merely inquisitive reader, this section explains a bit about how the quick-reference
material in Java in a Nutshell and related books is created.

As Java has evolved, so has my system for generating Java quick-reference material. The current system
is part of a larger commercial documentation browser system I'm developing (visit
http://www.davidflanagan.com/Jude/ for more information about it). The program works in two passes:
the first pass collects and organizes the API information, and the second pass outputs that information in
the form of quick-reference chapters.

The first pass begins by reading the class files for all of the classes and interfaces to be documented.
Almost all of the API information in the quick reference is available in these class files. The notable
exception is the names of method arguments, which are not stored in class files. These argument names
are obtained by parsing the Java source file for each class and interface. Where source files are not
available, I obtain method argument names by parsing the API documentation generated by javadoc. The
parsers I use to extract API information from the source files and javadoc files are created using the Antlr
parser generator developed by Terrence Parr of the Magelang Institute. (See http://www.antlr.org/ for
details on this very powerful programming tool.)

Once the API information has been obtained by reading class files, source files, and javadoc files, the
program spends some time sorting and cross-referencing everything. Then it stores all the API
information into a single large data file.

The second pass reads API information from that data file and outputs quick-reference chapters using a
custom SGML format. The SGML markup is fairly complex, but the code that generates it is quite
mundane. Once I've generated the SGML output, I hand it off to the production team at O'Reilly &
Associates. They process it and convert it to troff source code. The troff source is processed with the
GNU groff program (ftp://ftp.gnu.org/gnu/groff/) and a custom set of troff macros to produce PostScript
output that is shipped directly to the printer.

0.7. Request for Comments 0.9. Acknowledgments

file:///C|/orielly/jnut/ch00_08.htm (1 of 2) [2/5/2003 7:45:49 PM]

http://www.davidflanagan.com/Jude/
http://www.antlr.org/
ftp://ftp.gnu.org/gnu/groff/

How the Quick Reference Is Generated (Java in a Nutshell)

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch00_08.htm (2 of 2) [2/5/2003 7:45:49 PM]

file:///C|/orielly/jnut/copyrght.htm

Acknowledgments (Java in a Nutshell)

Preface

0.9. Acknowledgments

Many people helped in the creation of this book, and I am grateful to them all. I am indebted to the many,
many readers of the first two editions who wrote in with comments, suggestions, bug reports, and praise.
Their many small contributions are scattered throughout the book. Also, my apologies to those who made
the many good suggestions that could not be incorporated into this edition.

Paula Ferguson, a friend and colleague, has been the editor of all three editions of this book. Her careful
reading and always-practical suggestions have made the book stronger, clearer, and more useful. She
guided the evolution of Java in a Nutshell from a single book into a three-volume series and, at times,
juggled editing tasks for all three books at once. Finally, Paula went above and beyond the call of
editorial duty by designing the hierarchy diagrams found at the start of each reference chapter.

Mike Loukides provided high-level direction and guidance for the first edition of the book. Eric
Raymond and Troy Downing reviewed that first edition--they helped spot my errors and omissions and
offered good advice on making the book more useful to Java programmers.

For the second edition, John Zukowski reviewed my Java 1.1 AWT quick-reference material, and George
Reese reviewed most of the remaining new material. The second edition was also blessed with a "dream
team" of technical reviewers from Sun. John Rose, the author of the Java inner class specification,
reviewed the chapter on inner classes. Mark Reinhold, author of the new character stream classes in
java.io, reviewed my documentation of these classes. Nakul Saraiya, the designer of the new Java
Reflection API, reviewed my documentation of the java.lang.reflect package. I am very grateful
to these engineers and architects; their efforts made this a stronger, more accurate book.

The third edition also benefited greatly from the contributions of reviewers who are intimately familiar
with the Java platform. Joshua Bloch, one of the primary authors of the Java collections framework,
reviewed my descriptions of the collections classes and interfaces. Joshua was also helpful in discussing
the Timer and TimerTask classes of Java 1.3 with me. Mark Reinhold, creator of the
java.lang.ref package, explained the package to me and reviewed my documentation of it. Scott
Oaks reviewed my descriptions of the Java security and cryptography classes and interfaces. Joshua,
Mark, and Scott are all engineers with Sun Microsystems, and I'm very grateful for their time. The
documentation of the javax.crypto package and its subpackages was also reviewed by Jon Eaves.
Jon worked on a clean-room implementation of the Java Cryptography Extension (which is available
from http://www.aba.net.au/), and his comments were quite helpful. Jon now works for Fluent
Technologies (http://www.fluent.com.au/) consulting in Java and electronic commerce. Finally, Chapter

file:///C|/orielly/jnut/ch00_09.htm (1 of 2) [2/5/2003 7:45:52 PM]

http://www.aba.net.au/
http://www.fluent.com.au/

Acknowledgments (Java in a Nutshell)

1 was improved by the comments of reviewers who were not already familiar with the Java platform:
Christina Byrne reviewed it from the standpoint of a novice programmer, and Judita Byrne of Virginia
Power offered her comments as a professional COBOL programmer.

The O'Reilly & Associates production team has done its usual fine work of creating a book out of the
electronic files I submit. My thanks to them all. And a special thanks to Lenny Muellner and Chris
Maden, who worked overtime to implement the new and improved format of the quick-reference section.

As always, my thanks and love to Christie.

David Flanagan
http://www.davidflanagan.com/

September 1999

0.8. How the Quick
Reference Is Generated

Part 1. Introducing Java

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch00_09.htm (2 of 2) [2/5/2003 7:45:52 PM]

http://www.davidflanagan.com/
file:///C|/orielly/jnut/copyrght.htm

Introducing Java (Java in a Nutshell)

Java™ in a Nutshell: A

Deskop Quick Reference

Part 1. Introducing Java
Part I is an introduction to the Java language and the Java platform. These chapters provide enough
information for you to get started using Java right away.

0.9. Acknowledgments 1. Introduction

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/part1.htm [2/5/2003 7:45:55 PM]

file:///C|/orielly/jnut/copyrght.htm

Introduction (Java in a Nutshell)

Part 1: Introducing Java

Chapter 1. Introduction
Contents:

What Is Java?
Key Benefits of Java
An Example Program

Welcome to Java. Since its introduction in late 1995, the Java language and platform have taken the
programming world by storm. This chapter begins by explaining what Java is and why it has become so
popular. Then, as a tutorial introduction to the language, it walks you through a simple Java program you
can type in, compile, and run.

1.1. What Is Java?

In discussing Java, it is important to distinguish between the Java programming language, the Java
Virtual Machine, and the Java platform. The Java programming language is the language in which Java
applications (including applets, servlets, and JavaBeans components) are written. When a Java program
is compiled, it is converted to byte codes that are the portable machine language of a CPU architecture
known as the Java Virtual Machine (also called the Java VM or JVM). The JVM can be implemented
directly in hardware, but it is usually implemented in the form of a software program that interprets and
executes byte codes.

The Java platform is distinct from both the Java language and Java VM. The Java platform is the
predefined set of Java classes that exist on every Java installation; these classes are available for use by
all Java programs. The Java platform is also sometimes referred to as the Java runtime environment or
the core Java APIs (application programming interfaces). The Java platform can be extended with
optional standard extensions. These extension APIs exist in some Java installations, but are not
guaranteed to exist in all installations.

1.1.1. The Java Programming Language

The Java programming language is a state-of-the-art, object-oriented language that has a syntax similar
to that of C. The language designers strove to make the Java language powerful, but, at the same time,

file:///C|/orielly/jnut/ch01_01.htm (1 of 4) [2/5/2003 7:45:57 PM]

Introduction (Java in a Nutshell)

they tried to avoid the overly complex features that have bogged down other object-oriented languages,
such as C++. By keeping the language simple, the designers also made it easier for programmers to write
robust, bug-free code. As a result of its elegant design and next-generation features, the Java language
has proved wildly popular with programmers, who typically find it a pleasure to work with Java after
struggling with more difficult, less powerful languages.

1.1.2. The Java Virtual Machine

The Java Virtual Machine, or Java interpreter, is the crucial piece of every Java installation. By design,
Java programs are portable, but they are only portable to platforms to which a Java interpreter has been
ported. Sun ships VM implementations for its own Solaris operating system and for Microsoft Windows
(95/98/NT) platforms. Many other vendors, including Apple and various Unix vendors, provide Java
interpreters for their platforms. There is a freely available port of Sun's VM for Linux platforms, and
there are also other third-party VM implementations available. The Java VM is not only for desktop
systems, however. It has been ported to set-top boxes, and versions are even available for hand-held
devices that run Windows CE and PalmOS.

Although interpreters are not typically considered high-performance systems, Java VM performance is
remarkably good and has been improving steadily. Of particular note is a VM technology called just-in-
time (JIT) compilation, whereby Java byte codes are converted on-the-fly into native-platform machine
language, boosting execution speed for code that is run repeatedly. Sun's new Hotspot technology is a
particularly good implementation of JIT compilation.

1.1.3. The Java Platform

The Java platform is just as important as the Java programming language and the Java Virtual Machine.
All programs written in the Java language rely on the set of predefined classes[1] that comprise the Java
platform. Java classes are organized into related groups known as packages. The Java platform defines
packages for functionality such as input/output, networking, graphics, user-interface creation, security,
and much more.

[1]A class is a module of Java code that defines a data structure and a set of methods (also
called procedures, functions, or subroutines) that operate on that data.

The Java 1.2 release was a major milestone for the Java platform. This release almost tripled the number
of classes in the platform and introduced significant new functionality. In recognition of this, Sun named
the new version the Java 2 Platform. This is a trademarked name created for marketing purposes; it
serves to emphasize how much Java has grown since its first release. However, most programmers refer
to the Java platform by its official version number, which, at the time of this writing, is 1.2.[2]

[2]Although there is currently a beta release of Java 1.3 available

file:///C|/orielly/jnut/ch01_01.htm (2 of 4) [2/5/2003 7:45:57 PM]

Introduction (Java in a Nutshell)

It is important to understand what is meant by the term platform. To a computer programmer, a platform
is defined by the APIs he or she can rely on when writing programs. These APIs are usually defined by
the operating system of the target computer. Thus, a programmer writing a program to run under
Microsoft Windows must use a different set of APIs than a programmer writing the same program for the
Macintosh or for a Unix-based system. In this respect, Windows, Macintosh, and Unix are three distinct
platforms.

Java is not an operating system.[3] Nevertheless, the Java platform--particularly the Java 2 Platform--
provides APIs with a comparable breadth and depth to those defined by an operating system. With the
Java 2 Platform, you can write applications in Java without sacrificing the advanced features available to
programmers writing native applications targeted at a particular underlying operating system. An
application written on the Java platform runs on any operating system that supports the Java platform.
This means you do not have to create distinct Windows, Macintosh, and Unix versions of your programs,
for example. A single Java program runs on all these operating systems, which explains why "Write
once, run anywhere" is Sun's motto for Java.

[3]There is a Java-based operating system, however; it is known as JavaOS.

It also explains why companies like Microsoft might feel threatened by Java. The Java platform is not an
operating system, but for programmers, it is an alternative development target and a very popular one at
that. The Java platform reduces programmers' reliance on the underlying operating system, and, by
allowing programs to run on top of any operating system, it increases end users' freedom to choose an
operating system.

1.1.4. Versions of Java

As of this writing, there have been four major versions of Java. They are:

Java 1.0

This was the first public version of Java. It contained 212 classes organized in 8 packages. There
is a large installed base of web browsers that run this version of Java, so this version is still in use
for writing simple applets--Java programs that are included in web pages. (See Java Foundation
Classes in a Nutshell (O'Reilly) for a discussion of applets.)

Java 1.1

This release of Java doubled the size of the Java platform to 504 classes in 23 packages. It
introduced inner classes, an important change to the Java language itself, and included significant
performance improvements in the Java VM. This version of Java is out of date, but is still in use
on systems that do not yet have a stable port of Java 1.2.

file:///C|/orielly/jnut/ch01_01.htm (3 of 4) [2/5/2003 7:45:57 PM]

Introduction (Java in a Nutshell)

Java 1.2

This is the latest and greatest significant release of Java; it tripled the size of the Java platform to
1520 classes in 59 packages. Because of the many new features included in this release, the
platform was renamed and is now called the Java 2 Platform.

Java 1.3 (beta)

This release includes minor corrections and updates to the Java platform, but does not include
major changes or significant new functionality.

In addition, Sun has instituted a process for proposing and developing standard extensions to the Java
platform. In the future, most new functionality is expected to take the form of a standard extension, rather
than be a required part of every Java installation.

In order to work with Java 1.0 or Java 1.1, you have to obtain the Java Development Kit (JDK) for that
release. As of Java 1.2, the JDK has been renamed and is now called a Software Development Kit
(SDK), so we have the Java 2 SDK or, more precisely, the Java 2 SDK, Standard Edition, Version 1.2 (or
Version 1.3 beta). Despite the new name, many programmers still refer to the development kit as the
JDK.

Don't confuse the JDK (or SDK) with the Java Runtime Environment (JRE). The JRE contains
everything you need to run Java programs, but does not contain the tools you need to develop Java
programs (i.e., the compiler). You should also be aware of the Java Plug-in, a version of the Java 1.2
(and 1.3) JRE that is designed to be integrated into the Netscape Navigator and Microsoft Internet
Explorer web browsers.

In addition to evolving the Java platform over time, Sun is also trying to produce different versions of the
platform for different uses. The Standard Edition is the only version currently available, but Sun is also
working on the Java 2 Platform, Enterprise Edition (J2EE), for enterprise developers and the Java 2
Platform, Micro Edition, for consumer electronic systems, like handheld PDAs and cellular telephones.

Part 1. Introducing Java 1.2. Key Benefits of Java

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch01_01.htm (4 of 4) [2/5/2003 7:45:57 PM]

file:///C|/orielly/jnut/copyrght.htm

Key Benefits of Java (Java in a Nutshell)

Chapter 1: Introduction

1.2. Key Benefits of Java

Why use Java at all? Is it worth learning a new language and a new platform? This section explores some
of the key benefits of Java.

1.2.1. Write Once, Run Anywhere

Sun identifies "Write once, run anywhere" as the core value proposition of the Java platform. Translated
from business jargon, this means that the most important promise of Java technology is that you only
have to write your application once--for the Java platform--and then you'll be able to run it anywhere.

Anywhere, that is, that supports the Java platform. Fortunately, Java support is becoming ubiquitous. It is
integrated, or being integrated, into practically all major operating systems. It is built into the popular
web browsers, which places it on virtually every Internet-connected PC in the world. It is even being
built into consumer electronic devices, such as television set-top boxes, PDAs, and cell phones.

1.2.2. Security

Another key benefit of Java is its security features. Both the language and the platform were designed
from the ground up with security in mind. The Java platform allows users to download untrusted code
over a network and run it in a secure environment in which it cannot do any harm: it cannot infect the
host system with a virus, cannot read or write files from the hard drive, and so forth. This capability
alone makes the Java platform unique.

The Java 2 Platform takes the security model a step further. It makes security levels and restrictions
highly configurable and extends them beyond applets. As of Java 1.2, any Java code, whether it is an
applet, a servlet, a JavaBeans component, or a complete Java application, can be run with restricted
permissions that prevent it from doing harm to the host system.

The security features of the Java language and platform have been subjected to intense scrutiny by
security experts around the world. Security-related bugs, some of them potentially serious, have been
found and promptly fixed. Because of the security promises Java makes, it is big news when a new
security bug is found. Remember, however, that no other mainstream platform can make security
guarantees nearly as strong as those Java makes. If Java's security is not yet perfect, it has been proven
strong enough for practical day-to-day use and is certainly better than any of the alternatives.

file:///C|/orielly/jnut/ch01_02.htm (1 of 3) [2/5/2003 7:46:00 PM]

Key Benefits of Java (Java in a Nutshell)

1.2.3. Network-centric Programming

Sun's corporate motto has always been "The network is the computer." The designers of the Java
platform believed in the importance of networking and designed the Java platform to be network-centric.
From a programmer's point of view, Java makes it unbelievably easy to work with resources across a
network and to create network-based applications using client/server or multitier architectures. This
means that Java programmers have a serious head start in the emerging network economy.

1.2.4. Dynamic, Extensible Programs

Java is both dynamic and extensible. Java code is organized in modular object-oriented units called
classes. Classes are stored in separate files and are loaded into the Java interpreter only when needed.
This means that an application can decide as it is running what classes it needs and can load them when it
needs them. It also means that a program can dynamically extend itself by loading the classes it needs to
expand its functionality.

The network-centric design of the Java platform means that a Java application can dynamically extend
itself by loading new classes over a network. An application that takes advantage of these features ceases
to be a monolithic block of code. Instead, it becomes an interacting collection of independent software
components. Thus, Java enables a powerful new metaphor of application design and development.

1.2.5. Internationalization

The Java language and the Java platform were designed from the start with the rest of the world in mind.
Java is the only commonly used programming language that has internationalization features at its very
core, rather than tacked on as an afterthought. While most programming languages use 8-bit characters
that represent only the alphabets of English and Western European languages, Java uses 16-bit Unicode
characters that represent the phonetic alphabets and ideographic character sets of the entire world. Java's
internationalization features are not restricted to just low-level character representation, however. The
features permeate the Java platform, making it easier to write internationalized programs with Java than
it is with any other environment.

1.2.6. Performance

As I described earlier, Java programs are compiled to a portable intermediate form known as byte codes,
rather than to native machine-language instructions. The Java Virtual Machine runs a Java program by
interpreting these portable byte-code instructions. This architecture means that Java programs are faster
than programs or scripts written in purely interpreted languages, but they are typically slower than C and
C++ programs compiled to native machine language. Keep in mind, however, that although Java
programs are compiled to byte code, not all of the Java platform is implemented with interpreted byte

file:///C|/orielly/jnut/ch01_02.htm (2 of 3) [2/5/2003 7:46:00 PM]

Key Benefits of Java (Java in a Nutshell)

codes. For efficiency, computationally intensive portions of the Java platform--such as the string-
manipulation methods--are implemented using native machine code.

Although early releases of Java suffered from performance problems, the speed of the Java VM has
improved dramatically with each new release. The VM has been highly tuned and optimized in many
significant ways. Furthermore, many implementations include a just-in-time compiler, which converts
Java byte codes to native machine instructions on the fly. Using sophisticated JIT compilers, Java
programs can execute at speeds comparable to the speeds of native C and C++ applications.

Java is a portable, interpreted language; Java programs run almost as fast as native, non-portable C and
C++ programs. Performance used to be an issue that made some programmers avoid using Java. Now,
with the improvements made in Java 1.2, performance issues should no longer keep anyone away. In
fact, the winning combination of performance plus portability is a unique feature no other language can
offer.

1.2.7. Programmer Efficiency and Time-to-Market

The final, and perhaps most important, reason to use Java is that programmers like it. Java is an elegant
language combined with a powerful and well-designed set of APIs. Programmers enjoy programming in
Java and are usually amazed at how quickly they can get results with it. Studies have consistently shown
that switching to Java increases programmer efficiency. Because Java is a simple and elegant language
with a well-designed, intuitive set of APIs, programmers write better code with fewer bugs than for other
platforms, again reducing development time.

1.1. What Is Java? 1.3. An Example Program

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch01_02.htm (3 of 3) [2/5/2003 7:46:00 PM]

file:///C|/orielly/jnut/copyrght.htm

An Example Program (Java in a Nutshell)

Chapter 1: Introduction

1.3. An Example Program

Example 1-1 shows a Java program to compute factorials.[4] The numbers at the beginning of each line are not part of
the program; they are there for ease of reference when we dissect the program line-by-line.

[4]The factorial of an integer is the product of the number and all positive integers less than the number.
So, for example, the factorial of 4, which is also written 4!, is 4 times 3 times 2 times 1, or 24. By
definition, 0! is 1.

Example 1-1. Factorial.java: A Program to Compute Factorials

 1 /**
 2 * This program computes the factorial of a number
 3 */
 4 public class Factorial { // Define a class
 5 public static void main(String[] args) { // The program starts here
 6 int input = Integer.parseInt(args[0]); // Get the user's input
 7 double result = factorial(input); // Compute the factorial
 8 System.out.println(result); // Print out the result
 9 } // The main() method ends here
10
11 public static double factorial(int x) { // This method computes x!
12 if (x < 0) // Check for bad input
13 return 0.0; // if bad, return 0
14 double fact = 1.0; // Begin with an initial value
15 while(x > 1) { // Loop until x equals 1
16 fact = fact * x; // multiply by x each time
17 x = x - 1; // and then decrement x
18 } // Jump back to start of loop
19 return fact; // Return the result
20 } // factorial() ends here
21 } // The class ends here

1.3.1. Compiling and Running the Program

Before we look at how the program works, we must first discuss how to run it. In order to compile and run the program,
you need a Java software development kit (SDK) of some sort. Sun Microsystems created the Java language and ships a
free Java SDK for its Solaris operating system and for Microsoft Windows (95/98/NT) platforms. At the time of this
writing, the current version of Sun's SDK is entitled Java 2 SDK, Standard Edition, Version 1.2.2 and is available for
download from http://java.sun.com/products/jdk/1.2/ (Sun's Java SDK is still often called the JDK, even internally). Be
sure to get the SDK and not the Java Runtime Environment. The JRE enables you to run existing Java programs, but not

file:///C|/orielly/jnut/ch01_03.htm (1 of 9) [2/5/2003 7:46:04 PM]

http://java.sun.com/products/jdk/1.2/

An Example Program (Java in a Nutshell)

to write your own.

Sun supports its SDK only on Solaris and Windows platforms. Many other companies have licensed and ported the SDK
to their platforms, however. Contact your operating-system vendor to find if a version of the Java SDK is available for
your system. Linux users should visit http://www.blackdown.org/.

The Sun SDK is not the only Java programming environment you can use. Companies such as Borland, Inprise,
Metrowerks, Oracle, Sybase, and Symantec offer commercial products that enable you to write Java programs. This
book assumes that you are using Sun's SDK. If you are using a product from some other vendor, be sure to read that
vendor's documentation to learn how to compile and run a simple program, like that shown in Example 1-1.

Once you have a Java programming environment installed, the first step towards running our program is to type it in.
Using your favorite text editor, enter the program as it is shown in Example 1-1. Omit the line numbers, as they are just
there for reference. Note that Java is a case-sensitive language, so you must type lowercase letters in lowercase and
uppercase letters in uppercase. You'll notice that many of the lines of this program end with semicolons. It is a common
mistake to forget these characters, but the program won't work without them, so be careful! If you are not a fast typist,
you can omit everything from // to the end of a line. Those are comments ; they are there for your benefit and are
ignored by Java.[5]

[5]I recommend that you type this example in by hand, to get a feel for the language. If you really don't
want to, however, you can download this, and all examples in the book, from
http://www.oreilly.com/catalog/javanut3/.

When writing Java programs, you should use a text editor that saves files in plain-text format, not a word processor that
supports fonts and formatting and saves files in a proprietary format. My favorite text editor on Unix systems is emacs.
If you use a Windows system, you might use Notepad or WordPad, if you don't have a more specialized programmer's
editor. If you are using a commercial Java programming environment, it probably includes an appropriate text editor;
read the documentation that came with the product. When you are done entering the program, save it in a file named
Factorial.java. This is important; the program will not work if you save it by any other name.

After writing a program like this one, the next step is to compile it. With Sun's SDK, the Java compiler is known as
javac. javac is a command-line tool, so you can only use it from a terminal window, such as an MS-DOS window on a
Windows system or an xterm window on a Unix system. Compile the program by typing the following command
line:[6]

[6]The "C:\>" characters represent the command-line prompt; don't type these characters yourself.

C:\> javac Factorial.java

If this command prints any error messages, you probably got something wrong when you typed in the program. If it does
not print any error messages, however, the compilation has succeeded, and javac creates a file called Factorial.class.
This is the compiled version of the program.

Once you have compiled a Java program, you must still run it. Unlike some other languages, Java programs are not
compiled into native machine language, so they cannot be executed directly by the system. Instead, they are run by
another program known as the Java interpreter. In Sun's SDK, the interpreter is a command-line program named,
appropriately enough, java. To run the factorial program, type:

file:///C|/orielly/jnut/ch01_03.htm (2 of 9) [2/5/2003 7:46:04 PM]

http://www.blackdown.org/
http://www.oreilly.com/catalog/javanut3/

An Example Program (Java in a Nutshell)

C:\> java Factorial 4

java is the command to run the Java interpreter, Factorial is the name of the Java program we want the interpreter to
run, and 4 is the input data--the number we want the interpreter to compute the factorial of. The program prints a single
line of output, telling us that the factorial of 4 is 24:

C:\> java Factorial 4
24.0

Congratulations! You've just written, compiled, and run your first Java program. Try running it again to compute the
factorials of some other numbers.

1.3.2. Analyzing the Program

Now that you have run the factorial program, let's analyze it line by line, to see what makes a Java program tick.

1.3.2.1. Comments

The first three lines of the program are a comment. Java ignores them, but they tell a human programmer what the
program does. A comment begins with the characters /* and ends with the characters */. Any amount of text, including
multiple lines of text, may appear between these characters. Java also supports another type of comment, which you can
see in lines 4 through 21. If the characters // appear in a Java program, Java ignores those characters and any other text
that appears between those characters and the end of the line.

1.3.2.2. Defining a class

Line 4 is the beginning of the program. It says that we are defining a class named Factorial. This explains why the
program had to be stored in a file named Factorial.java. That filename indicates that the file contains Java source code
for a class named Factorial. The word public is a modifier ; it says that the class is publicly available and that
anyone may use it. The open curly-brace character ({) marks the beginning of the body of the class, which extends all
the way to line 21, where we find the matching close curly-brace character (}). The program contains a number of pairs
of curly braces; the lines are indented to show the nesting within these braces.

A class is the fundamental unit of program structure in Java, so it is not surprising that the first line of our program
declares a class. All Java programs are classes, although some programs use many classes instead of just one. Java is an
object-oriented programming language, and classes are a fundamental part of the object-oriented paradigm. Each class
defines a unique kind of object. Example 1-1 is not really an object-oriented program, however, so I'm not going to go
into detail about classes and objects here. That is the topic of Chapter 3, "Object-Oriented Programming in Java". For
now, all you need to understand is that a class defines a set of interacting members. Those members may be fields,
methods, or other classes. The Factorial class contains two members, both of which are methods. They are
described in upcoming sections.

1.3.2.3. Defining a method

Line 5 begins the definition of a method of our Factorial class. A method is a named chunk of Java code. A Java
program can call, or invoke, a method to execute the code in it. If you have programmed in other languages, you have

file:///C|/orielly/jnut/ch01_03.htm (3 of 9) [2/5/2003 7:46:04 PM]

An Example Program (Java in a Nutshell)

probably seen methods before, but they may have been called functions, procedures, or subroutines. The interesting
thing about methods is that they have parameters and return values. When you call a method, you pass it some data you
want it to operate on, and it returns a result to you. A method is like an algebraic function:

y = f(x)

Here, the mathematical function f performs some computation on the value represented by x and returns a value, which
we represent by y.

To return to line 5, the public and static keywords are modifiers. public means the method is publicly
accessible; anyone can use it. The meaning of the static modifier is not important here; it is explained in Chapter 3,
"Object-Oriented Programming in Java". The void keyword specifies the return value of the method. In this case, it
specifies that this method does not have a return value.

The word main is the name of the method. main is a special name. When you run the Java interpreter, it reads in the
class you specify, then looks for a method named main().[7] When the interpreter finds this method, it starts running
the program at that method. When the main() method finishes, the program is done, and the Java interpreter exits. In
other words, the main() method is the main entry point into a Java program. It is not actually sufficient for a method to
be named main(), however. The method must be declared public static void exactly as shown in line 5. In
fact, the only part of line 5 you can change is the word args, which you can replace with any word you want. You'll be
using this line in all of your Java programs, so go ahead and commit it to memory now![8]

[7]By convention, when this book refers to a method, it follows the name of the method by a pair of
parentheses. As you'll see, parentheses are an important part of method syntax, and they serve here to keep
method names distinct from the names of classes, fields, variables, and so on.

[8]All Java programs that are run directly by the Java interpreter must have a main() method. Programs
of this sort are often called applications. It is possible to write programs that are not run directly by the
interpreter, but are dynamically loaded into some other already running Java program. Examples are
applets, which are programs run by a web browser, and servlets, which are programs run by a web server.
Applets are discussed in Java Foundation Classes in a Nutshell (O'Reilly), while servlets are discussed in
Java Enterprise in a Nutshell (O'Reilly). In this book, we consider only applications.

Following the name of the main() method is a list of method parameters, contained in parentheses. This main()
method has only a single parameter. String[] specifies the type of the parameter, which is an array of strings (i.e., a
numbered list of strings of text). args specifies the name of the parameter. In the algebraic equation f(x), x is simply
a way of referring to an unknown value. args serves the same purpose for the main() method. As we'll see, the name
args is used in the body of the method to refer to the unknown value that is passed to the method.

As I've just explained, the main() method is a special one that is called by the Java interpreter when it starts running a
Java class (program). When you invoke the Java interpreter like this:

C:\> java Factorial 4

the string "4" is passed to the main() method as the value of the parameter named args. More precisely, an array of
strings containing only one entry, "4", is passed to main(). If we invoke the program like this:

file:///C|/orielly/jnut/ch01_03.htm (4 of 9) [2/5/2003 7:46:04 PM]

An Example Program (Java in a Nutshell)

C:\> java Factorial 4 3 2 1

then an array of four strings, "4", "3", "2", and "1", are passed to the main() method as the value of the parameter
named args. Our program looks only at the first string in the array, so the other strings are ignored.

Finally, the last thing on line 5 is an open curly brace. This marks the beginning of the body of the main() method,
which continues until the matching close curly brace on line 9. Methods are composed of statements, which the Java
interpreter executes in sequential order. In this case, lines 6, 7, and 8 are three statements that compose the body of the
main() method. Each statement ends with a semicolon to separate it from the next. This is an important part of Java
syntax; beginning programmers often forget the semicolons.

1.3.2.4. Declaring a variable and parsing input

The first statement of the main() method, line 6, declares a variable and assigns a value to it. In any programming
language, a variable is simply a symbolic name for a value. Think back to algebra class again:

c2 = a2 + b2

The letters a, b, and c are names we use to refer to unknown values. They make this formula (the Pythagorean theorem)
a general one that applies to arbitrary values of a, b, and c, not just a specific set like:

52 = 42 + 32

A variable in a Java program is exactly the same thing: it is a name we use to refer to a value. More precisely, a variable
is a name that refers to a storage space for a value. We often say that a variable holds a value.

Line 6 begins with the words int input. This declares a variable named input and specifies that the variable has
the type int; that is, it is an integer. Java can work with several different types of values, including integers, real or
floating-point numbers, characters (e.g., letters, digits), and strings. Java is a strongly typed language, which means that
all variables must have a type specified and can only refer to values of that type. Our input variable always refers to an
integer; it cannot refer to a floating point number or a string. Method parameters are also typed. Recall that the args
parameter had a type of String[].

Continuing with line 6, the variable declaration int input is followed by the = character. This is the assignment
operator in Java; it sets the value of a variable. When reading Java code, don't read = as "equals," but instead read it as
"is assigned the value." As we'll see in Chapter 2, "Java Syntax from the Ground Up", there is a different operator for
"equals."

The value being assigned to our input variable is Integer.parseInt(args[0]). This is a method invocation.
This first statement of the main() method invokes another method whose name is Integer.parseInt(). As you
might guess, this method "parses" an integer; that is, it converts a string representation of an integer, such as "4", to the
integer itself. The Integer.parseInt() method is not part of the Java language, but it is a core part of the Java
API or Application Programming Interface. Every Java program can use the powerful set of classes and methods defined
by this core API. The second half of this book is a quick-reference that documents that core API.

When you call a method, you pass values (called arguments) that are assigned to the corresponding parameters defined
by the method, and the method returns a value. The argument passed to Integer.parseInt() is args[0]. Recall

file:///C|/orielly/jnut/ch01_03.htm (5 of 9) [2/5/2003 7:46:04 PM]

An Example Program (Java in a Nutshell)

that args is the name of the parameter for main(); it specifies an array (or list) of strings. The elements of an array
are numbered sequentially, and the first one is always numbered 0. We only care about the first string in the args array,
so we use the expression args[0] to refer to that string. Thus, when we invoke the program as shown earlier, line 6
takes the first string specified after the name of the class, "4", and passes it to the method named
Integer.parseInt(). This method converts the string to the corresponding integer and returns the integer as its
return value. Finally, this returned integer is assigned to the variable named input.

1.3.2.5. Computing the result

The statement on line 7 is a lot like the statement on line 6. It declares a variable and assigns a value to it. The value
assigned to the variable is computed by invoking a method. The variable is named result, and it has a type of
double. double means a double-precision floating-point number. The variable is assigned a value that is computed
by the factorial() method. The factorial() method, however, is not part of the standard Java API. Instead, it
is defined as part of our program, by lines 11 through 19. The argument passed to factorial() is the value referred
to by the input variable, which was computed on line 6. We'll consider the body of the factorial() method
shortly, but you can surmise from its name that this method takes an input value, computes the factorial of that value,
and returns the result.

1.3.2.6. Displaying output

Line 8 simply calls a method named System.out.println(). This commonly used method is part of the core Java
API; it causes the Java interpreter to print out a value. In this case, the value that it prints is the value referred to by the
variable named result. This is the result of our factorial computation. If the input variable holds the value 4, the
result variable holds the value 24, and this line prints out that value.

The System.out.println() method does not have a return value, so there is no variable declaration or =
assignment operator in this statement, since there is no value to assign to anything. Another way to say this is that, like
the main() method of line 5, System.out.println() is declared void.

1.3.2.7. The end of a method

Line 9 contains only a single character, }. This marks the end of the method. When the Java interpreter gets here, it is
done executing the main() method, so it stops running. The end of the main() method is also the end of the variable
scope for the input and result variables declared within main() and for the args parameter of main(). These
variable and parameter names have meaning only within the main() method and cannot be used elsewhere in the
program, unless other parts of the program declare different variables or parameters that happen to have the same name.

1.3.2.8. Blank lines

Line 10 is a blank line. You can insert blank lines, spaces, and tabs anywhere in a program, and you should use them
liberally to make the program readable. A blank line appears here to separate the main() method from the
factorial() method that begins on line 11. You'll notice that the program also uses spaces and tabs to indent the
various lines of code. This kind of indentation is optional; it emphasizes the structure of the program and greatly
enhances the readability of the code.

1.3.2.9. Another method

file:///C|/orielly/jnut/ch01_03.htm (6 of 9) [2/5/2003 7:46:04 PM]

An Example Program (Java in a Nutshell)

Line 11 begins the definition of the factorial() method that was used by the main() method. Compare this line to
line 5 to note its similarities and differences. The factorial() method has the same public and static
modifiers. It takes a single integer parameter, which we call x. Unlike the main() method, which had no return value
(void), factorial() returns a value of type double. The open curly brace marks the beginning of the method
body, which continues past the nested braces on lines 15 and 18 to line 20, where the matching close curly brace is
found. The body of the factorial() method, like the body of the main() method, is composed of statements,
which are found on lines 12 through 19.

1.3.2.10. Checking for valid input

In the main() method, we saw variable declarations, assignments, and method invocations. The statement on line 12 is
different. It is an if statement, which executes another statement conditionally. We saw earlier that the Java interpreter
executes the three statements of the main() method one after another. It always executes them in exactly that way, in
exactly that order. An if statement is a flow-control statement; it can affect the way the interpreter runs a program.

The if keyword is followed by a parenthesized expression and a statement. The Java interpreter first evaluates the
expression. If it is true, the interpreter executes the statement. If the expression is false, however, the interpreter
skips the statement and goes to the next one. The condition for the if statement on line 12 is x < 0. It checks whether
the value passed to the factorial() method is less than zero. If it is, this expression is true, and the statement on
line 13 is executed. Line 12 does not end with a semicolon because the statement on line 13 is part of the if statement.
Semicolons are required only at the end of a statement.

Line 13 is a return statement. It says that the return value of the factorial() method is 0.0. return is also a
flow-control statement. When the Java interpreter sees a return, it stops executing the current method and returns the
specified value immediately. A return statement can stand alone, but in this case, the return statement is part of the
if statement on line 12. The indentation of line 13 helps emphasize this fact. (Java ignores this indentation, but it is
very helpful for humans who read Java code!) Line 13 is executed only if the expression on line 12 is true.

Before we move on, we should pull back a bit and talk about why lines 12 and 13 are necessary in the first place. It is an
error to try to compute a factorial for a negative number, so these lines make sure that the input value x is valid. If it is
not valid, they cause factorial() to return a consistent invalid result, 0.0.

1.3.2.11. An important variable

Line 14 is another variable declaration; it declares a variable named fact of type double and assigns it an initial
value of 1.0. This variable holds the value of the factorial as we compute it in the statements that follow. In Java,
variables can be declared anywhere; they are not restricted to the beginning of a method or block of code.

1.3.2.12. Looping and computing the factorial

Line 15 introduces another type of statement: the while loop. Like an if statement, a while statement consists of a
parenthesized expression and a statement. When the Java interpreter sees a while statement, it evaluates the associated
expression. If that expression is true, the interpreter executes the statement. The interpreter repeats this process,
evaluating the expression and executing the statement if the expression is true, until the expression evaluates to
false. The expression on line 15 is x > 1, so the while statement loops while the parameter x holds a value that is
greater than 1. Another way to say this is that the loop continues untilx holds a value less than or equal to 1. We can
assume from this expression that if the loop is ever going to terminate, the value of x must somehow be modified by the

file:///C|/orielly/jnut/ch01_03.htm (7 of 9) [2/5/2003 7:46:04 PM]

An Example Program (Java in a Nutshell)

statement that the loop executes.

The major difference between the if statement on lines 12-13 and the while loop on lines 15-18 is that the statement
associated with the while loop is a compound statement. A compound statement is zero or more statements grouped
between curly braces. The while keyword on line 15 is followed by an expression in parentheses and then by an open
curly brace. This means that the body of the loop consists of all statements between that opening brace and the closing
brace on line 18. Earlier in the chapter, I said that all Java statements end with semicolons. This rule does not apply to
compound statements, however, as you can see by the lack of a semicolon at the end of line 18. The statements inside
the compound statement (lines 16 and 17) do end with semicolons, of course.

The body of the while loop consists of the statements on line 16 and 17. Line 16 multiplies the value of fact by the
value of x and stores the result back into fact. Line 17 is similar. It subtracts 1 from the value of x and stores the result
back into x. The * character on line 16 is important: it is the multiplication operator. And, as you can probably guess,
the - on line 17 is the subtraction operator. An operator is a key part of Java syntax: it performs a computation on one or
two operands to produce a new value. Operands and operators combine to form expressions, such as fact * x or x -
1. We've seen other operators in the program. Line 15, for example, uses the greater-than operator (>) in the expression
x > 1, which compares the value of the variable x to 1. The value of this expression is a boolean truth value--either
true or false, depending on the result of the comparison.

To understand this while loop, it is helpful to think like the Java interpreter. Suppose we are trying to compute the
factorial of 4. Before the loop starts, fact is 1.0, and x is 4. After the body of the loop has been executed once--after
the first iteration--fact is 4.0, and x is 3. After the second iteration, fact is 12.0, and x is 2. After the third iteration,
fact is 24.0, and x is 1. When the interpreter tests the loop condition after the third iteration, it finds that x > 1 is no
longer true, so it stops running the loop, and the program resumes at line 19.

1.3.2.13. Returning the result

Line 19 is another return statement, like the one we saw on line 13. This one does not return a constant value like 0.0,
but instead returns the value of the fact variable. If the value of x passed into the factorial() function is 4, then,
as we saw earlier, the value of fact is 24.0, so this is the value returned. Recall that the factorial() method was
invoked on line 7 of the program. When this return statement is executed, control returns to line 7, where the return
value is assigned to the variable named result.

1.3.3. Exceptions

If you've made it all the way through the line-by-line analysis of Example 1-1, you are well on your way to
understanding the basics of the Java language.[9] It is a simple but nontrivial program that illustrates many of the
features of Java. There is one more important feature of Java programming I want to introduce, but it is one that does not
appear in the program listing itself. Recall that the program computes the factorial of the number you specify on the
command line. What happens if you run the program without specifying a number?

[9] If you didn't understood all the details of this factorial program, don't worry. We'll cover the details of
the Java language a lot more thoroughly in Chapter 2, "Java Syntax from the Ground Up" and Chapter 3,
"Object-Oriented Programming in Java". However, if you feel like you didn't understand any of the line-
by-line analysis, you may also find that the upcoming chapters are over your head. In that case, you
should probably go elsewhere to learn the basics of the Java language and return to this book to solidify
your understanding, and, of course, to use as a reference. One resource you may find useful in learning the

file:///C|/orielly/jnut/ch01_03.htm (8 of 9) [2/5/2003 7:46:04 PM]

An Example Program (Java in a Nutshell)

language is Sun's online Java tutorial, available at http://java.sun.com/docs/books/tutorial/.

C:\> java Factorial
java.lang.ArrayIndexOutOfBoundsException: 0
 at Factorial.main(Factorial.java:6)
C:\>

And what happens if you specify a value that is not a number?

C:\> java Factorial ten
java.lang.NumberFormatException: ten
 at java.lang.Integer.parseInt(Integer.java)
 at java.lang.Integer.parseInt(Integer.java)
 at Factorial.main(Factorial.java:6)
C:\>

In both cases, an error occurs or, in Java terminology, an exception is thrown. When an exception is thrown, the Java
interpreter prints out a message that explains what type of exception it was and where it occurred (both exceptions above
occurred on line 6•). In the first case, the exception is thrown because there are no strings in the args list, meaning we
asked for a nonexistent string with args[0]. In the second case, the exception is thrown because
Integer.parseInt() cannot convert the string "ten" to a number. We'll see more about exceptions in Chapter 2,
"Java Syntax from the Ground Up" and learn how to handle them gracefully as they occur.

1.2. Key Benefits of Java 2. Java Syntax from the
Ground Up

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch01_03.htm (9 of 9) [2/5/2003 7:46:04 PM]

http://java.sun.com/docs/books/tutorial/
file:///C|/orielly/jnut/copyrght.htm

Java Syntax from the Ground Up (Java in a Nutshell)

Part 1: Introducing Java

Chapter 2. Java Syntax from the Ground
Up
Contents:

The Unicode Character Set
Comments
Identifiers and Reserved Words
Primitive Data Types
Expressions and Operators
Statements
Methods
Classes and Objects
Array Types
Reference Types
Packages and the Java Namespace
Java File Structure
Defining and Running Java Programs
Differences Between C and Java

This chapter is a terse but comprehensive introduction to Java syntax. It is written primarily for readers
who are new to the language, but have at least some previous programming experience. Determined
novices with no prior programming experience may also find it useful. If you already know Java, you
should find it a useful language reference. In previous editions of this book, this chapter was written
explicitly for C and C++ programmers making the transition to Java. It has been rewritten for this edition
to make it more generally useful, but it still contains comparisons to C and C++ for the benefit of
programmers coming from those languages.[1]

[1] Readers who want even more thorough coverage of the Java language should consider
The Java Programming Language, Second Edition, by Ken Arnold and James Gosling (the
creator of Java) (Addison Wesley Longman). And hard-core readers may want to go
straight to the primary source: The Java Language Specification, by James Gosling, Bill
Joy, and Guy Steele (Addison Wesley Longman). This specification is available in printed

file:///C|/orielly/jnut/ch02_01.htm (1 of 3) [2/5/2003 7:46:08 PM]

Java Syntax from the Ground Up (Java in a Nutshell)

book form, but is also freely available for download from Sun's web site at
http://java.sun.com/docs/books/jls/. I found both documents quite helpful while writing
this chapter.

This chapter documents the syntax of Java programs by starting at the very lowest level of Java syntax
and building from there, covering increasingly higher orders of structure. It covers:

● The characters used to write Java programs and the encoding of those characters.

● Data types, literal values, identifiers, and other tokens that comprise a Java program.

● The operators used in Java to group individual tokens into larger expressions.

● Statements, which group expressions and other statements to form logical chunks of Java code.

● Methods (also called functions, procedures, or subroutines), which are named collections of Java
statements that can be invoked by other Java code.

● Classes, which are collections of methods and fields. Classes are the central program element in
Java and form the basis for object-oriented programming. Chapter 3, "Object-Oriented
Programming in Java", is devoted entirely to a discussion of classes and objects.

● Packages, which are collections of related classes.

● Java programs, which consist of one or more interacting classes that may be drawn from one or
more packages.

The syntax of most programming languages is complex, and Java is no exception. In general, it is not
possible to document all elements of a language without referring to other elements that have not yet
been discussed. For example, it is not really possible to explain in a meaningful way the operators and
statements supported by Java without referring to objects. But it is also not possible to document objects
thoroughly without referring to the operators and statements of the language. The process of learning
Java, or any language, is therefore an iterative one. If you are new to Java (or a Java-style programming
language), you may find that you benefit greatly from working through this chapter and the next twice, so
that you can grasp the interrelated concepts.

2.1. The Unicode Character Set

Java programs are written using the Unicode character set. Unlike the 7-bit ASCII encoding, which is
useful only for English, and the 8-bit ISO Latin-1 encoding, which is useful only for major Western

file:///C|/orielly/jnut/ch02_01.htm (2 of 3) [2/5/2003 7:46:08 PM]

http://java.sun.com/docs/books/jls/

Java Syntax from the Ground Up (Java in a Nutshell)

European languages, the 16-bit Unicode encoding can represent virtually every written language in
common use on the planet. Very few text editors support Unicode, however, and in practice, most Java
programs are written in plain ASCII. 16-bit Unicode characters are typically written to files using an
encoding known as UTF-8, which converts the 16-bit characters into a stream of bytes. The format is
designed so that plain ASCII and Latin-1 text are valid UTF-8 byte streams. Thus, you can simply write
plain ASCII programs, and they will work as valid Unicode.

If you want to embed a Unicode character within a Java program that is written in plain ASCII, use the
special Unicode escape sequence \uxxxx. That is, a backslash and a lowercase u, followed by four
hexadecimal characters. For example, \u0020 is the space character, and \u3c00 is the character π.
You can use Unicode characters anywhere in a Java program, including comments and variable names.

1.3. An Example Program 2.2. Comments

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch02_01.htm (3 of 3) [2/5/2003 7:46:08 PM]

file:///C|/orielly/jnut/copyrght.htm

Comments (Java in a Nutshell)

Chapter 2: Java Syntax from

the Ground Up

2.2. Comments

Java supports three types of comments. The first type is a single-line comment, which begins with the
characters // and continues until the end of the current line. For example:

int i = 0; // initialize the loop variable

The second kind of comment is a multiline comment. It begins with the characters /* and continues,
over any number of lines, until the characters */. Any text between the /* and the */ is ignored by the
Java compiler. Although this style of comment is typically used for multiline comments, it can also be
used for single-line comments. This type of comment cannot be nested (i.e., one /* */ comment cannot
appear within another one). When writing multiline comments, programmers often use extra * characters
to make the comments stand out. Here is a typical multiline comment:

/*
 * Step 4: Print static methods, both public and protected,
 * but don't list deprecated ones.
 */

The third type of comment is a special case of the second. If a comment begins with /**, it is regarded
as a special doc comment. Like regular multiline comments, doc comments end with */ and cannot be
nested. When you write a Java class you expect other programmers to use, use doc comments to embed
documentation about the class and each of its methods directly into the source code. A program named
javadoc extracts these comments and processes them to create online documentation for your class. A
doc comment can contain HTML tags and can use additional syntax understood by javadoc. For
example:

/**
 * Display a list of classes, many to a line.
 *
 * @param classes The classes to display
 * @return <tt>true</tt> on success,
 * <tt>false</tt> on failure.
 * @author David Flanagan
 */

file:///C|/orielly/jnut/ch02_02.htm (1 of 2) [2/5/2003 7:46:12 PM]

Comments (Java in a Nutshell)

See Chapter 7, "Java Programming and Documentation Conventions", for more information on the doc-
comment syntax and Chapter 8, "Java Development Tools", for more information on the javadoc
program.

2.1. The Unicode Character
Set

2.3. Identifiers and Reserved
Words

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch02_02.htm (2 of 2) [2/5/2003 7:46:12 PM]

file:///C|/orielly/jnut/copyrght.htm

Identifiers and Reserved Words (Java in a Nutshell)

Chapter 2: Java Syntax from

the Ground Up

2.3. Identifiers and Reserved Words

An identifier is any symbolic name that refers to something in a Java program. Class, method, parameter,
and variable names are all identifiers. An identifier must begin with a letter, an underscore (_), or a
Unicode currency symbol (e.g., $, £, ¥). This initial letter can be followed by any number of letters,
digits, underscores, or currency symbols. Remember that Java uses the Unicode character set, which
contains quite a few letters and digits other than those in the ASCII character set. The following are legal
identifiers:

i
engine3
theCurrentTime
the_current_time

Identifiers can include numbers, but cannot begin with a number. In addition, they cannot contain any
punctuation characters other than underscores and currency characters. By convention, dollar signs and
other currency characters are reserved for identifiers automatically generated by a compiler or some kind
of code preprocessor. It is best to avoid these characters in your own identifiers.

Another important restriction on identifiers is that you cannot use any of the keywords and literals that
are part of the Java language itself. These reserved words are listed in Table 2-1.

Table 2-1. Java Reserved Words

abstract do if package synchronized

boolean double implements private this

break else import protected throw

byte extends instanceof public throws

case false int return transient

catch final interface short true

file:///C|/orielly/jnut/ch02_03.htm (1 of 2) [2/5/2003 7:46:15 PM]

Identifiers and Reserved Words (Java in a Nutshell)

char finally long static try

class float native strictfp void

const for new super volatile

continue goto null switch while

default

Note that const and goto are reserved words, but aren't part of the Java language.

2.2. Comments 2.4. Primitive Data Types

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch02_03.htm (2 of 2) [2/5/2003 7:46:15 PM]

file:///C|/orielly/jnut/copyrght.htm

Primitive Data Types (Java in a Nutshell)

Chapter 2: Java Syntax from

the Ground Up

2.4. Primitive Data Types

Java supports eight basic data types known as primitive types. In addition, it supports classes and arrays as composite
data types, or reference types. Classes and arrays are documented later in this chapter. The primitive types are: a boolean
type, a character type, four integer types, and two floating-point types. The four integer types and the two floating-point
types differ in the number of bits that represent them, and therefore in the range of numbers they can represent. Table 2-
2 summarizes these primitive data types.

Table 2-2. Java Primitive Data Types

Type Contains Default Size Range

boolean true or false false 1 bit NA

char Unicode character \u0000 16 bits \u0000 to \uFFFF

byte Signed integer 0 8 bits -128 to 127

short Signed integer 0 16 bits -32768 to 32767

int Signed integer 0 32 bits -2147483648 to 2147483647

long Signed integer 0 64 bits
-9223372036854775808 to 9223372036854775807

float
IEEE 754 floating point

0.0 32 bits
±1.4E-45 to ±3.4028235E+38

double
IEEE 754 floating point

0.0 64 bits
±4.9E-324 to ±1.7976931348623157E+308

2.4.1. The boolean Type

The boolean type represents a truth value. There are only two possible values of this type, representing the two
boolean states: on or off, yes or no, true or false. Java reserves the words true and false to represent these two
boolean values.

C and C++ programmers should note that Java is quite strict about its boolean type: boolean values can never be
converted to or from other data types. In particular, a boolean is not an integral type, and integer values cannot be
used in place of a boolean. In other words, you cannot take shortcuts such as the following in Java:

if (o) {
 while(i) {
 }
}

file:///C|/orielly/jnut/ch02_04.htm (1 of 7) [2/5/2003 7:46:19 PM]

Primitive Data Types (Java in a Nutshell)

Instead, Java forces you to write cleaner code by explicitly stating the comparisons you want:

if (o != null) {
 while(i != 0) {
 }
}

2.4.2. The char Type

The char type represents Unicode characters. It surprises many experienced programmers to learn that Java char
values are 16 bits long, but in practice this fact is totally transparent. To include a character literal in a Java program,
simply place it between single quotes (apostrophes):

char c = 'A';

You can, of course, use any Unicode character as a character literal, and you can use the \u Unicode escape sequence.
In addition, Java supports a number of other escape sequences that make it easy both to represent commonly used
nonprinting ASCII characters such as newline and to escape certain punctuation characters that have special meaning in
Java. For example:

char tab = '\t', apostrophe = '\'', nul = '\000', aleph='\u05D0';

Table 2-3 lists the escape characters that can be used in char literals. These characters can also be used in string
literals, which are covered later in this chapter.

Table 2-3. Java Escape Characters

Escape Sequence Character Value

\b Backspace

\t Horizontal tab

\n Newline

\f Form feed

\r Carriage return

\" Double quote

\' Single quote

\\ Backslash

\xxx

The Latin-1 character with the encoding xxx, where xxx is an octal (base 8) number between 000
and 377. The forms \x and \xx are also legal, as in '\0', but are not recommended because they
can cause difficulties in string constants where the escape sequence is followed by a regular digit.

file:///C|/orielly/jnut/ch02_04.htm (2 of 7) [2/5/2003 7:46:19 PM]

Primitive Data Types (Java in a Nutshell)

\uxxxx
The Unicode character with encoding xxxx, where xxxx is four hexadecimal digits. Unicode escapes
can appear anywhere in a Java program, not only in character and string literals.

char values can be converted to and from the various integral types. Unlike byte, short, int, and long, however,
char is an unsigned type. The Character class defines a number of useful static methods for working with
characters, including isDigit(), isJavaLetter(), isLowerCase(), and toUpperCase().

2.4.3. Integer Types

The integer types in Java are byte, short, int, and long. As shown in Table 2-2, these four types differ only in the
number of bits and, therefore, in the range of numbers each type can represent. All integral types represent signed
numbers; there is no unsigned keyword as there is in C and C++.

Literals for each of these types are written exactly as you would expect: as a string of decimal digits. Although it is not
technically part of the literal syntax, any integer literal can be preceded by the unary minus operator to indicate a
negative number. Here are some legal integer literals:

0
1
123
-42000

Integer literals can also be expressed in hexadecimal or octal notation. A literal that begins with 0x or 0X is taken as a
hexadecimal number, using the letters A to F (or a to f) as the additional digits required for base-16 numbers. Integer
literals beginning with a leading 0 are taken to be octal (base-8) numbers and cannot include the digits 8 or 9. Java does
not allow integer literals to be expressed in binary (base-2) notation. Legal hexadecimal and octal literals include:

0xff // Decimal 255, expressed in hexadecimal
0377 // The same number, expressed in octal (base 8)
0xCAFEBABE // A magic number used to identify Java class files

Integer literals are 32-bit int values unless they end with the character L or l, in which case they are 64-bit long
values:

1234 // An int value
1234L // A long value
0xffL // Another long value

Integer arithmetic in Java is modular, which means that it never produces an overflow or an underflow when you exceed
the range of a given integer type. Instead, numbers just wrap around. For example:

byte b1 = 127, b2 = 1; // Largest byte is 127
byte sum = b1 + b2; // Sum wraps to -128, which is the smallest byte

Neither the Java compiler nor the Java interpreter warns you in any way when this occurs. When doing integer
arithmetic, you simply must ensure that the type you are using has a sufficient range for the purposes you intend. Integer

file:///C|/orielly/jnut/ch02_04.htm (3 of 7) [2/5/2003 7:46:19 PM]

Primitive Data Types (Java in a Nutshell)

division by zero and modulo by zero are illegal and cause an ArithmeticException to be thrown.

Each integer type has a corresponding wrapper class: Byte, Short, Integer, and Long. Each of these classes
defines MIN_VALUE and MAX_VALUE constants that describe the range of the type. The classes also define useful static
methods, such as Byte.parseByte() and Integer.parseInt(), for converting strings to integer values.

2.4.4. Floating-Point Types

Real numbers in Java are represented with the float and double data types. As shown in Table 2-3, float is a 32-
bit, single-precision floating-point value, and double is a 64-bit, double-precision floating-point value. Both types
adhere to the IEEE 754-1985 standard, which specifies both the format of the numbers and the behavior of arithmetic for
the numbers.

Floating-point values can be included literally in a Java program as an optional string of digits, followed by a decimal
point and another string of digits. Here are some examples:

123.45
0.0
.01

Floating-point literals can also use exponential, or scientific, notation, in which a number is followed by the letter e or E
(for exponent) and another number. This second number represents the power of ten by which the first number is
multiplied. For example:

1.2345E02 // 1.2345 * 10^2, or 123.45
1e-6 // 1 * 10^-6, or 0.000001
6.02e23 // Avagadro's Number: 6.02 * 10^23

Floating-point literals are double values by default. To include a float value literally in a program, follow the
number by the character f or F:

double d = 6.02E23;
float f = 6.02e23f;

Floating-point literals cannot be expressed in hexadecimal or octal notation.

Most real numbers, by their very nature, cannot be represented exactly in any finite number of bits. Thus, it is important
to remember that float and double values are only approximations of the numbers they are meant to represent. A
float is a 32-bit approximation, which results in at least 6 significant decimal digits, and a double is a 64-bit
approximation, which results in at least 15 significant digits. In practice, these data types are suitable for most real-
number computations.

In addition to representing ordinary numbers, the float and double types can also represent four special values:
positive and negative infinity, zero, and NaN. The infinity values result when a floating-point computation produces a
value that overflows the representable range of a float or double. When a floating-point computation underflows the
representable range of a float or a double, a zero value results. The Java floating-point types make a distinction
between positive zero and negative zero, depending on the direction from which the underflow occurred. In practice,

file:///C|/orielly/jnut/ch02_04.htm (4 of 7) [2/5/2003 7:46:19 PM]

Primitive Data Types (Java in a Nutshell)

positive and negative zero behave pretty much the same. Finally, the last special floating-point value is NaN, which
stands for not-a-number. The NaN value results when an illegal floating-point operation, such as 0/0, is performed. Here
are examples of statements that result in these special values:

double inf = 1/0; // Infinity
double neginf = -1/0; // -Infinity
double negzero = -1/inf; // Negative zero
double NaN = 0/0; // NaN

Because the Java floating-point types can handle overflow to infinity and underflow to zero and have a special NaN
value, floating-point arithmetic never throws exceptions, even when performing illegal operations, like dividing zero by
zero or taking the square root of a negative number.

The float and double primitive types have corresponding classes, named Float and Double. Each of these
classes defines the following useful constants: MIN_VALUE, MAX_VALUE, NEGATIVE_INFINITY,
POSITIVE_INFINITY, and NaN.

The infinite floating-point values behave as you would expect. Adding or subtracting anything to or from infinity, for
example, yields infinity. Negative zero behaves almost identically to positive zero, and, in fact, the = = equality
operator reports that negative zero is equal to positive zero. The only way to distinguish negative zero from positive, or
regular, zero is to divide by it. 1/0 yields positive infinity, but 1 divided by negative zero yields negative infinity.
Finally, since NaN is not-a-number, the = = operator says that it is not equal to any other number, including itself ! To
check whether a float or double value is NaN, you must use the Float.isNan() and Double.isNan()
methods.

2.4.5. Strings

In addition to the boolean, character, integer, and floating-point data types, Java also has a data type for working with
strings of text (usually simply called strings). The String type is a class, however, and is not one of the primitive types
of the language. Because strings are so commonly used, though, Java does have a syntax for including string values
literally in a program. A String literal consists of arbitrary text within double quotes. For example:

"Hello, world"
"'This' is a string!"

String literals can contain any of the escape sequences that can appear as char literals (see Table 2-3). Use the \"
sequence to include a double-quote within a String literal. Strings and string literals are discussed in more detail later
in this chapter. Chapter 4, "The Java Platform", demonstrates some of the ways you can work with String objects in
Java.

2.4.6. Type Conversions

Java allows conversions between integer values and floating-point values. In addition, because every character
corresponds to a number in the Unicode encoding, char types can be converted to and from the integer and floating-
point types. In fact, boolean is the only primitive type that cannot be converted to or from another primitive type in
Java.

file:///C|/orielly/jnut/ch02_04.htm (5 of 7) [2/5/2003 7:46:19 PM]

Primitive Data Types (Java in a Nutshell)

There are two basic types of conversions. A widening conversion occurs when a value of one type is converted to a
wider type--one that is represented with more bits and therefore has a wider range of legal values. A narrowing
conversion occurs when a value is converted to a type that is represented with fewer bits. Java performs widening
conversions automatically when, for example, you assign an int literal to a double variable or a char literal to an
int variable.

Narrowing conversions are another matter, however, and are not always safe. It is reasonable to convert the integer value
13 to a byte, for example, but it is not reasonable to convert 13000 to a byte, since byte can only hold numbers
between -128 and 127. Because you can lose data in a narrowing conversion, the Java compiler complains when you
attempt any narrowing conversion, even if the value being converted would in fact fit in the narrower range of the
specified type:

int i = 13;
byte b = i; // The compiler does not allow this

The one exception to this rule is that you can assign an integer literal (an int value) to a byte or short variable, if
the literal falls within the range of the variable.

If you need to perform a narrowing conversion and are confident you can do so without losing data or precision, you can
force Java to perform the conversion using a language construct known as a cast. Perform a cast by placing the name of
the desired type in parentheses before the value to be converted. For example:

int i = 13;
byte b = (byte) i; // Force the int to be converted to a byte
i = (int) 13.456; // Force this double literal to the int 13

Casts of primitive types are most often used to convert floating-point values to integers. When you do this, the fractional
part of the floating-point value is simply truncated (i.e., the floating-point value is rounded towards zero, not towards the
nearest integer). The methods Math.round(), Math.floor(), and Math.ceil() perform other types of
rounding.

The char type acts like an integer type in most ways, so a char value can be used anywhere an int or long value is
required. Recall, however, that the char type is unsigned, so it behaves differently than the short type, even though
both of them are 16 bits wide:

short s = (short) 0xffff; // These bits represent the number -1
char c = '\uffff'; // The same bits, representing a Unicode character
int i1 = s; // Converting the short to an int yields -1
int i2 = c; // Converting the char to an int yields 65535

Table 2-4 is a grid that shows which primitive types can be converted to which other types and how the conversion is
performed. The letter N in the table means that the conversion cannot be performed. The letter Y means that the
conversion is a widening conversion and is therefore performed automatically and implicitly by Java. The letter C means
that the conversion is a narrowing conversion and requires an explicit cast. Finally, the notation Y* means that the
conversion is an automatic widening conversion, but that some of the least significant digits of the value may be lost by
the conversion. This can happen when converting an int or long to a float or double. The floating-point types
have a larger range than the integer types, so any int or long can be represented by a float or double. However,

file:///C|/orielly/jnut/ch02_04.htm (6 of 7) [2/5/2003 7:46:19 PM]

Primitive Data Types (Java in a Nutshell)

the floating-point types are approximations of numbers and cannot always hold as many significant digits as the integer
types.

Table 2-4. Java Primitive Type Conversions

Convert Convert To:

From: boolean byte short char int long float double

boolean - N N N N N N N

byte N - Y C Y Y Y Y

short N C - C Y Y Y Y

char N C C - Y Y Y Y

int N C C C - Y Y* Y

long N C C C C - Y* Y*

float N C C C C C - Y

double N C C C C C C -

2.4.7. Reference Types

In addition to its eight primitive types, Java defines two additional categories of data types: classes and arrays. Java
programs consist of class definitions; each class defines a new data type that can be manipulated by Java programs. For
example, a program might define a class named Point and use it to store and manipulate X,Y points in a Cartesian
coordinate system. This makes Point a new data type in that program. An array type represents a list of values of some
other type. char is a data type, and an array of char values is another data type, written char[]. An array of Point
objects is a data type, written Point[]. And an array of Point arrays is yet another type, written Point[][].

As you can see, there are an infinite number of possible class and array data types. Collectively, these data types are
known as reference types. The reason for this name will become clear later in this chapter. For now, however, what is
important to understand is that class and array types differ significantly from primitive types, in that they are compound,
or composite, types. A primitive data type holds exactly one value. Classes and arrays are aggregate types that contain
multiple values. The Point type, for example, holds two double values representing the X and Y coordinates of the
point. And char[] is obviously a compound type because it represents a list of characters. By their very nature, class
and array types are more complicated than the primitive data types. We'll discuss classes and arrays in detail later in this
chapter and examine classes in even more detail in Chapter 3, "Object-Oriented Programming in Java".

2.3. Identifiers and Reserved
Words

2.5. Expressions and
Operators

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch02_04.htm (7 of 7) [2/5/2003 7:46:19 PM]

file:///C|/orielly/jnut/copyrght.htm

Expressions and Operators (Java in a Nutshell)

Chapter 2: Java Syntax from

the Ground Up

2.5. Expressions and Operators

So far in this chapter, we've learned about the primitive types that Java programs can manipulate and seen how to include
primitive values as literals in a Java program. We've also used variables as symbolic names that represent, or hold, values.
These literals and variables are the tokens out of which Java programs are built.

An expression is the next higher level of structure in a Java program. The Java interpreter evaluates an expression to
compute its value. The very simplest expressions are called primary expressions and consist of literals and variables. So,
for example, the following are all expressions:

1.7 // An integer literal
true // A boolean literal
sum // A variable

When the Java interpreter evaluates a literal expression, the resulting value is the literal itself. When the interpreter
evaluates a variable expression, the resulting value is the value stored in the variable.

Primary expressions are not very interesting. More complex expressions are made by using operators to combine primary
expressions. For example, the following expression uses the assignment operator to combine two primary expressions--a
variable and a floating-point literal--into an assignment expression:

sum = 1.7

But operators are used not only with primary expressions; they can also be used with expressions at any level of
complexity. Thus, the following are all legal expressions:

sum = 1 + 2 + 3*1.2 + (4 + 8)/3.0
sum/Math.sqrt(3.0 * 1.234)
(int)(sum + 33)

2.5.1. Operator Summary

The kinds of expressions you can write in a programming language depend entirely on the set of operators available to you.
Table 2-5 summarizes the operators available in Java. The P and A columns of the table specify the precedence and
associativity of each group of related operators, respectively.

Table 2-5. Java Operators

P A Operator Operand Type(s) Operation Performed

15 L . object, member object member access

file:///C|/orielly/jnut/ch02_05.htm (1 of 15) [2/5/2003 7:46:24 PM]

Expressions and Operators (Java in a Nutshell)

[] array, int array element access

(args) method, arglist method invocation

++, − − variable post-increment, decrement

14 R ++, − − variable pre-increment, decrement

+, − number unary plus, unary minus

~ integer bitwise complement

! boolean boolean NOT

13 R new class, arglist object creation

(type) type, any cast (type conversion)

12 L *, /, % number, number
multiplication, division, remainder

11 L +, − number, number
addition, subtraction

+ string, any
string concatenation

10 L << integer, integer
left shift

>> integer, integer
right shift with sign extension

>>> integer, integer
right shift with zero extension

9 L <, <= number, number
less than, less than or equal

>, >= number, number
greater than, greater than or equal

instanceof reference, type
type comparison

8 L = = primitive, primitive
equal (have identical values)

!= primitive, primitive
not equal (have different values)

= = reference, reference
equal (refer to same object)

!= reference, reference
not equal (refer to different objects)

7 L & integer, integer
bitwise AND

& boolean, boolean
boolean AND

file:///C|/orielly/jnut/ch02_05.htm (2 of 15) [2/5/2003 7:46:24 PM]

Expressions and Operators (Java in a Nutshell)

6 L ^ integer, integer
bitwise XOR

^ boolean, boolean
boolean XOR

5 L | integer, integer
bitwise OR

| boolean, boolean
boolean OR

4 L && boolean, boolean
conditional AND

3 L || boolean, boolean
conditional OR

2 R ?: boolean, any, any
conditional (ternary) operator

1 R = variable, any
assignment

*=, /=, %=, variable, any
assignment with operation

+=, −=, <<=,

>>=, >>>=,

&=, ^=, |=

2.5.1.1. Precedence

The P column of Table 2-5 specifies the precedence of each operator. Precedence specifies the order in which operations
are performed. Consider this expression:

a + b * c

The multiplication operator has higher precedence than the addition operator, so a is added to the product of b and c.
Operator precedence can be thought of as a measure of how tightly operators bind to their operands. The higher the number,
the more tightly they bind.

Default operator precedence can be overridden through the use of parentheses, to explicitly specify the order of operations.
The previous expression can be rewritten as follows to specify that the addition should be performed before the
multiplication:

(a + b) * c

The default operator precedence in Java was chosen for compatibility with C; the designers of C chose this precedence so
that most expressions can be written naturally without parentheses. There are only a few common Java idioms for which
parentheses are required. Examples include:

// Class cast combined with member access

file:///C|/orielly/jnut/ch02_05.htm (3 of 15) [2/5/2003 7:46:24 PM]

Expressions and Operators (Java in a Nutshell)

((Integer) o).intValue();

// Assignment combined with comparison
while((line = in.readLine()) != null) { ... }

// Bitwise operators combined with comparison
if ((flags & (PUBLIC | PROTECTED)) != 0) { ... }

2.5.1.2. Associativity

When an expression involves several operators that have the same precedence, the operator associativity governs the order
in which the operations are performed. Most operators are left-to-right associative, which means that the operations are
performed from left to right. The assignment and unary operators, however, have right-to-left associativity. The A column
of Table 2-5 specifies the associativity of each operator or group of operators. The value L means left to right, and R means
right to left.

The additive operators are all left-to-right associative, so the expression a+b-c is evaluated from left to right: (a+b)-c.
Unary operators and assignment operators are evaluated from right to left. Consider this complex expression:

a = b += c = -~d

This is evaluated as follows:

a = (b += (c = -(~d)))

As with operator precedence, operator associativity establishes a default order of evaluation for an expression. This default
order can be overridden through the use of parentheses. However, the default operator associativity in Java has been chosen
to yield a natural expression syntax, and you rarely need to alter it.

2.5.1.3. Operand number and type

The fourth column of Table 2-5 specifies the number and type of the operands expected by each operator. Some operators
operate on only one operand; these are called unary operators. For example, the unary minus operator changes the sign of a
single number:

-n // The unary minus operator

Most operators, however, are binary operators that operate on two operand values. The − operator actually comes in both
forms:

a - b // The subtraction operator is a binary operator

Java also defines one ternary operator, often called the conditional operator. It is like an if statement inside an expression.
Its three operands are separated by a question mark and a colon; the second and third operators must both be of the same
type:

x > y ? x : y // Ternary expression; evaluates to the larger of x and y

file:///C|/orielly/jnut/ch02_05.htm (4 of 15) [2/5/2003 7:46:24 PM]

Expressions and Operators (Java in a Nutshell)

In addition to expecting a certain number of operands, each operator also expects particular types of operands. Column four
of the table lists the operand types. Some of the codes used in that column require further explanation:

number

An integer, floating-point value, or character (i.e., any primitive type except boolean)

integer

A byte, short, int, long, or char value (long values are not allowed for the array access operator [])

reference

An object or array

variable

A variable or anything else, such as an array element, to which a value can be assigned

2.5.1.4. Return type

Just as every operator expects its operands to be of specific types, each operator produces a value of a specific type. The
arithmetic, increment and decrement, bitwise, and shift operators return a double if at least one of the operands is a
double. Otherwise, they return a float if at least one of the operands is a float. Otherwise, they return a long if at
least one of the operands is a long. Otherwise, they return an int, even if both operands are byte, short, or char
types that are narrower than int.

The comparison, equality, and boolean operators always return boolean values. Each assignment operator returns
whatever value it assigned, which is of a type compatible with the variable on the left side of the expression. The
conditional operator returns the value of its second or third argument (which must both be of the same type).

2.5.1.5. Side effects

Every operator computes a value based on one or more operand values. Some operators, however, have side effects in
addition to their basic evaluation. If an expression contains side effects, evaluating it changes the state of a Java program in
such a way that evaluating the expression again may yield a different result. For example, the ++ increment operator has
the side effect of incrementing a variable. The expression ++a increments the variable a and returns the newly incremented
value. If this expression is evaluated again, the value will be different. The various assignment operators also have side
effects. For example, the expression a*=2 can also be written as a=a*2. The value of the expression is the value of a
multiplied by 2, but the expression also has the side effect of storing that value back into a. The method invocation operator
() has side effects if the invoked method has side effects. Some methods, such as Math.sqrt(), simply compute and
return a value without side effects of any kind. Typically, however, methods do have side effects. Finally, the new operator
has the profound side effect of creating a new object.

2.5.1.6. Order of evaluation

When the Java interpreter evaluates an expression, it performs the various operations in an order specified by the
parentheses in the expression, the precedence of the operators, and the associativity of the operators. Before any operation

file:///C|/orielly/jnut/ch02_05.htm (5 of 15) [2/5/2003 7:46:24 PM]

Expressions and Operators (Java in a Nutshell)

is performed, however, the interpreter first evaluates the operands of the operator. (The exceptions are the &&, ||, and ?:
operators, which do not always evaluate all their operands.) The interpreter always evaluates operands in order from left to
right. This matters if any of the operands are expressions that contain side effects. Consider this code, for example:

int a = 2;
int v = ++a + ++a * ++a;

Although the multiplication is performed before the addition, the operands of the + operator are evaluated first. Thus, the
expression evaluates to 3+4*5, or 23.

2.5.2. Arithmetic Operators

Since most programs operate primarily on numbers, the most commonly used operators are often those that perform
arithmetic operations. The arithmetic operators can be used with integers, floating-point numbers, and even characters (i.e.,
they can be used with any primitive type other than boolean). If either of the operands is a floating-point number,
floating-point arithmetic is used; otherwise, integer arithmetic is used. This matters because integer arithmetic and floating-
point arithmetic differ in the way division is performed and in the way underflows and overflows are handled, for example.
The arithmetic operators are:

Addition (+)

The + operator adds two numbers. As we'll see shortly, the + operator can also be used to concatenate strings. If
either operand of + is a string, the other one is converted to a string as well. Be sure to use parentheses when you
want to combine addition with concatenation. For example:

System.out.println("Total: " + 3 + 4); // Prints "Total: 34", not 7!

Subtraction (−)

When − is used as a binary operator, it subtracts its second operand from its first. For example, 7-3 evaluates to 4.
The − operator can perform unary negation.

Multiplication (*)

The * operator multiplies its two operands. For example, 7*3 evaluates to 21.

Division (/)

The / operator divides its first operand by its second. If both operands are integers, the result is an integer, and any
remainder is lost. If either operand is a floating-point value, however, the result is a floating-point value. When
dividing two integers, division by zero throws an ArithmeticException. For floating-point calculations,
however, division by zero simply yields an infinite result or NaN:

7/3 // Evaluates to 2
7/3.0f // Evaluates to 2.333333f
7/0 // Throws an ArithmeticException
7/0.0 // Evaluates to positive infinity
0.0/0.0 // Evaluates to NaN

file:///C|/orielly/jnut/ch02_05.htm (6 of 15) [2/5/2003 7:46:24 PM]

Expressions and Operators (Java in a Nutshell)

Modulo (%)

The % operator computes the first operand modulo the second operand (i.e., it returns the remainder when the first
operand is divided by the second operand an integral number of times). For example, 7%3 is 1. The sign of the result
is the same as the sign of the first operand. While the modulo operator is typically used with integer operands, it also
works for floating-point values. For example, 4.3%2.1 evaluates to 0.1. When operating with integers, trying to
compute a value modulo zero causes an ArithmeticException. When working with floating-point values,
anything modulo 0.0 evaluates to NaN, as does infinity modulo anything.

Unary Minus (−)

When − is used as a unary operator, before a single operand, it performs unary negation. In other words, it converts a
positive value to an equivalently negative value, and vice versa.

2.5.3. String Concatenation Operator

In addition to adding numbers, the + operator (and the related += operator) also concatenates, or joins, strings. If either of
the operands to + is a string, the operator converts the other operand to a string. For example:

System.out.println("Quotient: " + 7/3.0f); // Prints "Quotient: 2.3333333"

As a result, you must be careful to put any addition expressions in parentheses when combining them with string
concatenation. If you do not, the addition operator is interpreted as a concatenation operator.

The Java interpreter has built-in string conversions for all primitive types. An object is converted to a string by invoking its
toString() method. Some classes define custom toString() methods, so that objects of that class can easily be
converted to strings in this way. An array is converted to a string by invoking the built-in toString() method, which,
unfortunately, does not return a useful string representation of the array contents.

2.5.4. Increment and Decrement Operators

The ++ operator increments its single operand, which must be a variable, an element of an array, or a field of an object, by
one. The behavior of this operator depends on its position relative to the operand. When used before the operand, where it is
known as the pre-increment operator, it increments the operand and evaluates to the incremented value of that operand.
When used after the operand, where it is known as the post-increment operator, it increments its operand, but evaluates to
the value of that operand before it was incremented.

For example, the following code sets both i and j to 2:

i = 1;
j = ++i;

But these lines set i to 2 and j to 1:

i = 1;
j = i++;

file:///C|/orielly/jnut/ch02_05.htm (7 of 15) [2/5/2003 7:46:25 PM]

Expressions and Operators (Java in a Nutshell)

Similarly, the − − operator decrements its single numeric operand, which must be a variable, an element of an array, or a
field of an object, by one. Like the ++ operator, the behavior of − − depends on its position relative to the operand. When
used before the operand, it decrements the operand and returns the decremented value. When used after the operand, it
decrements the operand, but returns the un-decremented value.

The expressions x++ and x− − are equivalent to x=x+1 and x=x−1, respectively, except that when using the increment
and decrement operators, x is only evaluated once. If x is itself an expression with side effects, this makes a big difference.
For example, these two expressions are not equivalent:

a[i++]++; // Increments an element of an array
a[i++] = a[i++] + 1; // Adds one to an array element and stores it in another

These operators, in both prefix and postfix forms, are most commonly used to increment or decrement the counter that
controls a loop.

2.5.5. Comparison Operators

The comparison operators consist of the equality operators that test values for equality or inequality and the relational
operators used with ordered types (numbers and characters) to test for greater than and less than relationships. Both types of
operators yield a boolean result, so they are typically used with if statements and while and for loops to make
branching and looping decisions. For example:

if (o != null) ...; // The not equals operator
while(i < a.length) ...; // The less than operator

Java provides the following equality operators:

Equals (= =)

The = = operator evaluates to true if its two operands are equal and false otherwise. With primitive operands,
it tests whether the operand values themselves are identical. For operands of reference types, however, it tests
whether the operands refer to the same object or array. In other words, it does not test the equality of two distinct
objects or arrays. In particular, note that you cannot test two distinct strings for equality with this operator.

If = = is used to compare two numeric or character operands that are not of the same type, the narrower operand is
converted to the type of the wider operand before the comparison is done. For example, when comparing a short
to a float, the short is first converted to a float before the comparison is performed. For floating-point
numbers, the special negative zero value tests equal to the regular, positive zero value. Also, the special NaN (not-a-
number) value is not equal to any other number, including itself. To test whether a floating-point value is NaN, use
the Float.isNan() or Double.isNan() method.

Not Equals (!=)

The != operator is exactly the opposite of the = = operator. It evaluates to true if its two primitive operands have
different values or if its two reference operands refer to different objects or arrays. Otherwise, it evaluates to
false.

The relational operators can be used with numbers and characters, but not with boolean values, objects, or arrays because

file:///C|/orielly/jnut/ch02_05.htm (8 of 15) [2/5/2003 7:46:25 PM]

Expressions and Operators (Java in a Nutshell)

those types are not ordered. Java provides the following relational operators:

Less Than (<)

Evaluates to true if the first operand is less than the second.

Less Than or Equal (<=)

Evaluates to true if the first operand is less than or equal to the second.

Greater Than (>)

Evaluates to true if the first operand is greater than the second.

Greater Than or Equal (>=)

Evaluates to true if the first operand is greater than or equal to the second.

2.5.6. Boolean Operators

As we've just seen, the comparison operators compare their operands and yield a boolean result, which is often used in
branching and looping statements. In order to make branching and looping decisions based on conditions more interesting
than a single comparison, you can use the Boolean (or logical) operators to combine multiple comparison expressions into a
single, more complex, expression. The Boolean operators require their operands to be boolean values and they evaluate
to boolean values. The operators are:

Conditional AND (&&)

This operator performs a Boolean AND operation on its operands. It evaluates to true if and only if both its
operands are true. If either or both operands are false, it evaluates to false. For example:

if (x < 10 && y > 3) ... // If both comparisons are true

This operator (and all the Boolean operators except the unary ! operator) have a lower precedence than the comparison
operators. Thus, it is perfectly legal to write a line of code like the one above. However, some programmers prefer to use
parentheses to make the order of evaluation explicit:

if ((x < 10) && (y > 3)) ...

You should use whichever style you find easier to read.

This operator is called a conditional AND because it conditionally evaluates its second operand. If the first operand
evaluates to false, the value of the expression is false, regardless of the value of the second operand. Therefore, to
increase efficiency, the Java interpreter takes a shortcut and skips the second operand. Since the second operand is not
guaranteed to be evaluated, you must use caution when using this operator with expressions that have side effects. On the
other hand, the conditional nature of this operator allows us to write Java expressions such as the following:

if (data != null && i < data.length && data[i] != -1) ...

file:///C|/orielly/jnut/ch02_05.htm (9 of 15) [2/5/2003 7:46:25 PM]

Expressions and Operators (Java in a Nutshell)

The second and third comparisons in this expression would cause errors if the first or second comparisons evaluated to
false. Fortunately, we don't have to worry about this because of the conditional behavior of the && operator.

Conditional OR (||)

This operator performs a Boolean OR operation on its two boolean operands. It evaluates to true if either or
both of its operands are true. If both operands are false, it evaluates to false. Like the && operator, || does
not always evaluate its second operand. If the first operand evaluates to true, the value of the expression is true,
regardless of the value of the second operand. Thus, the operator simply skips that second operand in that case.

Boolean NOT (!)

This unary operator changes the boolean value of its operand. If applied to a true value, it evaluates to false,
and if applied to a false value, it evaluates to true. It is useful in expressions like these:

if (!found) ... // found is a boolean variable declared somewhere
while (!c.isEmpty()) ... // The isEmpty() method returns a boolean value

Because ! is a unary operator, it has a high precedence and often must be used with parentheses:

if (!(x > y && y > z))

Boolean AND (&)

When used with boolean operands, the & operator behaves like the && operator, except that it always evaluates
both operands, regardless of the value of the first operand. This operator is almost always used as a bitwise operator
with integer operands, however, and many Java programmers would not even recognize its use with boolean
operands as legal Java code.

Boolean OR (|)

This operator performs a Boolean OR operation on its two boolean operands. It is like the || operator, except
that it always evaluates both operands, even if the first one is true. The | operator is almost always used as a
bitwise operator on integer operands; its use with boolean operands is very rare.

Boolean XOR (^)

When used with boolean operands, this operator computes the Exclusive OR (XOR) of its operands. It evaluates
to true if exactly one of the two operands is true. In other words, it evaluates to false if both operands are
false or if both operands are true. Unlike the && and || operators, this one must always evaluate both operands.
The ^ operator is much more commonly used as a bitwise operator on integer operands. With boolean operands,
this operator is equivalent to the != operator.

2.5.7. Bitwise and Shift Operators

The bitwise and shift operators are low-level operators that manipulate the individual bits that make up an integer value.
The bitwise operators are most commonly used for testing and setting individual flag bits in a value. In order to understand
their behavior, you must understand binary (base-2) numbers and the twos-complement format used to represent negative

file:///C|/orielly/jnut/ch02_05.htm (10 of 15) [2/5/2003 7:46:25 PM]

Expressions and Operators (Java in a Nutshell)

integers. You cannot use these operators with floating-point, boolean, array, or object operands. When used with
boolean operands, the &, |, and ^ operators perform a different operation, as described in the previous section.

If either of the arguments to a bitwise operator is a long, the result is a long. Otherwise, the result is an int. If the left
operand of a shift operator is a long, the result is a long; otherwise, the result is an int. The operators are:

Bitwise Complement (~)

The unary ~ operator is known as the bitwise complement, or bitwise NOT, operator. It inverts each bit of its single
operand, converting ones to zeros and zeros to ones. For example:

byte b = ~12; // ~00000110 ==> 11111001 or -13 decimal
flags = flags & ~f; // Clear flag f in a set of flags

Bitwise AND (&)

This operator combines its two integer operands by performing a Boolean AND operation on their individual bits.
The result has a bit set only if the corresponding bit is set in both operands. For example:

10 & 7 // 00001010 & 00000111 ==> 00000010 or 2
if ((flags & f) != 0) // Test whether flag f is set

When used with boolean operands, & is the infrequently used Boolean AND operator described earlier.

Bitwise OR (|)

This operator combines its two integer operands by performing a Boolean OR operation on their individual bits. The
result has a bit set if the corresponding bit is set in either or both of the operands. It has a zero bit only where both
corresponding operand bits are zero. For example:

10 | 7 // 00001010 | 00000111 ==> 00001111 or 15
flags = flags | f; // Set flag f

When used with boolean operands, | is the infrequently used Boolean OR operator described earlier.

Bitwise XOR (^)

This operator combines its two integer operands by performing a Boolean XOR (Exclusive OR) operation on their
individual bits. The result has a bit set if the corresponding bits in the two operands are different. If the
corresponding operand bits are both ones or both zeros, the result bit is a zero. For example:

10 & 7 // 00001010 ^ 00000111 ==> 00001101 or 13

When used with boolean operands, ^ is the infrequently used Boolean XOR operator.

Left Shift (<<)

The << operator shifts the bits of the left operand left by the number of places specified by the right operand. High-

file:///C|/orielly/jnut/ch02_05.htm (11 of 15) [2/5/2003 7:46:25 PM]

Expressions and Operators (Java in a Nutshell)

order bits of the left operand are lost, and zero bits are shifted in from the right. Shifting an integer left by n places is
equivalent to multiplying that number by 2n. For example:

10 << 1 // 00001010 << 1 = 00010100 = 20 = 10*2
7 << 3 // 00000111 << 3 = 00111000 = 56 = 7*8
-1 << 2 // 0xFFFFFFFF << 2 = 0xFFFFFFFC = -4 = -1*4

If the left operand is a long, the right operand should be between 0 and 63. Otherwise, the left operand is taken to be an
int, and the right operand should be between 0 and 31.

Signed Right Shift (>>)

The >> operator shifts the bits of the left operand to the right by the number of places specified by the right operand.
The low-order bits of the left operand are shifted away and are lost. The high-order bits shifted in are the same as the
original high-order bit of the left operand. In other words, if the left operand is positive, zeros are shifted into the
high-order bits. If the left operand is negative, ones are shifted in instead. This technique is known as sign extension;
it is used to preserve the sign of the left operand. For example:

10 >> 1 // 00001010 >> 1 = 00000101 = 5 = 10/2
27 >> 3 // 00011011 >> 3 = 00000011 = 3 = 27/8
-50 >> 2 // 11001110 >> 2 = 11110011 = -13 != -50/4

If the left operand is positive and the right operand is n, the >> operator is the same as integer division by 2n.

Unsigned Right Shift (>>>)

This operator is like the >> operator, except that it always shifts zeros into the high-order bits of the result,
regardless of the sign of the left-hand operand. This technique is called zero extension•; it is appropriate when the
left operand is being treated as an unsigned value (despite the fact that Java integer types are all signed). Examples:

-50 >>> 2 // 11001110 >>> 2 = 00110011 = 51
0xff >>> 4 // 11111111 >>> 4 = 00001111 = 15 = 255/16

2.5.8. Assignment Operators

The assignment operators store, or assign, a value into some kind of variable. The left operand must evaluate to an
appropriate local variable, array element, or object field. The right side can be any value of a type compatible with the
variable. An assignment expression evaluates to the value that is assigned to the variable. More importantly, however, the
expression has the side effect of actually performing the assignment. Unlike all other binary operators, the assignment
operators are right-associative, which means that the assignments in a=b=c are performed right-to-left, as follows:
a=(b=c).

The basic assignment operator is =. Do not confuse it with the equality operator, = =. In order to keep these two operators
distinct, I recommend that you read = as "is assigned the value."

In addition to this simple assignment operator, Java also defines 11 other operators that combine assignment with the 5
arithmetic operators and the 6 bitwise and shift operators. For example, the += operator reads the value of the left variable,
adds the value of the right operand to it, stores the sum back into the left variable as a side effect, and returns the sum as the

file:///C|/orielly/jnut/ch02_05.htm (12 of 15) [2/5/2003 7:46:25 PM]

Expressions and Operators (Java in a Nutshell)

value of the expression. Thus, the expression x+=2 is almost the same x=x+2. The difference between these two
expressions is that when you use the += operator, the left operand is evaluated only once. This makes a difference when
that operand has a side effect. Consider the following two expressions, which are not equivalent:

a[i++] += 2;
a[i++] = a[i++] + 2;

The general form of these combination assignment operators is:

var op= value

This is equivalent (unless there are side effects in var) to:

var = var op value

The available operators are:

+= −= *= /= %= // Arithmetic operators plus assignment
&= |= ^= // Bitwise operators plus assignment
<<= >>= >>>= // Shift operators plus assignment

The most commonly used operators are += and − =, although &= and |= can also be useful when working with boolean
flags. For example:

i += 2; // Increment a loop counter by 2
c −= 5; // Decrement a counter by 5
flags |= f; // Set a flag f in an integer set of flags
flags &= ~f; // Clear a flag f in an integer set of flags

2.5.9. The Conditional Operator

The conditional operator ?: is a somewhat obscure ternary (three-operand) operator inherited from C. It allows you to
embed a conditional within an expression. You can think of it as the operator version of the if/else statement. The first
and second operands of the conditional operator are separated by a question mark (?), while the second and third operands
are separated by a colon (:). The first operand must evaluate to a boolean value. The second and third operands can be of
any type, but they must both be of the same type.

The conditional operator starts by evaluating its first operand. If it is true, the operator evaluates its second operand and
uses that as the value of the expression. On the other hand, if the first operand is false, the conditional operator evaluates
and returns its third operand. The conditional operator never evaluates both its second and third operand, so be careful
when using expressions with side effects with this operator. Examples of this operator are:

int max = (x > y) ? x : y;
String name = (name != null) ? name : "unknown";

Note that the ?: operator has lower precedence than all other operators except the assignment operators, so parentheses are
not usually necessary around the operands of this operator. Many programmers find conditional expressions easier to read if
the first operand is placed within parentheses, however. This is especially true because the conditional if statement always

file:///C|/orielly/jnut/ch02_05.htm (13 of 15) [2/5/2003 7:46:25 PM]

Expressions and Operators (Java in a Nutshell)

has its conditional expression written within parentheses.

2.5.10. The instanceof Operator

The instanceof operator requires an object or array value as its left operand and the name of a reference type as its right
operand. It evaluates to true if the object or array is an instance of the specified type; it returns false otherwise. If the
left operand is null, instanceof always evaluates to false. If an instanceof expression evaluates to true, it
means that you can safely cast and assign the left operand to a variable of the type of the right operand.

The instanceof operator can be used only with array and object types and values, not primitive types and values. Object
and array types are discussed in detail later in this chapter. Examples of instanceof are:

"string" instanceof String // True: all strings are instances of String
"" instanceof Object // True: strings are also instances of Object
new int[] {1} instanceof int[] // True: the array value is an int array
new int[] {1} instanceof byte[] // False: the array value is not a byte array
new int[] {1} instanceof Object // True: all arrays are instances of Object
null instanceof String // False: null is never instanceof anything

// Use instanceof to make sure that it is safe to cast an object
if (object instanceof Point) {
 Point p = (Point) object;
}

2.5.11. Special Operators

There are five language constructs in Java that are sometimes considered operators and sometimes considered simply part
of the basic language syntax. These "operators" are listed in Table 2-5 in order to show their precedence relative to the
other true operators. The use of these language constructs is detailed elsewhere in this chapter, but is described briefly here,
so that you can recognize these constructs when you encounter them in code examples:

Object member access (.)

An object is a collection of data and methods that operate on that data; the data fields and methods of an object are
called its members. The dot (.) operator accesses these members. If o is an expression that evaluates to an object
reference, and f is the name of a field of the object, o.f evaluates to the value contained in that field. If m is the
name of a method, o.m refers to that method and allows it to be invoked using the () operator shown later.

Array element access ([])

An array is a numbered list of values. Each element of an array can be referred to by its number, or index. The []
operator allows you to refer to the individual elements of an array. If a is an array, and i is an expression that
evaluates to an int, a[i] refers to one of the elements of a. Unlike other operators that work with integer values,
this operator restricts array index values to be of type int or narrower.

Method invocation (())

A method is a named collection of Java code that can be run, or invoked, by following the name of the method with
zero or more comma-separated expressions contained within parentheses. The values of these expressions are the

file:///C|/orielly/jnut/ch02_05.htm (14 of 15) [2/5/2003 7:46:25 PM]

Expressions and Operators (Java in a Nutshell)

arguments to the method. The method processes the arguments and optionally returns a value that becomes the value
of the method invocation expression. If o.m is a method that expects no arguments, the method can be invoked with
o.m(). If the method expects three arguments, for example, it can be invoked with an expression such as
o.m(x,y,z). Before the Java interpreter invokes a method, it evaluates each of the arguments to be passed to the
method. These expressions are guaranteed to be evaluated in order from left to right (which matters if any of the
arguments have side effects).

Object creation (new)

In Java, objects are created with the new operator, which is followed by the type of the object to be created and a
parenthesized list of arguments to be passed to the object constructor. A constructor is a special method that
initializes a newly created object, so the object creation syntax is similar to the Java method invocation syntax. For
example:

new ArrayList();
new Point(1,2)

Type conversion or casting (())

As we've already seen, parentheses can also be used as an operator to perform narrowing type conversions, or casts.
The first operand of this operator is the type to be converted to; it is placed between the parentheses. The second
operand is the value to be converted; it follows the parentheses. For example:

(byte) 28 // An integer literal cast to a byte type
(int) (x + 3.14f) // A floating-point sum value cast to an integer value
(String)h.get(k) // A generic object cast to a more specific string type

2.4. Primitive Data Types 2.6. Statements

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch02_05.htm (15 of 15) [2/5/2003 7:46:25 PM]

file:///C|/orielly/jnut/copyrght.htm

Statements (Java in a Nutshell)

Chapter 2: Java Syntax from

the Ground Up

2.6. Statements

A statement is a single "command" that is executed by the Java interpreter. By default, the Java interpreter runs one
statement after another, in the order they are written. Many of the statements defined by Java, however, are flow-control
statements, such as conditionals and loops, that alter this default order of execution in well-defined ways. Table 2-6
summarizes the statements defined by Java.

Table 2-6. Java Statements

Statement Purpose Syntax

expression side effects
var=expr;expr++;method();newType();

compound group statements { statements }

empty do nothing ;

labeled name a statement label : statement

variable declare a variable [final] type name [= value] [, name [= value]] ...;

if conditional if (expr) statement [else statement]

switch conditional
switch (expr) { [caseexpr:statements] ... [default:statements] }

while loop while (expr) statement

do loop do statement while (expr);

for simplified loop for (init ; test ; increment) statement

break exit block break [label] ;

continue restart loop continue [label] ;

return end method return [expr] ;

synchronized critical section synchronized (expr) { statements }

throw throw exception throw expr ;

try handle exception
try {statements} [catch (typename) {statements}] ... [finally
{statements}]

2.6.1. Expression Statements

As we saw earlier in the chapter, certain types of Java expressions have side effects. In other words, they do not simply
evaluate to some value, but also change the program state in some way. Any expression with side effects can be used as a
statement simply by following it with a semicolon. The legal types of expression statements are assignments, increments and

file:///C|/orielly/jnut/ch02_06.htm (1 of 16) [2/5/2003 7:46:30 PM]

Statements (Java in a Nutshell)

decrements, method calls, and object creation. For example:

a = 1; // Assignment
x *= 2; // Assignment with operation
i++; // Post-increment
--c; // Pre-decrement
System.out.println("statement"); // Method invocation

2.6.2. Compound Statements

A compound statement is any number and kind of statements grouped together within curly braces. You can use a compound
statement anywhere a statement is required by Java syntax:

for(int i = 0; i < 10; i++) {
 a[i]++; // Body of this loop is a compound
 statement. b[i]--; // It consists of two expression statements
} // within curly braces.

2.6.3. The Empty Statement

An empty statement in Java is written as a single semicolon. The empty statement doesn't do anything, but the syntax is
occasionally useful. For example, you can use it to indicate an empty loop body of a for loop:

for(int i = 0; i < 10; a[i++]++) // Increment array elements
 /* empty */; // Loop body is empty statement

2.6.4. Labeled Statements

A labeled statement is simply a statement that has been given a name by prepending a identifier and a colon to it. Labels are
used by the break and continue statements. For example:

rowLoop: for(int r = 0; r < rows.length; r++) { // A labeled loop
 colLoop: for(int c = 0; c < columns.length; c++) { // Another one
 break rowLoop; // Use a label
 }
}

2.6.5. Local Variable Declaration Statements

A local variable, often simply called a variable, is a symbolic name for a location where a value can be stored that is defined
within a method or compound statement. All variables must be declared before they can be used; this is done with a variable
declaration statement. Because Java is a strongly typed language, a variable declaration specifies the type of the variable, and
only values of that type can be stored in the variable.

In its simplest form, a variable declaration specifies a variable's type and name:

int counter;
String s;

file:///C|/orielly/jnut/ch02_06.htm (2 of 16) [2/5/2003 7:46:30 PM]

Statements (Java in a Nutshell)

A variable declaration can also include an initializer : an expression that specifies an initial value for the variable. For
example:

int i = 0;
String s = readLine();
int[] data = {x+1, x+2, x+3}; // Array initializers are documented later

The Java compiler does not allow you to use a variable that has not been initialized, so it is usually convenient to combine
variable declaration and initialization into a single statement. The initializer expression need not be a literal value or a
constant expression that can be evaluated by the compiler; it can be an arbitrarily complex expression whose value is
computed when the program is run.

A single variable declaration statement can declare and initialize more than one variable, but all variables must be of the
same type. Variable names and optional initializers are separated from each other with commas:

int i, j, k;
float x = 1.0, y = 1.0;
String question = "Really Quit?", response;

In Java 1.1 and later, variable declaration statements can begin with the final keyword. This modifier specifies that once
an initial value is specified for the variable, that value is never allowed to change:

final String greeting = getLocalLanguageGreeting();

C programmers should note that Java variable declaration statements can appear anywhere in Java code; they are not
restricted to the beginning of a method or block of code. Local variable declarations can also be integrated with the initialize
portion of a for loop, as we'll discuss shortly.

Local variables can be used only within the method or block of code in which they are defined. This is called their scope or
lexical scope :

void method() { // A generic method
 int i = 0; // Declare variable i
 while (i < 10) { // i is in scope here
 int j = 0; // Declare j; i and j are in scope here
 } // j is no longer in scope; can't use it anymore
 System.out.println(i); // i is still in scope here
} // The scope of i ends here

2.6.6. The if/else Statement

The if statement is the fundamental control statement that allows Java to make decisions or, more precisely, to execute
statements conditionally. The if statement has an associated expression and statement. If the expression evaluates to true,
the interpreter executes the statement. If the expression evaluates to false, however, the interpreter skips the statement. For
example:

if (username == null) // If username is null,
 username = "John Doe"; // define it.

file:///C|/orielly/jnut/ch02_06.htm (3 of 16) [2/5/2003 7:46:30 PM]

Statements (Java in a Nutshell)

Although they look extraneous, the parentheses around the expression are a required part of the syntax for the if statement.

As I already mentioned, a block of statements enclosed in curly braces is itself a statement, so we can also write if
statements that look as follows:

if ((address == null) || (address.equals(""))) {
 address = "[undefined]";
 System.out.println("WARNING: no address specified.");
}

An if statement can include an optional else keyword that is followed by a second statement. In this form of the
statement, the expression is evaluated, and, if it is true, the first statement is executed. Otherwise, the second statement is
executed. For example:

if (username != null)
 System.out.println("Hello " + username);
else {
 username = askQuestion("What is your name?");
 System.out.println("Hello " + username + ". Welcome!");
}

When you use nested if/else statements, some caution is required to ensure that the else clause goes with the
appropriate if statement. Consider the following lines:

if (i == j)
 if (j == k)
 System.out.println("i equals k");
else
 System.out.println("i doesn't equal j"); // WRONG!!

In this example, the inner if statement forms the single statement allowed by the syntax of the outer if statement.
Unfortunately, it is not clear (except from the hint given by the indentation) which if the else goes with. And in this
example, the indentation hint is wrong. The rule is that an else clause like this is associated with the nearest if statement.
Properly indented, this code looks like this:

if (i == j)
 if (j == k)
 System.out.println("i equals k");
 else
 System.out.println("i doesn't equal j"); // WRONG!!

This is legal code, but it is clearly not what the programmer had in mind. When working with nested if statements, you
should use curly braces to make your code easier to read. Here is a better way to write the code:

if (i == j) {
 if (j == k)
 System.out.println("i equals k");
}
else {
 System.out.println("i doesn't equal j");

file:///C|/orielly/jnut/ch02_06.htm (4 of 16) [2/5/2003 7:46:30 PM]

Statements (Java in a Nutshell)

}

2.6.6.1. The else if clause

The if/else statement is useful for testing a condition and choosing between two statements or blocks of code to execute.
But what about when you need to choose between several blocks of code? This is typically done with an elseif clause,
which is not really new syntax, but a common idiomatic usage of the standard if/else statement. It looks like this:

if (n == 1) {
 // Execute code block #1
}
else if (n == 2) {
 // Execute code block #2
}
else if (n == 3) {
 // Execute code block #3
}
else {
 // If all else fails, execute block #4
}

There is nothing special about this code. It is just a series of if statements, where each if is part of the else clause of the
previous statement. Using the elseif idiom is preferable to, and more legible than, writing these statements out in their
fully nested form:

if (n == 1) {
 // Execute code block #1
}
else {
 if (n == 2) {
 // Execute code block #2
 }
 else {
 if (n == 3) {
 // Execute code block #3
 }
 else {
 // If all else fails, execute block #4
 }
 }
}

2.6.7. The switch Statement

An if statement causes a branch in the flow of a program's execution. You can use multiple if statements, as shown in the
previous section, to perform a multiway branch. This is not always the best solution, however, especially when all of the
branches depend on the value of a single variable. In this case, it is inefficient to repeatedly check the value of the same
variable in multiple if statements.

A better solution is to use a switch statement, which is inherited from the C programming language. Although the syntax

file:///C|/orielly/jnut/ch02_06.htm (5 of 16) [2/5/2003 7:46:30 PM]

Statements (Java in a Nutshell)

of this statement is not nearly as elegant as other parts of Java, the brute practicality of the construct makes it worthwhile. If
you are not familiar with the switch statement itself, you may at least be familiar with the basic concept, under the name
computed goto or jump table. A switch statement has an integer expression and a body that contains various numbered
entry points. The expression is evaluated, and control jumps to the entry point specified by that value. For example, the
following switch statement is equivalent to the repeated if and else/if statements shown in the previous section:

switch(n) {
 case 1: // Start here if n == 1
 // Execute code block #1
 break; // Stop here
 case 2: // Start here if n == 2
 // Execute code block #2
 break; // Stop here
 case 3: // Start here if n == 3
 // Execute code block #3
 break; // Stop here
 default: // If all else fails...
 // Execute code block #4
 break; // Stop here
}

As you can see from the example, the various entry points into a switch statement are labeled either with the keyword
case, followed by an integer value and a colon, or with the special default keyword, followed by a colon. When a
switch statement executes, the interpreter computes the value of the expression in parentheses and then looks for a case
label that matches that value. If it finds one, the interpreter starts executing the block of code at the first statement following
the case label. If it does not find a case label with a matching value, the interpreter starts execution at the first statement
following a special-case default: label. Or, if there is no default: label, the interpreter skips the body of the switch
statement altogether.

Note the use of the break keyword at the end of each case in the previous code. The break statement is described later
in this chapter, but, in this case, it causes the interpreter to exit the body of the switch statement. The case clauses in a
switch statement specify only the starting point of the desired code. The individual cases are not independent blocks of
code, and they do not have any implicit ending point. Therefore, you must explicitly specify the end of each case with a
break or related statement. In the absence of break statements, a switch statement begins executing code at the first
statement after the matching case label and continues executing statements until it reaches the end of the block. On rare
occasions, it is useful to write code like this that falls through from one case label to the next, but 99% of the time you
should be careful to end every case and default section with a statement that causes the switch statement to stop
executing. Normally you use a break statement, but return and throw also work.

A switch statement can have more than one case clause labeling the same statement. Consider the switch statement in
the following method:

boolean parseYesOrNoResponse(char response) {
 switch(response) {
 case 'y':
 case 'Y': return true;
 case 'n':
 case 'N': return false;
 default: throw new IllegalArgumentException("Response must be Y or N");
 }
}

file:///C|/orielly/jnut/ch02_06.htm (6 of 16) [2/5/2003 7:46:30 PM]

Statements (Java in a Nutshell)

There are some important restrictions on the switch statement and its case labels. First, the expression associated with a
switch statement must have a byte, char, short, or int value. The floating-point and boolean types are not
supported, and neither is long, even though long is an integer type. Second, the value associated with each case label
must be a constant value or a constant expression the compiler can evaluate. A case label cannot contain a runtime
expressions involving variables or method calls, for example. Third, the case label values must be within the range of the
data type used for the switch expression. And finally, it is obviously not legal to have two or more case labels with the
same value or more than one default label.

2.6.8. The while Statement

Just as the if statement is the basic control statement that allows Java to make decisions, the while statement is the basic
statement that allows Java to perform repetitive actions. It has the following syntax:

while (expression)
 statement

The while statement works by first evaluating the expression. If it is false, the interpreter skips the statement associated
with the loop and moves to the next statement in the program. If it is true, however, the statement that forms the body of
the loop is executed, and the expression is reevaluated. Again, if the value of expression is false, the interpreter moves on
to the next statement in the program; otherwise it executes the statement again. This cycle continues while the expression
remains true (i.e., until it evaluates to false), at which point the while statement ends, and the interpreter moves on to
the next statement. You can create an infinite loop with the syntax while(true).

Here is an example while loop that prints the numbers 0 to 9:

int count = 0;
while (count < 10) {
 System.out.println(count);
 count++;
}

As you can see, the variable count starts off at 0 in this example and is incremented each time the body of the loop runs.
Once the loop has executed 10 times, the expression becomes false (i.e., count is no longer less than 10), the while
statement finishes, and the Java interpreter can move to the next statement in the program. Most loops have a counter
variable like count. The variable names i, j, and k are commonly used as a loop counters, although you should use more
descriptive names if it makes your code easier to understand.

2.6.9. The do Statement

A do loop is much like a while loop, except that the loop expression is tested at the bottom of the loop, rather than at the
top. This means that the body of the loop is always executed at least once. The syntax is:

do
 statement
while (expression) ;

There are a couple of differences to notice between the do loop and the more ordinary while loop. First, the do loop
requires both the do keyword to mark the beginning of the loop and the while keyword to mark the end and introduce the

file:///C|/orielly/jnut/ch02_06.htm (7 of 16) [2/5/2003 7:46:30 PM]

Statements (Java in a Nutshell)

loop condition. Also, unlike the while loop, the do loop is terminated with a semicolon. This is because the do loop ends
with the loop condition, rather than simply ending with a curly brace that marks the end of the loop body. The following do
loop prints the same output as the while loop shown above:

int count = 0;
do {
 System.out.println(count);
 count++;
} while(count < 10);

Note that the do loop is much less commonly used than its while cousin. This is because, in practice, it is unusual to
encounter a situation where you are sure you always want a loop to execute at least once.

2.6.10. The for Statement

The for statement provides a looping construct that is often more convenient than the while and do loops. The for
statement takes advantage of a common looping pattern. Most loops have a counter, or state variable of some kind, that is
initialized before the loop starts, tested to determine whether to execute the loop body, and then incremented, or updated
somehow, at the end of the loop body before the test expression is evaluated again. The initialization, test, and update steps
are the three crucial manipulations of a loop variable, and the for statement makes these three steps an explicit part of the
loop syntax:

for(initialize ; test ; increment)
 statement

This for loop is basically equivalent to the following while loop:[2]

[2] As you'll see when we consider the continue statement, this while loop is not exactly equivalent to the
for loop. We'll discuss how to write the true equivalent when we talk about the try/catch/finally
statement.

initialize;
while(test) {
 statement;
 increment;
}

Placing the initialize, test, and increment expressions at the top of a for loop makes it especially easy to understand what
the loop is doing, and it prevents mistakes such as forgetting to initialize or increment the loop variable. The interpreter
discards the values of the initialize and increment expressions, so in order to be useful, these expressions must have side
effects. initialize is typically an assignment expression, while increment is usually an increment, decrement, or some other
assignment.

The following for loop prints the numbers 0 to 9, just as the previous while and do loops have done:

int count;
for(count = 0 ; count < 10 ; count++)
 System.out.println(count);

file:///C|/orielly/jnut/ch02_06.htm (8 of 16) [2/5/2003 7:46:30 PM]

Statements (Java in a Nutshell)

Notice how this syntax places all the important information about the loop variable on a single line, making it very clear how
the loop executes. Placing the increment expression in the for statement itself also simplifies the body of the loop to a
single statement; we don't even need to use curly braces to produce a statement block.

The for loop supports some additional syntax that makes it even more convenient to use. Because many loops use their loop
variables only within the loop, the for loop allows the initialize expression to be a full variable declaration, so that the
variable is scoped to the body of the loop and is not visible outside of it. For example:

for(int count = 0 ; count < 10 ; count++)
 System.out.println(count);

Furthermore, the for loop syntax does not restrict you to writing loops that use only a single variable. Both the initialize and
increment expressions of a for loop can use a comma to separate multiple initializations and increment expressions. For
example:

for(int i = 0, j = 10 ; i < 10 ; i++, j--)
 sum += i * j;

Even though all the examples so far have counted numbers, for loops are not restricted to loops that count numbers. For
example, you might use a for loop to iterate through the elements of a linked list:

for(Node n = listHead; n != null; n = n.nextNode())
 process(n);

The initialize, test, and increment expressions of a for loop are all optional; only the semicolons that separate the
expressions are required. If the test expression is omitted, it is assumed to be true. Thus, you can write an infinite loop as
for(;;).

2.6.11. The break Statement

A break statement causes the Java interpreter to skip immediately to the end of a containing statement. We have already
seen the break statement used with the switch statement. The break statement is most often written as simply the
keyword break followed by a semicolon:

break;

When used in this form, it causes the Java interpreter to immediately exit the innermost containing while, do, for, or
switch statement. For example:

for(int i = 0; i < data.length; i++) { // Loop through the data array.
 if (data[i] == target) { // When we find what we're looking for,
 index = i; // remember where we found it
 break; // and stop looking!
 }
} // The Java interpreter goes here after executing break

The break statement can also be followed by the name of a containing labeled statement. When used in this form, break
causes the Java interpreter to immediately exit from the named block, which can be any kind of statement, not just a loop or
switch. For example:

file:///C|/orielly/jnut/ch02_06.htm (9 of 16) [2/5/2003 7:46:30 PM]

Statements (Java in a Nutshell)

testfornull: if (data != null) { // If the array is defined,
 for(int row = 0; row < numrows; row++) { // loop through one dimension,
 for(int col = 0; col < numcols; col++) { // then loop through the other.
 if (data[row][col] == null) // If the array is missing data,
 break testfornull; // treat the array as undefined.
 }
 }
} // Java interpreter goes here after executing break testfornull

2.6.12. The continue Statement

While a break statement exits a loop, a continue statement quits the current iteration of a loop and starts the next one.
continue, in both its unlabeled and labeled forms, can be used only within a while, do, or for loop. When used without
a label, continue causes the innermost loop to start a new iteration. When used with a label that is the name of a
containing loop, it causes the named loop to start a new iteration. For example:

for(int i = 0; i < data.length; i++) { // Loop through data.
 if (data[i] == -1) // If a data value is missing,
 continue; // skip to the next iteration.
 process(data[i]); // Process the data value.
}

while, do, and for loops differ slightly in the way that continue starts a new iteration:

● With a while loop, the Java interpreter simply returns to the top of the loop, tests the loop condition again, and, if it
evaluates to true, executes the body of the loop again.

● With a do loop, the interpreter jumps to the bottom of the loop, where it tests the loop condition to decide whether to
perform another iteration of the loop.

● With a for loop, the interpreter jumps to the top of the loop, where it first evaluates the increment expression and
then evaluates the test expression to decide whether to loop again. As you can see, the behavior of a for loop with a
continue statement is different from the behavior of the "basically equivalent" while loop I presented earlier;
increment gets evaluated in the for loop, but not in the equivalent while loop.

2.6.13. The return Statement

A return statement tells the Java interpreter to stop executing the current method. If the method is declared to return a
value, the return statement is followed by an expression. The value of the expression becomes the return value of the
method. For example, the following method computes and returns the square of a number:

double square(double x) { // A method to compute x squared
 return x * x; // Compute and return a value
}

Some methods are declared void to indicate they do not return any value. The Java interpreter runs methods like this by
executing its statements one by one until it reaches the end of the method. After executing the last statement, the interpreter
returns implicitly. Sometimes, however, a void method has to return explicitly before reaching the last statement. In this
case, it can use the return statement by itself, without any expression. For example, the following method prints, but does

file:///C|/orielly/jnut/ch02_06.htm (10 of 16) [2/5/2003 7:46:30 PM]

Statements (Java in a Nutshell)

not return, the square root of its argument. If the argument is a negative number, it returns without printing anything:

void printSquareRoot(double x) { // A method to print square root of x
 if (x < 0) return; // If x is negative, return explicitly
 System.out.println(Math.sqrt(x)); // Print the square root of x
} // End of method: return implicitly

2.6.14. The synchronized Statement

Since Java is a multithreaded system, you must often take care to prevent multiple threads from modifying an object
simultaneously in a way that might corrupt the object's state. Sections of code that must not be executed simultaneously are
known as critical sections. Java provides the synchronized statement to protect these critical sections. The syntax is:

synchronized (expression) {
 statements
}

expression is an expression that must evaluate to an object or an array. The statements constitute the code of the critical
section and must be enclosed in curly braces. Before executing the critical section, the Java interpreter first obtains an
exclusive lock on the object or array specified by expression. It holds the lock until it is finished running the critical section,
then releases it. While a thread holds the lock on an object, no other thread can obtain that lock. Therefore, no other thread
can execute this or any other critical sections that require a lock on the same object. If a thread cannot immediately obtain the
lock required to execute a critical section, it simply waits until the lock becomes available.

Note that you do not have to use the synchronized statement unless your program creates multiple threads that share
data. If only one thread ever accesses a data structure, there is no need to protect it with synchronized. When you do
have to use synchronized, it might be in code like the following:

public static void SortIntArray(int[] a) {
 // Sort the array a. This is synchronized so that some other thread
 // cannot change elements of the array while we're sorting it (at
 // least not other threads that protect their changes to the array
 // with synchronized).
 synchronized (a) {
 // Do the array sort here...
 }
}

The synchronized keyword is also available as a modifier in Java and is more commonly used in this form than as a
statement. When applied to a method, the synchronized keyword indicates that the entire method is a critical section. For
a synchronized class method (a static method), Java obtains an exclusive lock on the class before executing the method.
For a synchronized instance method, Java obtains an exclusive lock on the class instance. (Class and instance methods
are discussed in Chapter 3, "Object-Oriented Programming in Java".)

2.6.15. The throw Statement

An exception is a signal that indicates some sort of exceptional condition or error has occurred. To throw an exception is to
signal an exceptional condition. To catch an exception is to handle it--to take whatever actions are necessary to recover from
it.

file:///C|/orielly/jnut/ch02_06.htm (11 of 16) [2/5/2003 7:46:30 PM]

Statements (Java in a Nutshell)

In Java, the throw statement is used to throw an exception:

throw expression ;

The expression must evaluate to an exception object that describes the exception or error that has occurred. We'll talk more
about types of exceptions shortly; for now, all you need to know is that an exception is represented by an object. Here is
some example code that throws an exception:

public static double factorial(int x) {
 if (x < 0)
 throw new IllegalArgumentException("x must be >= 0"));
 double fact;
 for(fact=1.0; x > 1; fact *= x, x--)
 /* empty */ ; // Note use of the empty statement
 return fact;
}

When the Java interpreter executes a throw statement, it immediately stops normal program execution and starts looking
for an exception handler that can catch, or handle, the exception. Exception handlers are written with the
try/catch/finally statement, which is described in the next section. The Java interpreter first looks at the enclosing
block of code to see if it has an associated exception handler. If so, it exits that block of code and starts running the exception-
handling code associated with the block. After running the exception handler, the interpreter continues execution at the
statement immediately following the handler code.

If the enclosing block of code does not have an appropriate exception handler, the interpreter checks the next higher
enclosing block of code in the method. This continues until a handler is found. If the method does not contain an exception
handler that can handle the exception thrown by the throw statement, the interpreter stops running the current method and
returns to the caller. Now the interpreter starts looking for an exception handler in the blocks of code of the calling method.
In this way, exceptions propagate up through the lexical structure of Java methods, up the call stack of the Java interpreter. If
the exception is never caught, it propagates all the way up to the main() method of the program. If it is not handled in that
method, the Java interpreter prints an error message, prints a stack trace to indicate where the exception occurred, and then
exits.

2.6.15.1. Exception types

An exception in Java is an object. The type of this object is java.langThrowable, or more commonly, some subclass of
Throwable that more specifically describes the type of exception that occurred.[3]Throwable has two standard
subclasses: java.lang.Error and java.lang.Exception. Exceptions that are subclasses of Error generally
indicate unrecoverable problems: the virtual machine has run out of memory, or a class file is corrupted and cannot be read,
for example. Exceptions of this sort can be caught and handled, but it is rare to do so. Exceptions that are subclasses of
Exception, on the other hand, indicate less severe conditions. These are exceptions that can be reasonably caught and
handled. They include such exceptions as java.io.EOFException, which signals the end of a file, and
java.lang.ArrayIndexOutOfBoundsException, which indicates that a program has tried to read past the end of
an array. In this book, I use the term "exception" to refer to any exception object, regardless of whether the type of that
exception is Exception or Error.

[3]We haven't talked about subclasses yet; they are covered in detail in Chapter 3, "Object-Oriented
Programming in Java".

file:///C|/orielly/jnut/ch02_06.htm (12 of 16) [2/5/2003 7:46:30 PM]

Statements (Java in a Nutshell)

Since an exception is an object, it can contain data, and its class can define methods that operate on that data. The
Throwable class and all its subclasses include a String field that stores a human-readable error message that describes
the exceptional condition. It's set when the exception object is created and can be read from the exception with the
getMessage() method. Most exceptions contain only this single message, but a few add other data. The
java.io.InterruptedIOException, for example, adds a field named bytesTransferred that specifies how
much input or output was completed before the exceptional condition interrupted it.

2.6.15.2. Declaring exceptions

In addition to making a distinction between Error and Exception classes, the Java exception-handling scheme also
makes a distinction between checked and unchecked exceptions. Any exception object that is an Error is unchecked. Any
exception object that is an Exception is checked, unless it is a subclass of java.lang.RuntimeException, in
which case it is unchecked. (RuntimeException is a subclass of Exception.) The reason for this distinction is that
virtually any method can throw an unchecked exception, at essentially any time. There is no way to predict an
OutOfMemoryError, for example, and any method that uses objects or arrays can throw a NullPointerException
if it is passed an invalid null argument. Checked exceptions, on the other hand, arise only in specific, well-defined
circumstances. If you try to read data from a file, for example, you must at least consider the possibility that a
FileNotFoundException will be thrown if the specified file cannot be found.

Java has different rules for working with checked and unchecked exceptions. If you write a method that throws a checked
exception, you must use a throws clause to declare the exception in the method signature. The reason these types of
exceptions are called checked exceptions is that the Java compiler checks to make sure you have declared them in method
signatures and produces a compilation error if you have not. The factorial() method shown earlier throws an exception
of type java.lang.IllegalArgumentException. This is a subclass of RuntimeException, so it is an
unchecked exception, and we do not have to declare it with a throws clause (although we can if we want to be explicit).

Even if you never throw an exception yourself, there are times when you must use a throws clause to declare an
exception. If your method calls a method that can throw a checked exception, you must either include exception-handling
code to handle that exception or use throws to declare that your method can also throw that exception.

How do you know if the method you are calling can throw a checked exception? You can look at its method signature to find
out. Or, failing that, the Java compiler will tell you (by reporting a compilation error) if you've called a method whose
exceptions you must handle or declare. The following method reads the first line of text from a named file. It uses methods
that can throw various types of java.io.IOException objects, so it declares this fact with a throws clause:

public static String readFirstLine(String filename) throws IOException {
 BufferedReader in = new BufferedReader(new FileReader(filename));
 return in.readLine();
}

We'll talk more about method declarations and method signatures later in this chapter.

2.6.16. The try/catch/finally Statement

The try/catch/finally statement is Java's exception-handling mechanism. The try clause of this statement
establishes a block of code for exception handling. This try block is followed by zero or more catch clauses, each of
which is a block of statements designed to handle a specific type of exception. The catch clauses are followed by an
optional finally block that contains cleanup code guaranteed to be executed regardless of what happens in the try block.
Both the catch and finally clauses are optional, but every try block must be accompanied by at least one or the other.

file:///C|/orielly/jnut/ch02_06.htm (13 of 16) [2/5/2003 7:46:30 PM]

Statements (Java in a Nutshell)

The try, catch, and finally blocks all begin and end with curly braces. These are a required part of the syntax and
cannot be omitted, even if the clause contains only a single statement.

The following code illustrates the syntax and purpose of the try/catch/finally statement:

try {
 // Normally this code runs from the top of the block to the bottom
 // without problems. But it can sometimes throw an exception,
 // either directly with a throw statement or indirectly by calling
 // a method that throws an exception.
}
catch (SomeException e1) {
 // This block contains statements that handle an exception object
 // of type SomeException or a subclass of that type. Statements in
 // this block can refer to that exception object by the name e1.
}
catch (AnotherException e2) {
 // This block contains statements that handle an exception object
 // of type AnotherException or a subclass of that type. Statements
 // in this block can refer to that exception object by the name e2.
}

finally {
 // This block contains statements that are always executed
 // after we leave the try clause, regardless of whether we leave it:
 // 1) normally, after reaching the bottom of the block;
 // 2) because of a break, continue, or return statement;
 // 3) with an exception that is handled by a catch clause above; or
 // 4) with an uncaught exception that has not been handled.
 // If the try clause calls System.exit(), however, the interpreter
 // exits before the finally clause can be run.
}

2.6.16.1. try

The try clause simply establishes a block of code that either has its exceptions handled or needs special cleanup code to be
run when it terminates for any reason. The try clause by itself doesn't do anything interesting; it is the catch and
finally clauses that do the exception-handling and cleanup operations.

2.6.16.2. catch

A try block can be followed by zero or more catch clauses that specify code to handle various types of exceptions. Each
catch clause is declared with a single argument that specifies the type of exceptions the clause can handle and also
provides a name the clause can use to refer to the exception object it is currently handling. The type and name of an
exception handled by a catch clause are exactly like the type and name of an argument passed to a method, except that for
a catch clause, the argument type must be Throwable or one of its subclasses.

When an exception is thrown, the Java interpreter looks for a catch clause with an argument of the same type as the
exception object or a superclass of that type. The interpreter invokes the first such catch clause it finds. The code within a

file:///C|/orielly/jnut/ch02_06.htm (14 of 16) [2/5/2003 7:46:30 PM]

Statements (Java in a Nutshell)

catch block should take whatever action is necessary to cope with the exceptional condition. If the exception is a
java.io.FileNotFoundException exception, for example, you might handle it by asking the user to check his
spelling and try again. It is not required to have a catch clause for every possible exception; in some cases the correct
response is to allow the exception to propagate up and be caught by the invoking method. In other cases, such as a
programming error signaled by NullPointerException, the correct response is probably not to catch the exception at
all, but allow it to propagate and have the Java interpreter exit with a stack trace and an error message.

2.6.16.3. finally

The finally clause is generally used to clean up after the code in the try clause (e.g., close files, shut down network
connections). What is useful about the finally clause is that it is guaranteed to be executed if any portion of the try
block is executed, regardless of how the code in the try block completes. In fact, the only way a try clause can exit
without allowing the finally clause to be executed is by invoking the System.exit() method, which causes the Java
interpreter to stop running.

In the normal case, control reaches the end of the try block and then proceeds to the finally block, which performs any
necessary cleanup. If control leaves the try block because of a return, continue, or break statement, the finally
block is executed before control transfers to its new destination.

If an exception occurs in the try block, and there is an associated catch block to handle the exception, control transfers
first to the catch block and then to the finally block. If there is no local catch block to handle the exception, control
transfers first to the finally block, and then propagates up to the nearest containing catch clause that can handle the
exception.

If a finally block itself transfers control with a return, continue, break, or throw statement or by calling a
method that throws an exception, the pending control transfer is abandoned, and this new transfer is processed. For example,
if a finally clause throws an exception, that exception replaces any exception that was in the process of being thrown. If a
finally clause issues a return statement, the method returns normally, even if an exception has been thrown and has
not been handled yet.

try and finally can be used together without exceptions or any catch clauses. In this case, the finally block is
simply cleanup code that is guaranteed to be executed, regardless of any break, continue, or return statements within
the try clause.

In previous discussions of the for and continue statements, we've seen that a for loop cannot be naively translated into
a while loop because the continue statement behaves slightly differently when used in a for loop than it does when
used in a while loop. The finally clause gives us a way to write a while loop that is truly equivalent to a for loop.
Consider the following generalized for loop:

for(initialize ; test ; increment)
 statement

The following while loop behaves the same, even if the statement block contains a continue statement:

initialize ;
while (test) {
 try { statement }
 finally { increment ; }
}

file:///C|/orielly/jnut/ch02_06.htm (15 of 16) [2/5/2003 7:46:30 PM]

Statements (Java in a Nutshell)

2.5. Expressions and
Operators

2.7. Methods

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch02_06.htm (16 of 16) [2/5/2003 7:46:30 PM]

file:///C|/orielly/jnut/copyrght.htm

Methods (Java in a Nutshell)

Chapter 2: Java Syntax from

the Ground Up

2.7. Methods

A method is a named collection of Java statements that can be invoked by other Java code. When a method is invoked, it
is passed zero or more values known as arguments. The method performs some computations and, optionally, returns a
value. A method invocation is an expression that is evaluated by the Java interpreter. Because method invocations can
have side effects, however, they can also be used as expression statements.

You already know how to define the body of a method; it is simply an arbitrary sequence of statements enclosed within
curly braces. What is more interesting about a method is its signature. The signature specifies:

● The name of the method

● The type and name of each of the parameters used by the method

● The type of the value returned by the method

● The exception types the method can throw

● Various method modifiers that provide additional information about the method

A method signature defines everything you need to know about a method before calling it. It is the method specification
and defines the API for the method. The reference section of this book is essentially a list of method signatures for all
publicly accessible methods of all publicly accessible classes of the Java platform. In order to use the reference section of
this book, you need to know how to read a method signature. And, in order to write Java programs, you need to know how
to define your own methods, each of which begins with a method signature.

A method signature looks like this:

modifiers type name (paramlist) [throws exceptions]

The signature (the method specification) is followed by the method body (the method implementation), which is simply a
sequence of Java statements enclosed in curly braces. In certain cases (described in Chapter 3, "Object-Oriented
Programming in Java"), the implementation is omitted, and the method body is replaced with a single semicolon.

Here are some example method definitions. The method bodies have been omitted, so we can focus on the signatures:

public static void main(String[] args) { ... }
public final synchronized int indexOf(Object element, int startIndex) { ... }
double distanceFromOrigin() { ... }
static double squareRoot(double x) throws IllegalArgumentException { ... }
protected abstract String readText(File f, String encoding)

file:///C|/orielly/jnut/ch02_07.htm (1 of 2) [2/5/2003 7:46:33 PM]

Methods (Java in a Nutshell)

 throws FileNotFoundException, UnsupportedEncodingException;

modifiers is zero or more special modifier keywords, separated from each other by spaces. A method might be declared
with the public and static modifiers, for example. Other valid method modifiers are abstract, final, native,
private, protected, and synchronized. The meanings of these modifiers are not important here; they are
discussed in Chapter 3, "Object-Oriented Programming in Java".

The type in a method signature specifies the return type of the method. If the method returns a value, this is the name of a
primitive type, an array type, or a class. If the method does not return a value, type must be void. A constructor is a
special type of method used to initialize newly created objects. As we'll see in Chapter 3, "Object-Oriented Programming
in Java", constructors are defined just like methods, except that their signatures do not include this type specification.

The name of a method follows the specification of its modifiers and type. Method names, like variable names, are Java
identifiers and, like all Java identifiers, can use any characters of the Unicode character set. It is legal (and sometimes
useful) to define more than one method with the same name, as long as each version of the method has a different
parameter list. Defining multiple methods with the same name is called method overloading. The
System.out.println() method we've seen so much of is an overloaded method. There is one method by this name
that prints a string and other methods by the same name that print the values of the various primitive types. The Java
compiler decides which method to call based on the type of the argument passed to the method.

When you are defining a method, the name of the method is always followed by the method's parameter list, which must
be enclosed in parentheses. The parameter list defines zero or more arguments that are passed to the method. The
parameter specifications, if there are any, each consist of a type and a name and are separated from each other by commas
(if there are multiple parameters). When a method is invoked, the argument values it is passed must match the number,
type, and order of the parameters specified in this method signature line. The values passed need not have exactly the
same type as specified in the signature, but they must be convertible to those types without casting. C and C++
programmers should note that when a Java method expects no arguments, its parameter list is simply (), not (void).

The final part of a method signature is the throws clause, which I first described when we discussed the throw
statement. If a method uses the throw statement to throw a checked exception, or if it calls some other method that
throws a checked exception and does not catch or handle that exception, the method must declare that it can throw that
exception. If a method can throw one or more checked exceptions, it specifies this by placing the throws keyword after
the argument list and following it by the name of the exception class or classes it can throw. If a method does not throw
any exceptions, it does not use the throws keyword. If a method throws more than one type of exception, separate the
names of the exception classes from each other with commas.

2.6. Statements 2.8. Classes and Objects

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch02_07.htm (2 of 2) [2/5/2003 7:46:33 PM]

file:///C|/orielly/jnut/copyrght.htm

Classes and Objects (Java in a Nutshell)

Chapter 2: Java Syntax from

the Ground Up

2.8. Classes and Objects

Now that we have introduced operators, expressions, statements, and methods, we can finally talk about classes. A class is
a named collection of fields that hold data values and methods that operate on those values. Some classes also contain
nested inner classes. Classes are the most fundamental structural element of all Java programs. You cannot write Java code
without defining a class. All Java statements appear within methods, and all methods are defined within classes.

Classes are more than just another structural level of Java syntax. Just as a cell is the smallest unit of life that can survive
and reproduce on its own, a class is the smallest unit of Java code that can stand alone. The Java compiler and interpreter do
not recognize fragments of Java code that are smaller than a class. A class is the basic unit of execution for Java, which
makes classes very important. Java actually defines another construct, called an interface, that is quite similar to a class.
The distinction between classes and interfaces will become clear in Chapter 3, "Object-Oriented Programming in Java", but
for now I'll use the term "class" to mean either a class or an interface.

Classes are important for another reason: every class defines a new data type. For example, you can define a class named
Point to represent a data point in the two-dimensional Cartesian coordinate system. This class can define fields (each of
type double) to hold the X and Y coordinates of a point and methods to manipulate and operate on the point. The Point
class is a new data type.

When discussing data types, it is important to distinguish between the data type itself and the values the data type
represents. char is a data type: it represents Unicode characters. But a char value represents a single specific character. A
class is a data type; the value of a class type is called an object. We use the name class because each class defines a type (or
kind, or species, or class) of objects. The Point class is a data type that represents X,Y points, while a Point object
represents a single specific X,Y point. As you might imagine, classes and their objects are closely linked. In the sections
that follow, we will be discussing both.

2.8.1. Defining a Class

Here is a possible definition of the Point class we have been discussing:

/** Represents a Cartesian (x,y) point */
public class Point {
 public double x, y; // The coordinates of the point.
 public Point(double x, double y) { // A constructor that
 this.x = x; this.y = y; // initializes the fields.
 }

 public double distanceFromOrigin() { // A method that operates on
 return Math.sqrt(x*x + y*y); // the x and y fields.
 }
}

file:///C|/orielly/jnut/ch02_08.htm (1 of 4) [2/5/2003 7:46:37 PM]

Classes and Objects (Java in a Nutshell)

This class definition is stored in a file named Point.java and compiled to a file named Point.class, at which point it is
available for use by Java programs and other classes. This class definition is provided here for completeness and to provide
context, but don't expect to understand all the details just yet; most of Chapter 3, "Object-Oriented Programming in Java" is
devoted to the topic of defining classes. Do pay extra attention to the first (non-comment) line of the class definition,
however. Just as the first line of a method definition--the method signature--defines the API for the method, this line
defines the basic API for a class (as described in the next chapter).

Keep in mind that you don't have to define every class you want to use in a Java program. The Java platform consists of
over 1500 predefined classes that are guaranteed to be available on every computer that runs Java.

2.8.2. Creating an Object

Now that we have defined the Point class as a new data type, we can use the following line to declare a variable that
holds a Point object:

Point p;

Declaring a variable to hold a Point object does not create the object itself, however. To actually create an object, you
must use the new operator. This keyword is followed by the object's class (i.e., its type) and an optional argument list in
parentheses. These arguments are passed to the constructor method for the class, which initializes internal fields in the new
object:

// Create a Point object representing (2,-3.5) and store it in variable p
Point p = new Point(2.0, -3.5);

// Create some other objects as well
Date d = new Date(); // A Date object that represents the current time
Vector list = new Vector(); // A Vector object to hold a list of objects

The new keyword is by far the most common way to create objects in Java. There are a few other ways that are worth
mentioning, however. First, there are a couple of classes that are so important that the Java language defines special literal
syntax for creating objects of those types (as we'll discuss in the next section). Second, Java supports a dynamic loading
mechanism that allows programs to load classes and create instances of those classes dynamically. This dynamic
instantiation is done with the newInstance() methods of java.lang.Class and java.lang.Constructor.
Finally, in Java 1.1 and later, objects can also be created by deserializing them. In other words, an object that has had its
state saved, or serialized, usually to a file, can be recreated using the java.io.ObjectInputStream class.

2.8.3. Object Literals

As I just said, Java defines special syntax for creating instances of two very important classes. The first class is String,
which represents text as a string of characters. Since programs usually communicate with their users through the written
word, the ability to manipulate strings of text is quite important in any programming language. In some languages, strings
are a primitive type, on a par with integers and characters. In Java, however, strings are objects; the data type used to
represent text is the String class.

Because strings are such a fundamental data type, Java allows you to include text literally in programs by placing it
between double-quote (") characters. For example:

String name = "David";

file:///C|/orielly/jnut/ch02_08.htm (2 of 4) [2/5/2003 7:46:37 PM]

Classes and Objects (Java in a Nutshell)

System.out.println("Hello, " + name);

Don't confuse the double-quote characters that surround string literals with the single-quote (or apostrophe) characters that
surround char literals. String literals can contain any of the escape sequences char literals can (see Table 2-3). Escape
sequences are particularly useful for embedding double-quote characters within double-quoted string literals. For example:

String story = "\t\"How can you stand it?\" he asked sarcastically.\n";

String literals can be only a single line long. Java does not support any kind of continuation-character syntax that allows
two separate lines to be treated as a single line. If you need to represent a long string of text that does not fit on a single
line, break it into independent string literals and use the + operator to concatenate the literals. For example:

String s = "This is a test of the // This is illegal; string literals
 emergency broadcast system"; // cannot be broken across lines.

String s = "This is a test of the " + // Do this instead.
 "emergency broadcast system";

This concatenation of literals is done when your program is compiled, not when it is run, so you do not need to worry about
any kind of performance penalty.

The second class that supports its own special object literal syntax is the class named Class. Class is a (self-referential)
data type that represents all Java data types, including primitive types and array types, not just class types. To include a
Class object literally in a Java program, follow the name of any data type with .class. For example:

Class typeInt = int.type;
Class typeIntArray = int[].type;
Class typePoint = Point.class;

This feature is supported by Java 1.1 and later.

The Java reserved word null is a special literal that can be used with any class. Instead of representing a literal object, it
represents the absence of an object. For example:

String s = null;
Point p = null;

Finally, objects can also be included literally in a Java program through the use of a construct known as an anonymous
inner class. Anonymous classes are discussed in Chapter 3, "Object-Oriented Programming in Java".

2.8.4. Using an Object

Now that we've seen how to define classes and instantiate them by creating objects, we need to look at the Java syntax that
allows us to use those objects. Recall that a class defines a collection of fields and methods. Each object has its own copies
of those fields and has access to those methods. We use the dot character (.) to access the named fields and methods of an
object. For example:

Point p = new Point(2, 3); // Create an object

file:///C|/orielly/jnut/ch02_08.htm (3 of 4) [2/5/2003 7:46:37 PM]

Classes and Objects (Java in a Nutshell)

double x = p.x; // Read a field of the object
p.y = p.x * p.x; // Set the value of a field
double d = p.distanceFromOrigin(); // Access a method of the object

This syntax is central to object-oriented programming in Java, so you'll see it a lot. Note, in particular, the expression
p.distanceFromOrigin(). This tells the Java compiler to look up a method named distanceFromOrigin()
defined by the class Point and use that method to perform a computation on the fields of the object p. We'll cover the
details of this operation in Chapter 3, "Object-Oriented Programming in Java".

2.7. Methods 2.9. Array Types

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch02_08.htm (4 of 4) [2/5/2003 7:46:37 PM]

file:///C|/orielly/jnut/copyrght.htm

Array Types (Java in a Nutshell)

Chapter 2: Java Syntax from

the Ground Up

2.9. Array Types

Array types are the second kind of reference types in Java. An array is an ordered collection, or numbered list, of values.
The values can be primitive values, objects, or even other arrays, but all of the values in an array must be of the same type.
The type of the array is the type of the values it holds, followed by the characters []. For example:

byte b; // byte is a primitive type
byte[] arrayOfBytes; // byte[] is an array type: array of byte
byte[][] arrayOfArrayOfBytes; // byte[][] is another type: array of byte[]
Point[] points; // Point[] is an array of Point objects

For compatibility with C and C++, Java also supports another syntax for declaring variables of array type. In this syntax,
one or more pairs of square brackets follow the name of the variable, rather than the name of the type:

byte arrayOfBytes[]; // Same as byte[] arrayOfBytes
byte arrayOfArrayOfBytes[][]; // Same as byte[][] arrayOfArrayOfBytes
byte[] arrayOfArrayOfBytes[]; // Ugh! Same as byte[][] arrayOfArrayOfBytes

This is almost always a confusing syntax, however, and it is not recommended.

With classes and objects, we have separate terms for the type and the values of that type. With arrays, the single word array
does double duty as the name of both the type and the value. Thus, we can speak of the array type int[] (a type) and an
array of int (a particular array value). In practice, it is usually clear from context whether a type or a value is being
discussed.

2.9.1. Creating Arrays

To create an array value in Java, you use the new keyword, just as you do to create an object. Arrays don't need to be
initialized like objects do, however, so you don't pass a list of arguments between parentheses. What you must specify,
though, is how big you want the array to be. If you are creating a byte[], for example, you must specify how many byte
values you want it to hold. Array values have a fixed size in Java. Once an array is created, it can never grow or shrink.
Specify the desired size of your array as a non-negative integer between square brackets:

byte[] buffer = new byte[1024];
String[] lines = new String[50];

When you create an array with this syntax, each of the values held in the array is automatically initialized to its default
value. This is false for boolean values, '\u0000' for char values, 0 for integer values, 0.0 for floating-point
values, and null for objects or array values.

2.9.2. Using Arrays

file:///C|/orielly/jnut/ch02_09.htm (1 of 6) [2/5/2003 7:46:40 PM]

Array Types (Java in a Nutshell)

Once you've created an array with the new operator and the square-bracket syntax, you also use square brackets to access
the individual values contained in the array. Remember that an array is an ordered collection of values. The elements of an
array are numbered sequentially, starting with 0. The number of an array element refers to the element. This number is
often called the index, and the process of looking up a numbered value in an array is sometimes called indexing the array.

To refer to a particular element of an array, simply place the index of the desired element in square brackets after the name
of the array. For example:

String[] responses = new String[2]; // Create an array of two strings
responses[0] = "Yes"; // Set the first element of the array
responses[1] = "No"; // Set the second element of the array

// Now read these array elements
System.out.println(question + " (" + responses[0] + "/" +
 responses[1] + "): ");

In some programming languages, such as C and C++, it is a common bug to write code that tries to read or write array
elements that are past the end of the array. Java does not allow this. Every time you access an array element, the Java
interpreter automatically checks that the index you have specified is valid. If you specify a negative index or an index that
is greater than the last index of the array, the interpreter throws an exception of type
ArrayIndexOutOfBoundsException. This prevents you from reading or writing nonexistent array elements.

Array index values are integers; you cannot index an array with a floating-point value, a boolean, an object, or another
array. char values can be converted to int values, so you can use characters as array indexes. Although long is an
integer data type, long values cannot be used as array indexes. This may seem surprising at first, but consider that an int
index supports arrays with over two billion elements. An int[] with this many elements would require eight gigabytes of
memory. When you think of it this way, it is not surprising that long values are not allowed as array indexes.

Besides setting and reading the value of array elements, there is one other thing you can do with an array value. Recall that
whenever we create an array, we must specify the number of elements the array holds. This value is referred to as the length
of the array; it is an intrinsic property of the array. If you need to know the length of the array, append .length to the
array name:

if (errorCode < errorMessages.length)
 System.out.println(errorMessages[errorCode]);

.length is special Java syntax for arrays. An expression like a.length looks as though it refers to a field of an object
a, but this is not actually the case. The .length syntax can be used only to read the length of an array. It cannot be used
to set the length of an array (because, in Java, an array has a fixed length that can never change).

In the previous example, the array index within square brackets is a variable, not an integer literal. In fact, arrays are most
often used with loops, particularly for loops, where they are indexed using a variable that is incremented or decremented
each time through the loop:

int[] values; // Array elements initialized elsewhere
int total = 0; // Store sum of elements here
for(int i = 0; i < values.length; i++) // Loop through array elements
 total += values[i]; // Add them up

file:///C|/orielly/jnut/ch02_09.htm (2 of 6) [2/5/2003 7:46:40 PM]

Array Types (Java in a Nutshell)

In Java, the first element of an array is always element number 0. If you are accustomed to a programming language that
numbers array elements beginning with 1, this will take some getting used to. For an array a, the first element is a[0], the
second element is a[1], and the last element is:

a[a.length - 1] // The last element of any array named a

2.9.3. Array Literals

The null literal used to represent the absence of an object can also be used to represent the absence of an array. For
example:

char[] password = null;

In addition to the null literal, Java also defines special syntax that allows you to specify array values literally in your
programs. There are actually two different syntaxes for array literals. The first, and more commonly used, syntax can be
used only when declaring a variable of array type. It combines the creation of the array object with the initialization of the
array elements:

int[] powersOfTwo = {1, 2, 4, 8, 16, 32, 64, 128};

This creates an array that contains the eight int elements listed within the curly braces. Note that we don't use the new
keyword or specify the type of the array in this array literal syntax. The type is implicit in the variable declaration of which
the initializer is a part. Also, the array length is not specified explicitly with this syntax; it is determined implicitly by
counting the number of elements listed between the curly braces. There is a semicolon following the close curly brace in
this array literal. This is one of the fine points of Java syntax. When curly braces delimit classes, methods, and compound
statements, they are not followed by semicolons. However, for this array literal syntax, the semicolon is required to
terminate the variable declaration statement.

The problem with this array literal syntax is that it works only when you are declaring a variable of array type. Sometimes
you need to do something with an array value (such as pass it to a method) but are going to use the array only once, so you
don't want to bother assigning it to a variable. In Java 1.1 and later, there is an array literal syntax that supports this kind of
anonymous arrays (so called because they are not assigned to variables, so they don't have names). This kind of array literal
looks as follows:

// Call a method, passing an anonymous array literal that contains two strings
String response = askQuestion("Do you want to quit?",
 new String[] {"Yes", "No"});

// Call another method with an anonymous array (of anonymous objects)
double d = computeAreaOfTriangle(new Point[] { new Point(1,2),
 new Point(3,4),
 new Point(3,2) });

With this syntax, you use the new keyword and specify the type of the array, but the length of the array is not explicitly
specified.

It is important to understand that the Java Virtual Machine architecture does not support any kind of efficient array
initialization. In other words, array literals are created and initialized when the program is run, not when the program is
compiled. Consider the following array literal:

file:///C|/orielly/jnut/ch02_09.htm (3 of 6) [2/5/2003 7:46:40 PM]

Array Types (Java in a Nutshell)

int[] perfectNumbers = {6, 28};

This is compiled into Java byte codes that are equivalent to:

int[] perfectNumbers = new int[2];
perfectNumbers[0] = 6;
perfectNumbers[1] = 28;

Thus, if you want to include a large amount of data in a Java program, it may not be a good idea to include that data
literally in an array, since the Java compiler has to create lots of Java byte codes to initialize the array, and then the Java
interpreter has to laboriously execute all that initialization code. In cases like this, it is better to store your data in an
external file and read it into the program at runtime.

The fact that Java does all array initialization explicitly at runtime has an important corollary, however. It means that the
elements of an array literal can be arbitrary expressions that are computed at runtime, rather than constant expressions that
are resolved by the compiler. For example:

Point[] points = { circle1.getCenterPoint(), circle2.getCenterPoint() };

2.9.4. Multidimensional Arrays

As we've seen, an array type is simply the element type followed by a pair of square brackets. An array of char is
char[], and an array of arrays of char is char[][]. When the elements of an array are themselves arrays, we say that
the array is multidimensional. In order to work with multidimensional arrays, there are a few additional details you must
understand.

Imagine that you want to use a multidimensional array to represent a multiplication table:

int[][] products; // A multiplication table

Each of the pairs of square brackets represents one dimension, so this is a two-dimensional array. To access a single int
element of this two-dimensional array, you must specify two index values, one for each dimension. Assuming that this
array was actually initialized as a multiplication table, the int value stored at any given element would be the product of
the two indexes. That is, products[2][4] would be 8, and products[3][7] would be 21.

To create a new multidimensional array, use the new keyword and specify the size of both dimensions of the array. For
example:

int[][] products = new int[10][10];

In some languages, an array like this would be created as a single block of 100 int values. Java does not work this way.
This line of code does three things:

● Declares a variable named products to hold an array of arrays of int.

● Creates a 10-element array to hold 10 arrays of int.

● Creates 10 more arrays, each of which is a 10-element array of int. It assigns each of these 10 new arrays to the

file:///C|/orielly/jnut/ch02_09.htm (4 of 6) [2/5/2003 7:46:40 PM]

Array Types (Java in a Nutshell)

elements of the initial array. The default value of every int element of each of these 10 new arrays is 0.

To put this another way, the previous single line of code is equivalent to the following code:

int[][] products = new int[10][]; // An array to hold ten int[] values.
for(int i = 0; i < 10; i++) // Loop ten times...
 products[i] = new int[10]; // ...and create ten arrays.

The new keyword performs this additional initialization automatically for you. It works with arrays with more than two
dimensions as well:

float[][][] globalTemperatureData = new float[360][180][100];

When using new with multidimensional arrays, you do not have to specify a size for all dimensions of the array, only the
leftmost dimension or dimensions. For example, the following two lines are legal:

float[][][] globalTemperatureData = new float[360][][];
float[][][] globalTemperatureData = new float[360][180][];

The first line creates a single-dimensional array, where each element of the array can hold a float[][]. The second line
creates a two-dimensional array, where each element of the array is a float[]. If you specify a size for only some of the
dimensions of an array, however, those dimensions must be the leftmost ones. The following lines are not legal:

float[][][] globalTemperatureData = new float[360][][100]; // Error!
float[][][] globalTemperatureData = new float[][180][100]; // Error!

Like a one-dimensional array, a multidimensional array can be initialized using an array literal. Simply use nested sets of
curly braces to nest arrays within arrays. For example, we can declare, create, and initialize a 5×5 multiplication table like
this:

int[][] products = { {0, 0, 0, 0, 0},
 {0, 1, 2, 3, 4},
 {0, 2, 4, 6, 8},
 {0, 3, 6, 9, 12},
 {0, 4, 8, 12, 16} };

Or, if you want to use a multidimensional array without declaring a variable, you can use the anonymous initializer syntax:

boolean response = bilingualQuestion(question, new String[][] {
 { "Yes", "No" },
 { "Oui", "Non" }});

When you create a multidimensional array using the new keyword, you always get a rectangular array: one in which all the
array values for a given dimension have the same size. This is perfect for rectangular data structures, such as matrixes.
However, because multidimensional arrays are implemented as arrays of arrays in Java, instead of as a single rectangular
block of elements, you are in no way constrained to use rectangular arrays. For example, since our multiplication table is
symmetrical about the diagonal from top left to bottom right, we can represent the same information in a nonrectangular
array with fewer elements:

file:///C|/orielly/jnut/ch02_09.htm (5 of 6) [2/5/2003 7:46:40 PM]

Array Types (Java in a Nutshell)

int[][] products = { {0},
 {0, 1},
 {0, 2, 4},

 {0, 3, 6, 9},
 {0, 4, 8, 12, 16} };

When working with multidimensional arrays, you'll often find yourself using nested loops to create or initialize them. For
example, you can create and initialize a large triangular multiplication table as follows:

int[][] products = new int[12][]; // An array of 12 arrays of int.
for(int row = 0; row < 12; row++) { // For each element of that array,
 products[row] = new int[row+1]; // allocate an array of int.
 for(int col = 0; col < row+1; col++) // For each element of the int[],
 products[row][col] = row * col; // initialize it to the product.
}

2.8. Classes and Objects 2.10. Reference Types

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch02_09.htm (6 of 6) [2/5/2003 7:46:40 PM]

file:///C|/orielly/jnut/copyrght.htm

Reference Types (Java in a Nutshell)

Chapter 2: Java Syntax from

the Ground Up

2.10. Reference Types

Now that we have discussed the syntax for working with objects and arrays, we can return to the issue of why classes and
array types are known as reference types. As we saw in Table 2-2, all the Java primitive types have well-defined standard
sizes, so all primitive values can be stored in a fixed amount of memory (between one and eight bytes, depending on the
type). But classes and array types are composite types; objects and arrays contain other values, so they do not have a
standard size, and they often require quite a bit more memory than eight bytes. For this reason, Java does not manipulate
objects and arrays directly. Instead, it manipulates references to objects and arrays. Because Java handles objects and arrays
by reference, classes and array types are known as reference types. In contrast, Java handles values of the primitive types
directly, or by value.

A reference to an object or an array is simply some fixed-size value that refers to the object or array in some way.[4] When
you assign an object or array to a variable, you are actually setting the variable to hold a reference to that object or array.
Similarly, when you pass an object or array to a method, what really happens is that the method is given a reference to the
object or array through which it can manipulate the object or array.

[4] Typically, a reference is the memory address at which the object or array is stored. However, since Java
references are opaque and cannot be manipulated in any way, this is an implementation detail.

C and C++ programmers should note that Java does not support the & address-of operator or the * and −> dereference
operators. In Java, primitive types are always handled exclusively by value, and objects and arrays are always handled
exclusively by reference. Furthermore, unlike pointers in C and C++, references in Java are entirely opaque: they cannot be
converted to or from integers, and they cannot be incremented or decremented.

Although references are an important part of how Java works, Java programs cannot manipulate references in any way.
Despite this, there are significant differences between the behavior of primitive types and reference types in two important
areas: the way values are copied and the way they are compared for equality.

2.10.1. Copying Objects and Arrays

Consider the following code that manipulate a primitive int value:

int x = 42;
int y = x;

After these lines execute, the variable y contains a copy of the value held in the variable x. Inside the Java VM, there are
two independent copies of the 32-bit integer 42.

Now think about what happens if we run the same basic code but use a reference type instead of a primitive type:

Point p = new Point(1.0, 2.0);
Point q = p;

file:///C|/orielly/jnut/ch02_10.htm (1 of 6) [2/5/2003 7:46:43 PM]

Reference Types (Java in a Nutshell)

After this code runs, the variable q holds a copy of the reference held in the variable p. There is still only one copy of the
Point object in the VM, but there are now two copies of the reference to that object. This has some important implications.
Suppose the two previous lines of code are followed by this code:

System.out.println(p.x); // Print out the X coordinate of p: 1.0
q.x = 13.0; // Now change the X coordinate of q
System.out.println(p.x); // Print out p.x again; this time it is 13.0

Since the variables p and q hold references to the same object, either variable can be used to make changes to the object, and
those changes are visible through the other variable as well.

This behavior is not specific to objects; the same thing happens with arrays, as illustrated by the following code:

char[] greet = { 'h','e','l','l','o' }; // greet holds an array reference
char[] cuss = greet; // cuss holds the same reference
cuss[4] = '!'; // Use reference to change an element
System.out.println(greet); // Prints "hell!"

A similar difference in behavior between primitive types and reference types occurs when arguments are passed to methods.
Consider the following method:

void changePrimitive(int x) {
 while(x > 0)
 System.out.println(x--);
}

When this method is invoked, the method is given a copy of the argument used to invoke the method in the parameter x. The
code in the method uses x as a loop counter and decrements it to zero. Since x is a primitive type, the method has its own
private copy of this value, so this is a perfectly reasonable thing to do.

On the other hand, consider what happens if we modify the method so that the parameter is a reference type:

void changeReference(Point p) {
 while(p.x > 0)
 System.out.println(p.x--);
}

When this method is invoked, it is passed a private copy of a reference to a Point object and can use this reference to
change the Point object. Consider the following:

Point q = new Point(3.0, 4.5); // A point with an X coordinate of 3
changeReference(q); // Prints 3,2,1 and modifies the Point
System.out.println(q.x); // The X coordinate of q is now 0!

When the changeReference() method is invoked, it is passed a copy of the reference held in variable q. Now both the
variable q and the method parameter p hold references to the same object. The method can use its reference to change the
contents of the object. Note, however, that it cannot change the contents of the variable q. In other words, the method can
change the Point object beyond recognition, but it cannot change the fact that the variable q refers to that object.

file:///C|/orielly/jnut/ch02_10.htm (2 of 6) [2/5/2003 7:46:43 PM]

Reference Types (Java in a Nutshell)

The title of this section is "Copying Objects and Arrays," but, so far, we've only seen copies of references to objects and
arrays, not copies of the objects and arrays themselves. To make an actual copy of an object or an array, you must use the
special clone() method (inherited by all objects from java.lang.Object):

Point p = new Point(1,2); // p refers to one object
Point q = (Point) p.clone(); // q refers to a copy of that object
q.y = 42; // Modify the copied object, but not the original

int[] data = {1,2,3,4,5}; // An array
int[] copy = (int[]) data.clone(); // A copy of the array

Note that a cast is necessary to coerce the return value of the clone() method to the correct type. The reason for this will
become clear later in this chapter. There are a couple of points you should be aware of when using clone(). First, not all
objects can be cloned. Java only allows an object to be cloned if the object's class has explicitly declared itself to be
cloneable by implementing the Cloneable interface. (We haven't discussed interfaces or how they are implemented yet;
that is covered in Chapter 3, "Object-Oriented Programming in Java".) The definition of Point that we showed earlier does
not actually implement this interface, so our Point type, as implemented, is not cloneable. Note, however, that arrays are
always cloneable. If you call the clone() method for a non-cloneable object, it throws a
CloneNotSupportedException, so when you use the clone() method, you may want to use it within a try block
to catch this exception.

The second thing you need to understand about clone() is that, by default, it is implemented to create a shallow copy of
an object or array. The copied object or array contains copies of all the primitive values and references in the original object
or array. In other words, any references in the object or array are copied, not cloned; clone() does not recursively make
copies of the objects or arrays referred to by those references. A class may need to override this shallow copy behavior by
defining its own version of the clone() method that explicitly performs a deeper copy where needed. To understand the
shallow copy behavior of clone(), consider cloning a two-dimensional array of arrays:

int[][] data = {{1,2,3}, {4,5}}; // An array of 2 references
int[][] copy = (int[][]) data.clone(); // Copy the 2 refs to a new array
copy[0][0] = 99; // This changes data[0][0] too!
copy[1] = new int[] {7,8,9}; // This does not change data[1]

If you want to make a deep copy of this multidimensional array, you have to copy each dimension explicitly:

int[][] data = {{1,2,3}, {4,5}}; // An array of 2 references
int[][] copy = new int[data.length][]; // A new array to hold copied arrays
for(int i = 0; i < data.length; i++)
 copy[i] = (int[]) data[i].clone();

2.10.2. Comparing Objects and Arrays

We've seen that primitive types and reference types differ significantly in the way they are assigned to variables, passed to
methods, and copied. The types also differ in the way they are compared for equality. When used with primitive values, the
equality operator (= =) simply tests whether two values are identical (i.e., whether they have exactly the same bits). With
reference types, however, = = compares references, not actual objects or arrays. In other words, = = tests whether two
references refer to the same object or array; it does not test whether two objects or arrays have the same content. For
example:

file:///C|/orielly/jnut/ch02_10.htm (3 of 6) [2/5/2003 7:46:43 PM]

Reference Types (Java in a Nutshell)

String letter = "o";
String s = "hello"; // These two String objects
String t = "hell" + letter; // contain exactly the same text.
if (s == t) System.out.println("equal"); // But they are not equal!

byte[] a = { 1, 2, 3 }; // An array.
byte[] b = (byte[]) a.clone(); // A copy with identical content.
if (a == b) System.out.println("equal"); // But they are not equal!

When working with reference types, there are two kinds of equality: equality of reference and equality of object. It is
important to distinguish between these two kinds of equality. One way to do this is to use the word "equals" when talking
about equality of references and the word "equivalent" when talking about two distinct object or arrays that have the same
contents. Unfortunately, the designers of Java didn't use this nomenclature, as the method for testing whether one object is
equivalent to another is named equals(). To test two objects for equivalence, pass one of them to the equals() method
of the other:

String letter = "o";
String s = "hello"; // These two String objects
String t = "hell" + letter; // contain exactly the same text.
if (s.equals(t)) // And the equals() method
 System.out.println("equivalent"); // tells us so.

All objects inherit an equals() method (from Object, but the default implementation simply uses = = to test for
equality of references, not equivalence of content. A class that wants to allow objects to be compared for equivalence can
define its own version of the equals() method. Our Point class does not do this, but the String class does, as
indicated by the code above. You can call the equals() method on an array, but it is the same as using the = = operator,
because arrays always inherit the default equals() method that compares references rather than array content. Starting in
Java 1.2, you can compare arrays for equivalence with the convenience method java.util.Arrays.equals(). Prior
to Java 1.2, however, you must loop through the elements of the arrays and compare them yourself.

2.10.3. The null Reference

We've seen the null keyword in our discussions of objects and arrays. Now that we have described references, it is worth
revisiting null to point out that it is a special value that is a reference to nothing, or an absence of a reference. The default
value for all reference types is null. The null value is unique in that it can be assigned to a variable of any reference type
whatsoever.

2.10.4. Terminology: Pass by Value

I've said that Java handles arrays and objects "by reference." Don't confuse this with the phrase "pass by reference."[5] "Pass
by reference" is a term used to describe the method-calling conventions of some programming languages. In a pass-by-
reference language, values--even primitive values--are not passed directly to methods. Instead, methods are always passed
references to values. Thus, if the method modifies its parameters, those modifications are visible when the method returns,
even for primitive types.

[5]Unfortunately, previous editions of this book may have contributed to the confusion!

Java does not do this; it is a "pass by value" language. However, when a reference type is involved, the value that is passed is
a reference. But this is not the same as pass-by-reference. If Java were a pass-by-reference language, when a reference type

file:///C|/orielly/jnut/ch02_10.htm (4 of 6) [2/5/2003 7:46:43 PM]

Reference Types (Java in a Nutshell)

was passed to a method, it would be passed as a reference to the reference.

2.10.5. Memory Allocation and Garbage Collection

As we've already noted, objects and arrays are composite values that can contain a number of other values and may require a
substantial amount of memory. When you use the new keyword to create a new object or array or use an object or array
literal in your program, Java automatically creates the object for you, allocating whatever amount of memory is necessary.
You don't need to do anything to make this happen.

In addition, Java also automatically reclaims that memory for reuse when it is no longer needed. It does this through a
process called garbage collection. An object is considered garbage when there are no longer any references to it stored in
any variables, the fields of any objects, or the elements of any arrays. For example:

Point p = new Point(1,2); // Create an object
double d = p.distanceFromOrigin(); // Use it for something
p = new Point(2,3); // Create a new object

After the Java interpreter executes the third line, a reference to the new Point object has replaced the reference to the first
one. There are now no remaining references to the first object, so it is garbage. At some point, the garbage collector will
discover this and reclaim the memory used by the object.

C programmers, who are used to using malloc() and free() to manage memory, and C++ programmers, who are used
to explicitly deleting their objects with delete, may find it a little hard to relinquish control and trust the garbage collector.
Even though it seems like magic, it really works! There is a slight performance penalty due to the use of garbage collection,
and Java programs may sometimes slow down noticeably while the garbage collector is actively reclaiming memory.
However, having garbage collection built into the language dramatically reduces the occurrence of memory leaks and related
bugs and almost always improves programmer productivity.

2.10.6. Reference Type Conversions

When we discussed primitive types earlier in this chapter, we saw that values of certain types can be converted to values of
other types. Widening conversions are performed automatically by the Java interpreter, as necessary. Narrowing
conversions, however, can result in lost data, so the interpreter does not perform them unless explicitly directed to do so with
a cast.

Java does not allow any kind of conversion from primitive types to reference types or vice versa. Java does allow widening
and narrowing conversions among certain reference types, however. As we've seen, there are an infinite number of potential
reference types. In order to understand the conversions that can be performed among these types, you need to understand
that the types form a hierarchy, usually called the class hierarchy.

Every Java class extends some other class, known as its superclass. A class inherits the fields and methods of its superclass
and then defines its own additional fields and methods. There is a special class named Object that serves as the root of the
class hierarchy in Java. It does not extend any class, but all other Java classes extend Object or some other class that has
Object as one of its ancestors. The Object class defines a number of special methods that are inherited (or overridden)
by all classes. These include the toString(), clone(), and equals() methods described earlier.

The predefined String class and the Point class we defined earlier in this chapter both extend Object. Thus, we can
say that all String objects are also Object objects. We can also say that all Point objects are Object objects. The
opposite is not true, however. We cannot say that every Object is a String because, as we've just seen, some Object

file:///C|/orielly/jnut/ch02_10.htm (5 of 6) [2/5/2003 7:46:43 PM]

Reference Types (Java in a Nutshell)

objects are Point objects.

With this simple understanding of the class hierarchy, we can return to the rules of reference type conversion:

● An object cannot be converted to an unrelated type. The Java compiler does not allow you to convert a String to a
Point, for example, even if you use a cast operator.

● An object can be converted to the type of a superclass. This is a widening conversion, so no cast is required. For
example, a String value can be assigned to a variable of type Object or passed to a method where an Object
parameter is expected. Note that no conversion is actually performed; the object is simply treated as if it were an
instance of the superclass.

● An object can be converted to the type of a subclass, but this is a narrowing conversion and requires a cast. The Java
compiler provisionally allows this kind of conversion, but the Java interpreter checks at runtime to make sure it is
valid. Only cast an object to the type of a subclass if you are sure, based on the logic of your program, that the object
is actually an instance of the subclass. If it is not, the interpreter throws a ClassCastException. For example, if
we assign a String object to a variable of type Object, we can later cast the value of that variable back to type
String:

Object o = "string"; // Widening conversion from String to Object
// Later in the program...
String s = (String) o; // Narrowing conversion from Object to String

● All array types are distinct, so an array of one type cannot be converted to an array of another type, even if the
individual elements could be converted. For example, although a byte can be widened to an int, a byte[] cannot
be converted to an int[], even with an explicit cast.

● Arrays do not have a type hierarchy, but all arrays are considered instances of Object, so any array can be
converted to an Object value through a widening conversion. A narrowing conversion with a cast can convert such
an object value back to an array. For example:

Object o = new int[] {1,2,3}; // Widening conversion from array to Object
// Later in the program...
int[] a = (int[]) o; // Narrowing conversion back to array type

2.9. Array Types 2.11. Packages and the Java
Namespace

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch02_10.htm (6 of 6) [2/5/2003 7:46:43 PM]

file:///C|/orielly/jnut/copyrght.htm

Packages and the Java Namespace (Java in a Nutshell)

Chapter 2: Java Syntax from

the Ground Up

2.11. Packages and the Java Namespace

A package is a named collection of classes (and possibly subpackages). Packages serve to group related classes and define
a namespace for the classes they contain.

The Java platform includes packages with names that begin with java, javax, and org.omg. (Sun also defines
standard extensions to the Java platform in packages whose names begin with javax.) The most fundamental classes of
the language are in the package java.lang. Various utility classes are in java.util. Classes for input and output are
in java.io, and classes for networking are in java.net. Some of these packages contain subpackages. For example,
java.lang contains two more specialized packages, named java.lang.reflect and java.lang.ref, and
java.util contains a subpackage, java.util.zip, that contains classes for working with compressed ZIP
archives.

Every class has both a simple name, which is the name given to it in its definition, and a fully qualified name, which
includes the name of the package of which it is a part. The String class, for example, is part of the java.lang
package, so its fully qualified name is java.lang.String.

2.11.1. Defining a Package

To specify the package a class is to be part of, you use a package directive. The package keyword, if it appears, must
be the first token of Java code (i.e., the first thing other than comments and space) in the Java file. The keyword should be
followed by the name of the desired package and a semicolon. Consider a file of Java code that begins with this directive:

package com.davidflanagan.jude;

All classes defined by this file are part of the package named com.davidflanagan.jude.

If no package directive appears in a file of Java code, all classes defined in that file are part of a default unnamed
package. As we'll see in Chapter 3, "Object-Oriented Programming in Java", classes in the same package have special
access to each other. Thus, except when you are writing simple example programs, you should always use the package
directive to prevent access to your classes from totally unrelated classes that also just happen to be stored in the unnamed
package.

2.11.2. Importing Classes and Packages

A class in a package p can refer to any other class in p by its simple name. And, since the classes in the java.lang
package are so fundamental to the Java language, any Java code can refer to any class in this package by its simple name.
Thus, you can always type String, instead of java.lang.String. By default, however, you must use the fully
qualified name of all other classes. So, if you want to use the File class of the java.io package, you must type
java.io.File.

file:///C|/orielly/jnut/ch02_11.htm (1 of 2) [2/5/2003 7:46:46 PM]

Packages and the Java Namespace (Java in a Nutshell)

Specifying package names explicitly all the time quickly gets tiring, so Java includes an import directive you can use to
save some typing. import is used to specify classes and packages of classes that can be referred to by their simple names
instead of by their fully qualified names. The import keyword can be used any number of times in a Java file, but all
uses must be at the top of the file, immediately after the package directive, if there is one. There can be comments
between the package directive and the import directives, of course, but there cannot be any other Java code.

The import directive is available in two forms. To specify a single class that can be referred to by its simple name,
follow the import keyword with the name of the class and a semicolon:

import java.io.File; // Now we can type File instead of java.io.File

To import an entire package of classes, follow import with the name of the package, the characters .*, and a
semicolon. Thus, if you want to use several other classes from the java.io package in addition to the File class, you
can simply import the entire package:

import java.io.*; // Now we can use simple names for all classes in java.io

This package import syntax does not apply to subpackages. If I import the java.util package, I must still refer to
the java.util.zip.ZipInputStream class by its fully qualified name. If two classes with the same name are both
imported from different packages, neither one can be referred to by its simple name; to resolve this naming conflict
unambiguously, you must use the fully qualified name of both classes.

2.11.3. Globally Unique Package Names

One of the important functions of packages is to partition the Java namespace and prevent name collisions between
classes. It is only their package names that keep the java.util.List and java.awt.List classes distinct, for
example. In order for this to work, however, package names must themselves be distinct. As the developer of Java, Sun
controls all package names that begin with java, javax, and sun.

For the rest of us, Sun proposes a package-naming scheme, which, if followed correctly, guarantees globally unique
package names. The scheme is to use your Internet domain name, with its elements reversed, as the prefix for all your
package names. My web site is davidflanagan.com, so all my Java packages begin with com.davidflanagan. It is up
to me to decide how to partition the namespace below com.davidflanagan, but since I own that domain name, no
other person or organization who is playing by the rules can define a package with the same name as any of mine.

2.10. Reference Types 2.12. Java File Structure

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch02_11.htm (2 of 2) [2/5/2003 7:46:46 PM]

file:///C|/orielly/jnut/copyrght.htm

Java File Structure (Java in a Nutshell)

Chapter 2: Java Syntax from

the Ground Up

2.12. Java File Structure

This chapter has taken us from the smallest to the largest elements of Java syntax, from individual
characters and tokens to operators, expressions, statements, and methods, and on up to classes and
packages. From a practical standpoint, the unit of Java program structure you will be dealing with most
often is the Java file. A Java file is the smallest unit of Java code that can be compiled by the Java
compiler. A Java file consists of:

● An optional package directive

● Zero or more import directives

● One or more class definitions

These elements can be interspersed with comments, of course, but they must appear in this order. This is
all there is to a Java file. All Java statements (except the package and import directives, which are
not true statements) must appear within methods, and all methods must appear within a class definition.

There are a couple of other important restrictions on Java files. First, each file can contain at most one
class that is declared public. A public class is one that is designed for use by other classes in other
packages. We'll talk more about public and related modifiers in Chapter 3, "Object-Oriented
Programming in Java". This restriction on public classes only applies to top-level classes; a class can
contain any number of nested or inner classes that are declared public, as we'll see in Chapter 3,
"Object-Oriented Programming in Java".

The second restriction concerns the filename of a Java file. If a Java file contains a public class, the
name of the file must be the same as the name of the class, with the extension .java appended. Thus, if
Point is defined as a public class, its source code must appear in a file named Point.java. Regardless
of whether your classes are public or not, it is good programming practice to define only one per file
and to give the file the same name as the class.

When a Java file is compiled, each of the classes it defines is compiled into a separate class file that
contains Java byte codes to be interpreted by the Java Virtual Machine. A class file has the same name as
the class it defines, with the extension .class appended. Thus, if the file Point.java defines a class named

file:///C|/orielly/jnut/ch02_12.htm (1 of 2) [2/5/2003 7:46:49 PM]

Java File Structure (Java in a Nutshell)

Point, a Java compiler compiles it to a file named Point.class. On most systems, class files are stored in
directories that correspond to their package names. Thus, the class
com.davidflanagan.jude.DataFile is defined by the class file
com/davidflanagan/jude/DataFile.class.

The Java interpreter knows where the class files for the standard system classes are located and can load
them as needed. When the interpreter runs a program that wants to use a class named
com.davidflanagan.jude.DataFile, it knows that the code for that class is located in a
directory named com/davidflanagan/jude and, by default, it "looks" in the current directory for a
subdirectory of that name. In order to tell the interpreter to look in locations other than the current
directory, you must use the -classpath option when invoking the interpreter or set the CLASSPATH
environment variable. For details, see the documentation for the Java interpreter, java, in Chapter 8,
"Java Development Tools".

2.11. Packages and the Java
Namespace

2.13. Defining and Running
Java Programs

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch02_12.htm (2 of 2) [2/5/2003 7:46:49 PM]

file:///C|/orielly/jnut/copyrght.htm

Defining and Running Java Programs (Java in a Nutshell)

Chapter 2: Java Syntax from

the Ground Up

2.13. Defining and Running Java Programs

A Java program consists of a set of interacting class definitions. But not every Java class or Java file defines a program. To
create a program, you must define a class that has a special method with the following signature:

public static void main(String args[])

This main() method is the main entry point for your program. It is where the Java interpreter starts running. This method
is passed an array of strings and returns no value. When main() returns, the Java interpreter exits (unless main() has
created separate threads, in which case the interpreter waits for all those threads to exit).

To run a Java program, you run the Java interpreter, java, specifying the fully qualified name of the class that contains the
main() method. Note that you specify the name of the class, not the name of the class file that contains the class. Any
additional arguments you specify on the command line are passed to the main() method as its String[] parameter.
You may also need to specify the -classpath option to tell the interpreter to look for the classes needed by the program.
Consider the following command:

C:\> java -classpath /usr/local/Jude com.davidflanagan.jude.Jude datafile.jude

java is the command to run the Java interpreter. -classpath /usr/local/Jude tells the interpreter where to look for .class files.
com.davidflanagan.jude.Jude is the name of the program to run (i.e., the name of the class that defines the
main() method). Finally, datafile.jude is a string that is passed to that main() method as the single element of an array
of String objects.

In Java 1.2, there is an easier way to run programs. If a program and all its auxiliary classes (except those that are part of
the Java platform) have been properly bundled in a Java archive (JAR) file, you can run the program simply by specifying
the name of the JAR file:

C:\> java -jar /usr/local/Jude/jude.jar datafile.jude

Some operating systems make JAR files automatically executable. On those systems, you can simply say:

C:\> /usr/local/Jude/jude.jar datafile.jude

See Chapter 8, "Java Development Tools" for details.

2.12. Java File Structure 2.14. Differences Between C
and Java

file:///C|/orielly/jnut/ch02_13.htm (1 of 2) [2/5/2003 7:46:52 PM]

Defining and Running Java Programs (Java in a Nutshell)

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch02_13.htm (2 of 2) [2/5/2003 7:46:52 PM]

file:///C|/orielly/jnut/copyrght.htm

Differences Between C and Java (Java in a Nutshell)

Chapter 2: Java Syntax from

the Ground Up

2.14. Differences Between C and Java

If you are a C or C++ programmer, you should have found much of the syntax of Java--particularly at the
level of operators and statements--to be familiar. Because Java and C are so similar in some ways, it is
important for C and C++ programmers to understand where the similarities end. There are a number of
important differences between C and Java, which are summarized in the following list:

No preprocessor

Java does not include a preprocessor and does not define any analogs of the #define,
#include, and #ifdef directives. Constant definitions are replaced with staticfinal
fields in Java. (See the java.lang.Math.PI field for an example.) Macro definitions are not
available in Java, but advanced compiler technology and inlining has made them less useful. Java
does not require an #include directive because Java has no header files. Java class files contain
both the class API and the class implementation, and the compiler reads API information from
class files as necessary. Java lacks any form of conditional compilation, but its cross-platform
portability means that this feature is very rarely needed.

No global variables

Java defines a very clean namespace. Packages contain classes, classes contain fields and
methods, and methods contain local variables. But there are no global variables in Java, and, thus,
there is no possibility of namespace collisions among those variables.

Well-defined primitive type sizes

All the primitive types in Java have well-defined sizes. In C, the size of short, int, and long
types is platform-dependent, which hampers portability.

No pointers

Java classes and arrays are reference types, and references to objects and arrays are akin to
pointers in C. Unlike C pointers, however, references in Java are entirely opaque. There is no way
to convert a reference to a primitive type, and a reference cannot be incremented or decremented.

file:///C|/orielly/jnut/ch02_14.htm (1 of 3) [2/5/2003 7:46:55 PM]

Differences Between C and Java (Java in a Nutshell)

There is no address-of operator like &, dereference operator like * or −>, or sizeof operator.
Pointers are a notorious source of bugs. Eliminating them simplifies the language and makes Java
programs more robust and secure.

Garbage collection

The Java Virtual Machine performs garbage collection so that Java programmers do not have to
explicitly manage the memory used by all objects and arrays. This feature eliminates another
entire category of common bugs and all but eliminates memory leaks from Java programs.

No goto statement

Java doesn't support a goto statement. Use of goto except in certain well-defined circumstances
is regarded as poor programming practice. Java adds exception handling and labeled break and
continue statements to the flow-control statements offered by C. These are a good substitute
for goto.

Variable declarations anywhere

C requires local variable declarations to be made at the beginning of a method or block, while
Java allows them anywhere in a method or block. Many programmers prefer to keep all their
variable declarations grouped together at the top of a method, however.

Forward references

The Java compiler is smarter than the C compiler, in that it allows methods to be invoked before
they are defined. This eliminates the need to declare functions in a header file before defining
them in a program file, as is done in C.

Method overloading

Java programs can define multiple methods with the same name, as long as the methods have
different parameter lists.

No struct and union types

Java doesn't support C struct and union types. A Java class can be thought of as an
enhanced struct, however.

No enumerated types

file:///C|/orielly/jnut/ch02_14.htm (2 of 3) [2/5/2003 7:46:55 PM]

Differences Between C and Java (Java in a Nutshell)

Java doesn't support the enum keyword used in C to define types that consist of fixed sets of
named values. This is surprising for a strongly typed language like Java, but there are ways to
simulate this feature with object constants.

No bitfields

Java doesn't support the (infrequently used) ability of C to specify the number of individual bits
occupied by fields of a struct.

No typedef

Java doesn't support the typedef keyword used in C to define aliases for type names. Java's lack
of pointers makes its type-naming scheme simpler and more consistent than C's, however, so
many of the common uses of typedef are not really necessary in Java.

No method pointers

C allows you to store the address of a function in a variable and pass this function pointer to other
functions. You cannot do this with Java methods, but you can often achieve similar results by
passing an object that implements a particular interface. Also, a Java method can be represented
and invoked through a java.lang.reflect.Method object.

No variable-length argument lists

Java doesn't allow you to define methods such as C's printf() that take a variable number of
arguments. Method overloading allows you to simulate C varargs functions for simple cases, but
there's no general replacement for this feature.

2.13. Defining and Running
Java Programs

3. Object-Oriented
Programming in Java

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch02_14.htm (3 of 3) [2/5/2003 7:46:55 PM]

file:///C|/orielly/jnut/copyrght.htm

Object-Oriented Programming in Java (Java in a Nutshell)

Part 1: Introducing Java

Chapter 3. Object-Oriented Programming in Java
Contents:

The Members of a Class
Creating and Initializing Objects
Destroying and Finalizing Objects
Subclasses and Inheritance
Data Hiding and Encapsulation
Abstract Classes and Methods
Interfaces
Inner Class Overview
Static Member Classes
Member Classes
Local Classes
Anonymous Classes
How Inner Classes Work
Modifier Summary
C++ Features Not Found in Java

Java is an object-oriented programming language. As we discussed in Chapter 2, "Java Syntax from the Ground Up", all
Java programs use objects, and every Java program is defined as a class. The previous chapter explained the basic syntax of
the Java programming language, including data types, operators, and expressions, and even showed how to define simple
classes and work with objects. This chapter continues where that one left off, explaining the details of object-oriented
programming in Java.

If you do not have any object-oriented (OO) programming background, don't worry; this chapter does not assume any prior
experience. If you do have experience with OO programming, however, be careful. The term "object-oriented" has different
meanings in different languages. Don't assume that Java works the same way as your favorite OO language. This is
particularly true for C++ programmers. We saw in the last chapter that close analogies can be drawn between Java and C.
The same is not true for Java and C++, however. Java uses object-oriented programming concepts that are familiar to C++
programmers and even borrows C++ syntax in a number of places, but the similarities between Java and C++ are not nearly
as strong as those between Java and C. Don't let your experience with C++ lull you into a false familiarity with Java.

3.1. The Members of a Class

As we discussed in Chapter 2, "Java Syntax from the Ground Up", a class is a collection of data, stored in named fields, and
code, organized into named methods, that operates on that data. The fields and methods are called members of a class. In
Java 1.1 and later, classes can also contain other classes. These member classes, or inner classes, are an advanced feature
that is discussed later in the chapter. For now, we are going to discuss only fields and methods. The members of a class

file:///C|/orielly/jnut/ch03_01.htm (1 of 7) [2/5/2003 7:46:59 PM]

Object-Oriented Programming in Java (Java in a Nutshell)

come in two distinct types: class, or static, members are associated with the class itself, while instance members are
associated with individual instances of the class (i.e., with objects). Ignoring member classes for now, this gives us four
types of members:

● Class fields

● Class methods

● Instance fields

● Instance methods

The simple class definition for the class Circle, shown in Example 3-1, contains all four types of members.

Example 3-1. A Simple Class and its Members

public class Circle {
 // A class field
 public static final double PI= 3.14159; // A useful constant

 // A class method: just compute a value based on the arguments
 public static double radiansToDegrees(double rads) {
 return rads * 180 / PI;
 }

 // An instance field
 public double r; // The radius of the circle

 // Two instance methods: they operate on the instance fields of an object
 public double area() { // Compute the area of the circle
 return PI * r * r;
 }
 public double circumference() { // Compute the circumference of the circle
 return 2 * PI * r;
 }
}

3.1.1. Class Fields

A classfield is associated with the class in which it is defined, rather than with an instance of the class. The following line
declares a class field:

public static final double PI = 3.14159;

This line declares a field of type double named PI and assigns it a value of 3.14159. As you can see, a field declaration
looks quite a bit like the local variable declarations we discussed in Chapter 2, "Java Syntax from the Ground Up". The
difference, of course, is that variables are defined within methods, while fields are members of classes.

The static modifier says that the field is a class field. Class fields are sometimes called static fields because of this

file:///C|/orielly/jnut/ch03_01.htm (2 of 7) [2/5/2003 7:46:59 PM]

Object-Oriented Programming in Java (Java in a Nutshell)

static modifier. The final modifier says that the value of the field does not change. Since the field PI represents a
constant, we declare it final so that it cannot be changed. It is a convention in Java (and many other languages) that
constants are named with capital letters, which is why our field is named PI, not pi. Defining constants like this is a
common use for class fields, meaning that the static and final modifiers are often used together. Not all class fields
are constants, however. In other words, a field can be declared static without declaring it final. Finally, the public
modifier says that anyone can use the field. This is a visibility modifier, and we'll discuss it and related modifiers in more
detail later in this chapter.

The key point to understand about a static field is that there is only a single copy of it. This field is associated with the class
itself, not with instances of the class. If you look at the various methods of the Circle class, you'll see that they use this
field. From inside the Circle class, the field can be referred to simply as PI. Outside the class, however, both class and
field names are required to uniquely specify the field. Methods that are not part of Circle access this field as
Circle.PI.

A class field is essentially a global variable. The names of class fields are qualified by the unique names of the classes that
contain them, however. Thus, Java does not suffer from the name collisions that can affect other languages when different
modules of code define global variables with the same name.

3.1.2. Class Methods

As with class fields, classmethods are declared with the static modifier:

public static double radiansToDegrees(double rads) { return rads * 180 / PI; }

This line declares a class method named radiansToDegrees(). It has a single parameter of type double and returns
a double value. The body of the method is quite short; it performs a simple computation and returns the result.

Like class fields, class methods are associated with a class, rather than with an object. When invoking a class method from
code that exists outside the class, you must specify both the name of the class and the method. For example:

// How many degrees is 2.0 radians?
double d = Circle.radiansToDegrees(2.0);

If you want to invoke a class method from inside the class in which it is defined, you don't have to specify the class name.
However, it is often good style to specify the class name anyway, to make it clear that a class method is being invoked.

Note that the body of our Circle.radiansToDegrees() method uses the class field PI. A class method can use any
class fields and class methods of its own class (or of any other class). But it cannot use any instance fields or instance
methods because class methods are not associated with an instance of the class. In other words, although the
radiansToDegrees() method is defined in the Circle class, it does not use any Circle objects. The instance
fields and instance methods of the class are associated with Circle objects, not with the class itself. Since a class method
is not associated with an instance of its class, it cannot use any instance methods or fields.

As we discussed earlier, a class field is essentially a global variable. In a similar way, a class method is a global method, or
global function. Although radiansToDegrees() does not operate on Circle objects, it is defined within the
Circle class because it is a utility method that is sometimes useful when working with circles. In many non-object-
oriented programming languages, all methods, or functions, are global. You can write complex Java programs using only
class methods. This is not object-oriented programming, however, and does not take advantage of the power of the Java
language. To do true object-oriented programming, we need to add instance fields and instance methods to our repertoire.

file:///C|/orielly/jnut/ch03_01.htm (3 of 7) [2/5/2003 7:46:59 PM]

Object-Oriented Programming in Java (Java in a Nutshell)

3.1.3. Instance Fields

Any field declared without the static modifier is an instancefield•:

public double r; // The radius of the circle

Instance fields are associated with instances of the class, rather than with the class itself. Thus, every Circle object we
create has its own copy of the double field r. In our example, r represents the radius of a circle. Thus, each Circle
object can have a radius independent of all other Circle objects.

Inside a class definition, instance fields are referred to by name alone. You can see an example of this if you look at the
method body of the circumference() instance method. In code outside the class, the name of an instance method must
be prepended by a reference to the object that contains it. For example, if we have a Circle object named c, we can refer
to its instance field r as c.r:

Circle c = new Circle(); // Create a new Circle object; store it in variable c
c.r = 2.0; // Assign a value to its instance field r
Circle d = new Circle(); // Create a different Circle object
d.r = c.r * 2; // Make this one twice as big

Instance fields are key to object-oriented programming. Instance fields define an object; the values of those fields make one
object distinct from another.

3.1.4. Instance Methods

Any method not declared with the static keyword is an instance method. An instancemethod operates on an instance of
a class (an object) instead of operating on the class itself. It is with instance methods that object-oriented programming
starts to get interesting. The Circle class defined in Example 3-1 contains two instance methods, area() and
circumference(), that compute and return the area and circumference of the circle represented by a given Circle
object.

To use an instance method from outside the class in which it is defined, we must prepend a reference to the instance that is
to be operated on. For example:

Circle c = new Circle(); // Create a Circle object; store in variable c
c.r = 2.0; // Set an instance field of the object
double a = c.area(); // Invoke an instance method of the object

If you're new to object-oriented programming, that last line of code may look a little strange. I did not write:

a = area(c);

Instead, I wrote:

a = c.area();

This is why it is called object-oriented programming; the object is the focus here, not the function call. This small syntactic

file:///C|/orielly/jnut/ch03_01.htm (4 of 7) [2/5/2003 7:46:59 PM]

Object-Oriented Programming in Java (Java in a Nutshell)

difference is perhaps the single most important feature of the object-oriented paradigm.

The point here is that we don't have to pass an argument to c.area(). The object we are operating on, c, is implicit in the
syntax. Take a look at Example 3-1 again. You'll notice the same thing in the signature of the area() method: it doesn't
have a parameter. Now look at the body of the area() method: it uses the instance field r. Because the area() method
is part of the same class that defines this instance field, the method can use the unqualified name r. It is understood that this
refers to the radius of whatever Circle instance invokes the method.

Another important thing to notice about the bodies of the area() and circumference() methods is that they both use
the class field PI. We saw earlier that class methods can use only class fields and class methods, not instance fields or
methods. Instance methods are not restricted in this way: they can use any member of a class, whether it is declared
static or not.

3.1.4.1. How instance methods work

Consider this line of code again:

a = c.area();

What's going on here? How can a method that has no parameters know what data to operate on? In fact, the area()
method does have a parameter. All instance methods are implemented with an implicit parameter not shown in the method
signature. The implicit argument is named this; it holds a reference to the object through which the method is invoked. In
our example, that object is a Circle.

The implicit this parameter is not shown in method signatures because it is usually not needed; whenever a Java method
accesses the fields in its class, it is implied that it is accessing fields in the object referred to by the this parameter. The
same is true when an instance method invokes another instance method in the same class. I said earlier that to invoke an
instance method you must prepend a reference to the object to be operated on. When an instance method is invoked within
another instance method in the same class, however, you don't need to specify an object. In this case, it is implicit that the
method is being invoked on the this object.

You can use the this keyword explicitly when you want to make it clear that a method is accessing its own fields and/or
methods. For example, we can rewrite the area() method to use this explicitly to refer to instance fields:

public double area() {
 return Circle.PI * this.r * this.r;
}

This code also uses the class name explicitly to refer to class field PI. In a method this simple, it is not necessary to be
explicit. In more complicated cases, however, you may find that it increases the clarity of your code to use an explicit
this where it is not strictly required.

There are some cases in which the this keyword is required, however. For example, when a method parameter or local
variable in a method has the same name as one of the fields of the class, you must use this to refer to the field, since the
field name used alone refers to the method parameter or local variable. For example, we can add the following method to
the Circle class:

public void setRadius(double r) {
 this.r = r; // Assign the argument (r) to the field (this.r)

file:///C|/orielly/jnut/ch03_01.htm (5 of 7) [2/5/2003 7:46:59 PM]

Object-Oriented Programming in Java (Java in a Nutshell)

 // Note that we cannot just say r = r
}

Finally, note that while instance methods can use the this keyword, class methods cannot. This is because class methods
are not associated with objects.

3.1.4.2. Instance methods or class methods?

Instance methods are one of the key features of object-oriented programming. That doesn't mean, however, that you should
shun class methods. There are many cases in which is is perfectly reasonable to define class methods. When working with
the Circle class, for example, you might find there are many times you want to compute the area of a circle with a given
radius, but don't want to bother creating a Circle object to represent that circle. In this case, a class method is more
convenient:

public static double area(double r) { return PI * r * r; }

It is perfectly legal for a class to define more than one method with the same name, as long as the methods have different
parameters. Since this version of the area() method is a class method, it does not have an implicit this parameter and
must have a parameter that specifies the radius of the circle. This parameter keeps it distinct from the instance method of
the same name.

As another example of the choice between instance methods and class methods, consider defining a method named
bigger() that examines two Circle objects and returns whichever has the larger radius. We can write bigger() as
an instance method as follows:

// Compare the implicit "this" circle to the "that" circle passed
// explicitly as an argument and return the bigger one.
public Circle bigger(Circle that) {
 if (this.r > that.r) return this;
 else return that;
}

We can also implement bigger() as a class method as follows:

// Compare circle a to circle b and return the one with the larger radius
public static Circle bigger(Circle a, Circle b) {
 if (a.r > b.r) return a;
 else return b;
}

Given two Circle objects, x and y, we can use either the instance method or the class method to determine which is
bigger. The invocation syntax differs significantly for the two methods, however:

Circle biggest = x.bigger(y); // Instance method: also y.bigger(x)
Circle biggest = Circle.bigger(x, y); // Static method

Neither option is the correct choice. The instance method is more formally object-oriented, but its invocation syntax suffers
from a kind of asymmetry. In a case like this, the choice between an instance method and a class method is simply a design
decision. Depending on the circumstances, one or the other will likely be the more natural choice.

file:///C|/orielly/jnut/ch03_01.htm (6 of 7) [2/5/2003 7:46:59 PM]

Object-Oriented Programming in Java (Java in a Nutshell)

3.1.5. A Mystery Solved

As we saw in Chapter 1, "Introduction" and Chapter 2, "Java Syntax from the Ground Up", the way to display textual
output to the terminal in Java is with a method named System.out.println(). Those chapters never explained why
this method has such an long, awkward name or what those two periods are doing in it. Now that you understand class and
instance fields and class and instance methods, it is easier to understand what is going on. Here's the story: System is a
class. It has a class field named out. The field System.out refers to an object. The object System.out has an
instance method named println(). Mystery solved! If you want to explore this in more detail, you can look up the
java.lang.System class in Chapter 12, "The java.lang Package". The class synopsis there tells you that the field out
is of type java.io.PrintStream, which you can look up in Chapter 11, "The java.io Package".

2.14. Differences Between C
and Java

3.2. Creating and Initializing
Objects

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch03_01.htm (7 of 7) [2/5/2003 7:46:59 PM]

file:///C|/orielly/jnut/copyrght.htm

Creating and Initializing Objects (Java in a Nutshell)

Chapter 3: Object-Oriented

Programming in Java

3.2. Creating and Initializing Objects

Take another look at how we've been creating Circle objects:

Circle c = new Circle();

What are those parentheses doing there? They make it look like we're calling a method. In fact, that is exactly what we're
doing. Every class in Java has at least one constructor, which is a method that has the same name as the class and whose
purpose is to perform any necessary initialization for a new object. Since we didn't explicitly define a constructor for our
Circle class in Example 3-1, Java gave us a default constructor that takes no arguments and performs no special
initialization.

Here's how a constructor works. The new operator creates a new, but uninitialized, instance of the class. The constructor
method is then called, with the new object passed implicitly (a this reference, as we saw earlier), and whatever arguments
that are specified between parentheses passed explicitly. The constructor can use these arguments to do whatever
initialization is necessary.

3.2.1. Defining a Constructor

There is some obvious initialization we could do for our circle objects, so let's define a constructor. Example 3-2 shows a
new definition for Circle that contains a constructor that lets us specify the radius of a new Circle object. The
constructor also uses the this reference to distinguish between a method parameter and an instance field that have the same
name.

Example 3-2. A Constructor for the Circle Class

public class Circle {
 public static final double PI = 3.14159; // A constant
 public double r; // An instance field that holds the radius of the circle

 // The constructor method: initialize the radius field
 public Circle(double r) { this.r = r; }

 // The instance methods: compute values based on the radius
 public double circumference() { return 2 * PI * r; }
 public double area() { return PI * r*r; }
}

When we relied on the default constructor supplied by the compiler, we had to write code like this to initialize the radius
explicitly:

Circle c = new Circle();

file:///C|/orielly/jnut/ch03_02.htm (1 of 5) [2/5/2003 7:47:26 PM]

Creating and Initializing Objects (Java in a Nutshell)

c.r = 0.25;

With this new constructor, the initialization becomes part of the object creation step:

Circle c = new Circle(0.25);

Here are some important notes about naming, declaring, and writing constructors:

● The constructor name is always the same as the class name.

● Unlike all other methods, a constructor is declared without a return type, not even void.

● The body of a constructor should initialize the this object.

● A constructor should not return this or any other value.

3.2.2. Defining Multiple Constructors

Sometimes you want to initialize an object in a number of different ways, depending on what is most convenient in a
particular circumstance. For example, we might want to initialize the radius of a circle to a specified value or a reasonable
default value. Since our Circle class has only a single instance field, there aren't too many ways we can initialize it, of
course. But in more complex classes, it is often convenient to define a variety of constructors. Here's how we can define two
constructors for Circle:

public Circle() { r = 1.0; }
public Circle(double r) { this.r = r; }

It is perfectly legal to define multiple constructors for a class, as long as each constructor has a different parameter list. The
compiler determines which constructor you wish based on the number and type of arguments you supply. This is simply an
example of method overloading, which we discussed in Chapter 2, "Java Syntax from the Ground Up".

3.2.3. Invoking One Constructor from Another

There is a specialized use of the this keyword that arises when a class has multiple constructors; it can be used from a
constructor to invoke one of the other constructors of the same class. In other words, we can rewrite the two previous
Circle constructors as follows:

// This is the basic constructor: initialize the radius
public Circle(double r) { this.r = r; }
// This constructor uses this() to invoke the constructor above
public Circle() { this(1.0); }

The this() syntax is a method invocation that calls one of the other constructors of the class. The particular constructor
that is invoked is determined by the number and type of arguments, of course. This is a useful technique when a number of
constructors share a significant amount of initialization code, as it avoids repetition of that code. This would be a more
impressive example, of course, if the one-parameter version of the Circle() constructor did more initialization than it
does.

file:///C|/orielly/jnut/ch03_02.htm (2 of 5) [2/5/2003 7:47:26 PM]

Creating and Initializing Objects (Java in a Nutshell)

There is an important restriction on using this(): it can appear only as the first statement in a constructor. It may, of
course, be followed by any additional initialization a particular version of the constructor needs to do. The reason for this
restriction involves the automatic invocation of superclass constructor methods, which we'll explore later in this chapter.

3.2.4. Field Defaults and Initializers

Not every field of a class requires initialization. Unlike local variables, which have no default value and cannot be used until
explicitly initialized, the fields of a class are automatically initialized to the default values shown in Table 3-2. Essentially,
every field of a primitive type is initialized to a default value of false or zero, as appropriate. All fields of reference type
are, by default, initialized to null. These default values are guaranteed by Java. If the default value of a field is appropriate,
you can simply rely on it without explicitly initializing the field. This default initialization applies to both instance fields and
class fields.

As we've seen, the syntax for declaring a field of a class is a lot like the syntax for declaring a local variable. Both class and
instance field declarations can be followed by an equals sign and an initial value, as in:

public static final double PI = 3.14159;
public double r = 1.0;

As we discussed in Chapter 2, "Java Syntax from the Ground Up", a variable declaration is a statement that appears within a
Java method; the variable initialization is performed when the statement is executed. Field declarations, however, are not part
of any method, so they cannot be executed as statements are. Instead, the Java compiler generates instance-field initialization
code automatically and puts it in the constructor or constructors for the class. The initialization code is inserted into a
constructor in the order it appears in the source code, which means that a field initializer can use the initial values of fields
declared before it. Consider the following code excerpt, which shows a constructor and two instance fields of a hypothetical
class:

public class TestClass {
 ... public int len = 10;
 public int[] table = new int[len];

 public TestClass() {
 for(int i = 0; i < len; i++) table[i] = i;
 }

 // Rest of the class is omitted...
}

In this case, the code generated for the constructor is actually equivalent to the following:

public TestClass() {
 len = 10;
 table = new int[len];
 for(int i = 0; i < len; i++) table[i] = i;
}

If a constructor begins with a this() call to another constructor, the field initialization code does not appear in the first
constructor. Instead, the initialization is handled in the constructor invoked by the this() call.

So, if instance fields are initialized in constructor methods, where are class fields initialized? These fields are associated with

file:///C|/orielly/jnut/ch03_02.htm (3 of 5) [2/5/2003 7:47:26 PM]

Creating and Initializing Objects (Java in a Nutshell)

the class, even if no instances of the class are ever created, so they need to be initialized even before a constructor is called.
To support this, the Java compiler generates a class initialization method automatically for every class. Class fields are
initialized in the body of this method, which is guaranteed to be invoked exactly once before the class is first used (often
when the class is first loaded). As with instance field initialization, class field initialization expressions are inserted into the
class initialization method in the order they appear in the source code. This means that the initialization expression for a class
field can use the class fields declared before it. The class initialization method is an internal method that is hidden from Java
programmers. If you disassemble the byte codes in a Java class file, however, you'll see the class initialization code in a
method named <clinit>.

3.2.4.1. Initializer blocks

So far, we've seen that objects can be initialized through the initialization expressions for their fields and by arbitrary code in
their constructor methods. A class has a class initialization method, which is like a constructor, but we cannot explicitly
define the body of this method as we can for a constructor. Java does allow us to write arbitrary code for the initialization of
class fields, however, with a construct known as a static initializer. A static initializer is simply the keyword static
followed by a block of code in curly braces. A static initializer can appear in a class definition anywhere a field or method
definition can appear. For example, consider the following code that performs some nontrivial initialization for two class
fields:

// We can draw the outline of a circle using trigonometric functions
// Trigonometry is slow, though, so we precompute a bunch of values
public class TrigCircle {
 // Here are our static lookup tables and their own simple initializers
 private static final NUMPTS = 500;
 private static double sines[] = new double[NUMPTS];
 private static double cosines[] = new double[NUMPTS];

 // Here's a static initializer that fills in the arrays
 static {
 double x = 0.0, delta_x;
 delta_x = (Circle.PI/2)/(NUMPTS-1);
 for(int i = 0, x = 0.0; i < NUMPTS; i++, x += delta_x) {
 sines[i] = Math.sin(x);
 cosines[i] = Math.cos(x);
 }
 }
 // The rest of the class is omitted... }

A class can have any number of static initializers. The body of each initializer block is incorporated into the class
initialization method, along with any static field initialization expressions. A static initializer is like a class method in that it
cannot use the this keyword or any instance fields or instance methods of the class.

In Java 1.1 and later, classes are also allowed to have instance initializers. An instance initializer is like a static initializer,
except that it initializes an object, not a class. A class can have any number of instance initializers, and they can appear
anywhere a field or method definition can appear. The body of each instance initializer is inserted at the beginning of every
constructor for the class, along with any field initialization expressions. An instance initializer looks just like a static
initializer, except that it doesn't use the static keyword. In other words, an instance initializer is just a block of arbitrary
Java code that appears within curly braces.

Instance initializers can initialize arrays or other fields that require complex initialization. They are sometimes useful because

file:///C|/orielly/jnut/ch03_02.htm (4 of 5) [2/5/2003 7:47:26 PM]

Creating and Initializing Objects (Java in a Nutshell)

they locate the initialization code right next to the field, instead of separating it off in a constructor method. For example:

private static finale int NUMPTS = 100;
private int[] data = new int[NUMPTS];
{ for(int i = 0; i < NUMPTS; i++) data[i] = i; }

In practice, however, this use of instance initializers is fairly rare. Instance initializers were introduced in Java to support
anonymous inner classes, and that is their main utility (we'll discuss anonymous inner classes later in this chapter).

3.1. The Members of a Class 3.3. Destroying and
Finalizing Objects

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch03_02.htm (5 of 5) [2/5/2003 7:47:26 PM]

file:///C|/orielly/jnut/copyrght.htm

Destroying and Finalizing Objects (Java in a Nutshell)

Chapter 3: Object-Oriented

Programming in Java

3.3. Destroying and Finalizing Objects

Now that we've seen how new objects are created and initialized in Java, we need to study the other end of the object
life cycle and examine how objects are finalized and destroyed. Finalization is the opposite of initialization.

As I mentioned in Chapter 2, "Java Syntax from the Ground Up", the memory occupied by an object is automatically
reclaimed when the object is no longer needed. This is done through a process known as garbagecollection. Garbage
collection is not some newfangled technique; it has been around for years in languages such as Lisp. It just takes
some getting used to for programmers accustomed to such languages as C and C++, in which you must call the
free() method or the delete operator to reclaim memory. The fact that you don't need to remember to destroy
every object you create is one of the features that makes Java a pleasant language to work with. It is also one of the
features that makes programs written in Java less prone to bugs than those written in languages that don't support
automatic garbage collection.

3.3.1. Garbage Collection

The Java interpreter knows exactly what objects and arrays it has allocated. It can also figure out which local
variables refer to which objects and arrays, and which objects and arrays refer to which other objects and arrays.
Thus, the interpreter is able to determine when an allocated object is no longer referred to by any other object or
variable. When the interpreter finds such an object, it knows it can destroy the object safely and does so. The garbage
collector can also detect and destroy cycles of objects that refer to each other, but are not referenced by any other
active objects. Any such cycles are also reclaimed.

The Java garbage collector runs as a low-priority thread, so it does most of its work when nothing else is going on,
such as during idle time while waiting for user input. The only time the garbage collector must run while something
high-priority is going on (i.e., the only time it will actually slow down the system) is when available memory has
become dangerously low. This doesn't happen very often because the low-priority thread cleans things up in the
background.

This scheme may sound slow and wasteful of memory. Actually though, modern garbage collectors can be
surprisingly efficient. Garbage collection will never be as efficient as well-written, explicit memory allocation and
deallocation. But it does make programming a lot easier and less prone to bugs. And for most real-world programs,
rapid development, lack of bugs, and easy maintenance are more important features than raw speed or memory
efficiency.

3.3.2. Memory Leaks in Java

The fact that Java supports garbage collection dramatically reduces the incidence of a class of bugs known as memory
leaks. A memory leak occurs when memory is allocated and never reclaimed. At first glance, it might seem that

file:///C|/orielly/jnut/ch03_03.htm (1 of 4) [2/5/2003 7:47:29 PM]

Destroying and Finalizing Objects (Java in a Nutshell)

garbage collection prevents all memory leaks because it reclaims all unused objects. A memory leak can still occur in
Java, however, if a valid (but unused) reference to an unused object is left hanging around. For example, when a
method runs for a long time (or forever), the local variables in that method can retain object references much longer
than they are actually required. The following code illustrates:

public static void main(String argso[]) {
 int big_array[] = new int[100000];

 // Do some computations with big_array and get a result.
 int result = compute(big_array);

 // We no longer need big_array. It will get garbage collected when there
 // are no more references to it. Since big_array is a local variable,
 // it refers to the array until this method returns. But this method
 // doesn't return. So we've got to explicitly get rid of the reference
 // ourselves, so the garbage collector knows it can reclaim the array.
 big_array = null;

 // Loop forever, handling the user's input
 for(;;) handle_input(result);
}

Memory leaks can also occur when you use a hashtable or similar data structure to associate one object with another.
Even when neither object is required anymore, the association remains in the hashtable, preventing the objects from
being reclaimed until the hashtable itself is reclaimed. If the hashtable has a substantially longer lifetime than the
objects it holds, this can cause memory leaks.

3.3.3. Object Finalization

A finalizer in Java is the opposite of a constructor. While a constructor method performs initialization for an object, a
finalizer method performs finalization for the object. Garbage collection automatically frees up the memory resources
used by objects, but objects can hold other kinds of resources, such as open files and network connections. The
garbage collector cannot free these resources for you, so you need to write a finalizer method for any object that
needs to perform such tasks as closing files, terminating network connections, deleting temporary files, and so on.

A finalizer is an instance method that takes no arguments and returns no value. There can be only one finalizer per
class, and it must be named finalize().[1] A finalizer can throw any kind of exception or error, but when a
finalizer is automatically invoked by the garbage collector, any exception or error it throws is ignored and serves only
to cause the finalizer method to return. Finalizer methods are typically declared protected (which we have not
discussed yet), but can also be declared public. An example finalizer looks like this:

[1]C++ programmers should note that although Java constructor methods are named like C++
constructors, Java finalization methods are not named like C++ destructor methods. As we will see,
they do not behave quite like C++ destructor methods, either.

protected void finalize() throws Throwable {
 // Invoke the finalizer of our superclass

file:///C|/orielly/jnut/ch03_03.htm (2 of 4) [2/5/2003 7:47:29 PM]

Destroying and Finalizing Objects (Java in a Nutshell)

 // We haven't discussed superclasses or this syntax yet
 super.finalize();

 // Delete a temporary file we were using
 // If the file doesn't exist or tempfile is null, this can throw
 // an exception, but that exception is ignored.
 tempfile.delete();
}

Here are some important points about finalizers:

● If an object has a finalizer, the finalizer method is invoked sometime after the object becomes unused (or
unreachable), but before the garbage collector reclaims the object.

● Java makes no guarantees about when garbage collection will occur or in what order objects will be collected.
Therefore, Java can make no guarantees about when (or even whether) a finalizer will be invoked, in what
order finalizers will be invoked, or what thread will execute finalizers.

● The Java interpreter can exit without garbage collecting all outstanding objects, so some finalizers may never
be invoked. In this case, though, any outstanding resources are usually freed by the operating system. In Java
1.1, the Runtime method runFinalizersOnExit() can force the virtual machine to run finalizers
before exiting. Unfortunately, however, this method can cause deadlock and is inherently unsafe; it has been
deprecated as of Java 1.2. In Java 1.3, the Runtime method addShutdownHook() can safely execute
arbitrary code before the Java interpreter exits.

● After a finalizer is invoked, objects are not freed right away. This is because a finalizer method can resurrect
an object by storing the this pointer somewhere so that the object once again has references. Thus, after
finalize() is called, the garbage collector must once again determine that the object is unreferenced
before it can garbage-collect it. However, even if an object is resurrected, the finalizer method is never
invoked more than once. Resurrecting an object is never a useful thing to do--just a strange quirk of object
finalization. As of Java 1.2, the java.lang.ref.PhantomReference class can implement an
alternative to finalization that does not allow resurrection.

In practice, it is relatively rare for an application-level class to require a finalize() method. Finalizer methods
are more useful, however, when writing Java classes that interface to native platform code with native methods. In
this case, the native implementation can allocate memory or other resources that are not under the control of the Java
garbage collector and need to be reclaimed explicitly by a nativefinalize() method.

While Java supports both class and instance initialization through static initializers and constructors, it provides only
a facility for instance finalization. The original Java specification called for a classFinalize() method that
could finalize a class when the class itself became unused and was unloaded from the VM. This feature was never
implemented, however, and because it has proved to be unnecessary, class finalization has been removed from the
language specification.

file:///C|/orielly/jnut/ch03_03.htm (3 of 4) [2/5/2003 7:47:29 PM]

Destroying and Finalizing Objects (Java in a Nutshell)

3.2. Creating and Initializing
Objects

3.4. Subclasses and
Inheritance

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch03_03.htm (4 of 4) [2/5/2003 7:47:29 PM]

file:///C|/orielly/jnut/copyrght.htm

Subclasses and Inheritance (Java in a Nutshell)

Chapter 3: Object-Oriented

Programming in Java

3.4. Subclasses and Inheritance

The Circle defined earlier is a simple class that distinguishes circle objects only by their radii. Suppose, instead, that we
want to represent circles that have both a size and a position. For example, a circle of radius 1.0 centered at point 0,0 in the
Cartesian plane is different from the circle of radius 1.0 centered at point 1,2. To do this, we need a new class, which we'll
call PlaneCircle. We'd like to add the ability to represent the position of a circle without losing any of the existing
functionality of the Circle class. This is done by defining PlaneCircle as a subclass of Circle, so that
PlaneCircle inherits the fields and methods of its superclass, Circle. The ability to add functionality to a class by
subclassing, or extending, it is central to the object-oriented programming paradigm.

3.4.1. Extending a Class

Example 3-3 shows how we can implement PlaneCircle as a subclass of the Circle class.

Example 3-3. Extending the Circle Class

public class PlaneCircle extends Circle {
 // We automatically inherit the fields and methods of Circle,
 // so we only have to put the new stuff here.
 // New instance fields that store the center point of the circle
 public double cx, cy;

 // A new constructor method to initialize the new fields
 // It uses a special syntax to invoke the Circle() constructor
 public PlaneCircle(double r, double x, double y) {
 super(r); // Invoke the constructor of the superclass, Circle()
 this.cx = x; // Initialize the instance field cx
 this.cy = y; // Initialize the instance field cy
 }

 // The area() and circumference() methods are inherited from Circle
 // A new instance method that checks whether a point is inside the circle
 // Note that it uses the inherited instance field r
 public boolean isInside(double x, double y) {
 double dx = x - cx, dy = y - cy; // Distance from center
 double distance = Math.sqrt(dx*dx + dy*dy); // Pythagorean theorem
 return (distance < r); // Returns true or false
 }
}

Note the use of the keyword extends in the first line of Example 3-3. This keyword tells Java that PlaneCircle
extends, or subclasses, Circle, meaning that it inherits the fields and methods of that class.[2] The definition of the

file:///C|/orielly/jnut/ch03_04.htm (1 of 9) [2/5/2003 7:47:33 PM]

Subclasses and Inheritance (Java in a Nutshell)

isInside() method shows field inheritance; this method uses the field r (defined by the Circle class) as if it were
defined right in PlaneCircle itself. PlaneCircle also inherits the methods of Circle. Thus, if we have a
PlaneCircle object referenced by variable pc, we can say:

[2]C++ programmers should note that extends is the Java equivalent of : in C++; both are used to indicate
the superclass of a class.

double ratio = pc.circumference() / pc.area();

This works just as if the area() and circumference() methods were defined in PlaneCircle itself.

Another feature of subclassing is that every PlaneCircle object is also a perfectly legal Circle object. Thus, if pc
refers to a PlaneCircle object, we can assign it to a Circle variable and forget all about its extra positioning
capabilities:

PlaneCircle pc = new PlaneCircle(1.0, 0.0, 0.0); // Unit circle at the origin
Circle c = pc; // Assigned to a Circle variable without casting

This assignment of a PlaneCircle object to a Circle variable can be done without a cast. As we discussed in Chapter
2, "Java Syntax from the Ground Up", this is a widening conversion and is always legal. The value held in the Circle
variable c is still a valid PlaneCircle object, but the compiler cannot know this for sure, so it doesn't allow us to do the
opposite (narrowing) conversion without a cast:

// Narrowing conversions require a cast (and a runtime check by the VM)
PlaneCircle pc2 = (PlaneCircle) c;
boolean origininside = ((PlaneCircle) c).isInside(0.0, 0.0);

3.4.1.1. Final classes

When a class is declared with the final modifier, it means that it cannot be extended or subclassed.
java.lang.System is an example of a final class. Declaring a class final prevents unwanted extensions to the
class, and it also allows the compiler to make some optimizations when invoking the methods of a class. We'll explore this
in more detail later in this chapter, when we talk about method overriding.

3.4.2. Superclasses, Object, and the Class Hierarchy

In our example, PlaneCircle is a subclass of Circle. We can also say that Circle is the superclass of
PlaneCircle. The superclass of a class is specified in its extends clause:

public class PlaneCircle extends Circle { ... }

Every class you define has a superclass. If you do not specify the superclass with an extends clause, the superclass is the
class java.lang.Object. Object is a special class for a couple of reasons:

● It is the only class in Java that does not have a superclass.

● All Java classes inherit the methods of Object.

file:///C|/orielly/jnut/ch03_04.htm (2 of 9) [2/5/2003 7:47:33 PM]

Subclasses and Inheritance (Java in a Nutshell)

Because every class has a superclass, classes in Java form a class hierarchy, which can be represented as a tree with
Object at its root. Figure 3-1 shows a class hierarchy diagram that includes our Circle and PlaneCircle classes, as
well as some of the standard classes from the Java API. Every API quick-reference chapter in Part 2, "API Quick
Reference" includes a class-hierarchy diagram for the classes it documents.

Figure 3-1. A class hierarchy diagram

3.4.3. Subclass Constructors

Look again at the PlaneCircle() constructor method of Example 3-3:

public PlaneCircle(double r, double x, double y) {
 super(r); // Invoke the constructor of the superclass, Circle()
 this.cx = x; // Initialize the instance field cx
 this.cy = y; // Initialize the instance field cy
}

This constructor explicitly initializes the cx and cy fields newly defined by PlaneCircle, but it relies on the superclass
Circle() constructor to initialize the inherited fields of the class. To invoke the superclass constructor, our constructor
calls super(). super is a reserved word in Java. One of its uses is to invoke the constructor method of a superclass from
within the constructor method of a subclass. This use is analogous to the use of this() to invoke one constructor method
of a class from within another constructor method of the same class. Using super() to invoke a constructor is subject to
the same restrictions as using this() to invoke a constructor:

● super() can be used in this way only within a constructor method.

● The call to the superclass constructor must appear as the first statement within the constructor method, even before
local variable declarations.

The arguments passed to super() must match the parameters of the superclass constructor. If the superclass defines more
than one constructor, super() can be used to invoke any one of them, depending on the arguments passed.

3.4.4. Constructor Chaining and the Default Constructor

file:///C|/orielly/jnut/ch03_04.htm (3 of 9) [2/5/2003 7:47:33 PM]

Subclasses and Inheritance (Java in a Nutshell)

Java guarantees that the constructor method of a class is called whenever an instance of that class is created. It also
guarantees that the constructor is called whenever an instance of any subclass is created. In order to guarantee this second
point, Java must ensure that every constructor method calls its superclass constructor method. Thus, if the first statement in
a constructor does not explicitly invoke another constructor with this() or super(), Java implicitly inserts the call
super(); that is, it calls the superclass constructor with no arguments. If the superclass does not have a constructor that
takes no arguments, this implicit invocation causes a compilation error.

Consider what happens when we create a new instance of the PlaneCircle class. First, the PlaneCircle constructor
is invoked. This constructor explicitly calls super(r) to invoke a Circle constructor, and that Circle() constructor
implicitly calls super() to invoke the constructor of its superclass, Object. The body of the Object constructor runs
first. When it returns, the body of the Circle() constructor runs. Finally, when the call to super(r) returns, the
remaining statements of the PlaneCircle() constructor are executed.

What all this means is that constructor calls are chained; any time an object is created, a sequence of constructor methods is
invoked, from subclass to superclass on up to Object at the root of the class hierarchy. Because a superclass constructor is
always invoked as the first statement of its subclass constructor, the body of the Object constructor always runs first,
followed by the constructor of its subclass and on down the class hierarchy to the class that is being instantiated. There is an
important implication here; when a constructor is invoked, it can count on the fields of its superclass to be initialized.

3.4.4.1. The default constructor

There is one missing piece in the previous description of constructor chaining. If a constructor does not invoke a superclass
constructor, Java does so implicitly. But what if a class is declared without a constructor? In this case, Java implicitly adds
a constructor to the class. This default constructor does nothing but invoke the superclass constructor. For example, if we
don't declare a constructor for the PlaneCircle class, Java implicitly inserts this constructor:

public PlaneCircle() { super(); }

If the superclass, Circle, doesn't declare a no-argument constructor, the super() call in this automatically inserted
default constructor for PlaneCircle() causes a compilation error. In general, if a class does not define a no-argument
constructor, all its subclasses must define constructors that explicitly invoke the superclass constructor with the necessary
arguments.

If a class does not declare any constructors, it is given a no-argument constructor by default. Classes declared public are
given public constructors. All other classes are given a default constructor that is declared without any visibility
modifier: such a constructor has default visibility. (The notion of visibility is explained later in this chapter.) If you are
creating a public class that should not be publicly instantiated, you should declare at least one non-public constructor
to prevent the insertion of a default public constructor. Classes that should never be instantiated (such as
java.lang.Math or java.lang.System) should define a private constructor. Such a constructor can never be
invoked from outside of the class, but it prevents the automatic insertion of the default constructor.

3.4.4.2. Finalizer chaining?

You might assume that, since Java chains constructor methods, it also automatically chains the finalizer methods for an
object. In other words, you might assume that the finalizer method of a class automatically invokes the finalizer of its
superclass, and so on. In fact, Java does not do this. When you write a finalize() method, you must explicitly invoke
the superclass finalizer. (You should do this even if you know that the superclass does not have a finalizer because a future
implementation of the superclass might add a finalizer.)

file:///C|/orielly/jnut/ch03_04.htm (4 of 9) [2/5/2003 7:47:33 PM]

Subclasses and Inheritance (Java in a Nutshell)

As we saw in our example finalizer earlier in the chapter, you can invoke a superclass method with a special syntax that
uses the super keyword:

// Invoke the finalizer of our superclass. super.finalize();

We'll discuss this syntax in more detail when we consider method overriding. In practice, the need for finalizer methods,
and thus finalizer chaining, rarely arises.

3.4.5. Shadowing Superclass Fields

For the sake of example, imagine that our PlaneCircle class needs to know the distance between the center of the circle
and the origin (0,0). We can add another instance field to hold this value:

public double r;

Adding the following line to the constructor computes the value of the field:

this.r = Math.sqrt(cx*cx + cy*cy); // Pythagorean Theorem

But wait, this new field r has the same name as the radius field r in the Circle superclass. When this happens, we say
that the field r of PlaneCircleshadows the field r of Circle. (This is a contrived example, of course: the new field
should really be called distanceFromOrigin. Although you should attempt to avoid it, subclass fields do sometimes
shadow fields of their superclass.)

With this new definition of PlaneCircle, the expressions r and this.r both refer to the field of PlaneCircle.
How, then, can we refer to the field r of Circle that holds the radius of the circle? There is a special syntax for this that
uses the super keyword:

r // Refers to the PlaneCircle field
this.r // Refers to the PlaneCircle field
super.r // Refers to the Circle field

Another way to refer to a shadowed field is to cast this (or any instance of the class) to the appropriate superclass and
then access the field:

((Circle) this).r // Refers to field r of the Circle class

This casting technique is particularly useful when you need to refer to a shadowed field defined in a class that is not the
immediate superclass. Suppose, for example, that classes A, B, and C all define a field named x and that C is a subclass of
B, which is a subclass of A. Then, in the methods of class C, you can refer to these different fields as follows:

x // Field x in class C
this.x // Field x in class C
super.x // Field x in class B
((B)this).x // Field x in class B
((A)this).x // Field x in class A
super.super.x // Illegal; does not refer to x in class A

file:///C|/orielly/jnut/ch03_04.htm (5 of 9) [2/5/2003 7:47:33 PM]

Subclasses and Inheritance (Java in a Nutshell)

You cannot refer to a shadowed field x in the superclass of a superclass with super.super.x. This is not legal syntax.

Similarly, if you have an instance c of class C, you can refer to the three fields named x like this:

c.x // Field x of class C
((B)c).x // Field x of class B
((A)c).x // Field x of class A

So far, we've been discussing instance fields. Class fields can also be shadowed. You can use the same super syntax to
refer to the shadowed value of the field, but this is never necessary since you can always refer to a class field by prepending
the name of the desired class. Suppose that the implementer of PlaneCircle decides that the Circle.PI field does
not express π to enough decimal places. She can define her own class field PI:

public static final double PI = 3.14159265358979323846;

Now, code in PlaneCircle can use this more accurate value with the expressions PI or PlaneCircle.PI. It can also
refer to the old, less accurate value with the expressions super.PI and Circle.PI. Note, however, that the area()
and circumference() methods inherited by PlaneCircle are defined in the Circle class, so they use the value
Circle.PI, even though that value is shadowed now by PlaneCircle.PI.

3.4.6. Overriding Superclass Methods

When a class defines an instance method using the same name, return type, and parameters as a method in its superclass,
that method overrides the method of the superclass. When the method is invoked for an object of the class, it is the new
definition of the method that is called, not the superclass's old definition.

Method overriding is an important and useful technique in object-oriented programming. PlaneCircle does not override
either of the methods defined by Circle, but suppose we define another subclass of Circle, named Ellipse.[3] In
this case, it is important for Ellipse to override the area() and circumference() methods of Circle, since the
formulas used to compute the area and circumference of a circle do not work for ellipses.

[3]Mathematical purists may argue that since all circles are ellipses, Ellipse should be the superclass and
Circle the subclass. A pragmatic engineer might counterargue that circles can be represented with fewer
instance fields, so Circle objects should not be burdened by inheriting unnecessary fields from Ellipse.
In any case, this is a useful example here.

The upcoming discussion of method overriding considers only instance methods. Class methods behave quite differently,
and there isn't much to say. Like fields, class methods can be shadowed by a subclass, but not overridden. As I noted earlier
in this chapter, it is good programming style to always prefix a class method invocation with the name of the class in which
it is defined. If you consider the class name part of the class method name, the two methods have different names, so
nothing is actually shadowed at all. It is, however, illegal for a class method to shadow an instance method.

Before we go any further with the discussion of method overriding, you need to be sure you understand the difference
between method overriding and method overloading. As we discussed in Chapter 2, "Java Syntax from the Ground Up",
method overloading refers to the practice of defining multiple methods (in the same class) that have the same name, but
different parameter lists. This is very different from method overriding, so don't get them confused.

3.4.6.1. Overriding is not shadowing

file:///C|/orielly/jnut/ch03_04.htm (6 of 9) [2/5/2003 7:47:33 PM]

Subclasses and Inheritance (Java in a Nutshell)

Although Java treats the fields and methods of a class analogously in many ways, method overriding is not like field
shadowing at all. You can refer to shadowed fields simply by casting an object to an instance of the appropriate superclass,
but you cannot invoke overridden instance methods with this technique. The following code illustrates this crucial
difference:

class A { // Define a class named A
 int i = 1; // An instance field
 int f() { return i; } // An instance method
 static char g() { return 'A'; } // A class method
}

class B extends A { // Define a subclass of A
 int i = 2; // Shadows field i in class A
 int f() { return -i; } // Overrides instance method f in class A
 static char g() { return 'B'; } // Shadows class method g() in class A
}

public class OverrideTest {
 public static void main(String args[]) {
 B b = new B(); // Creates a new object of type B
 System.out.println(b.i); // Refers to B.i; prints 2
 System.out.println(b.f()); // Refers to B.f(); prints -2
 System.out.println(b.g()); // Refers to B.g(); prints B
 System.out.println(B.g()); // This is a better way to invoke B.g()

 A a = (A) b; // Casts b to an instance of class A
 System.out.println(a.i); // Now refers to A.i; prints 1
 System.out.println(a.f()); // Still refers to B.f(); prints -2
 System.out.println(a.g()); // Refers to A.g(); prints A
 System.out.println(A.g()); // This is a better way to invoke A.g()
 }
}

While this difference between method overriding and field shadowing may seem surprising at first, a little thought makes
the purpose clear. Suppose we have a bunch of Circle and Ellipse objects we are manipulating. To keep track of the
circles and ellipses, we store them in an array of type Circle[]. (We can do this because Ellipse is a subclass of
Circle, so all Ellipse objects are legal Circle objects.) When we loop through the elements of this array, we don't
have to know or care whether the element is actually a Circle or an Ellipse. What we do care about very much,
however, is that the correct value is computed when we invoke the area() method of any element of the array. In other
words, we don't want to use the formula for the area of a circle when the object is actually an ellipse! Seen in this context, it
is not surprising at all that method overriding is handled differently by Java than field shadowing.

3.4.6.2. Dynamic method lookup

If we have a Circle[] array that holds Circle and Ellipse objects, how does the compiler know whether to call the
area() method of the Circle class or the Ellipse class for any given item in the array? In fact, the compiler does not
know this because it cannot know it. The compiler knows that it does not know, however, and produces code that uses
dynamic method lookup at runtime. When the interpreter runs the code, it looks up the appropriate area() method to call
for each of the objects in the array. That is, when the interpreter interprets the expression o.area(), it checks the actual
type of the object referred to by the variable o and then finds the area() method that is appropriate for that type. It does

file:///C|/orielly/jnut/ch03_04.htm (7 of 9) [2/5/2003 7:47:33 PM]

Subclasses and Inheritance (Java in a Nutshell)

not simply use the area() method that is statically associated with the type of the variable o. This process of dynamic
method lookup is sometimes also called virtual method invocation.[4]

[4] C++ programmers should note that dynamic method lookup is what C++ does for virtual functions.
An important difference between Java and C++ is that Java does not have a virtual keyword. In Java,
methods are virtual by default.

3.4.6.3. Final methods and static method lookup

Virtual method invocation is fast, but method invocation is faster when no dynamic lookup is necessary at runtime.
Fortunately, there are a number of situations in which Java does not need to use dynamic method lookup. In particular, if a
method is declared with the final modifier, it means that the method definition is the final one; it cannot be overridden
by any subclasses. If a method cannot be overridden, the compiler knows that there is only one version of the method, and
dynamic method lookup is not necessary.[5] In addition, all methods of a final class are themselves implicitly final and
cannot be overridden. As we'll discuss later in this chapter, private methods are not inherited by subclasses and,
therefore, cannot be overridden (i.e., all private methods are implicitly final). Finally, class methods behave like
fields (i.e., they can be shadowed by subclasses but not overridden). Taken together, this means that all methods of a class
that is declared final, as well as all methods that are final, private, or static, are invoked without dynamic
method lookup. These methods are also candidates for inlining at runtime by a just-in-time compiler (JIT) or similar
optimization tool.

[5]In this sense, the final modifier is the opposite of the virtual modifier in C++. All non-final
methods in Java are virtual.

3.4.6.4. Invoking an overridden method

We've seen the important differences between method overriding and field shadowing. Nevertheless, the Java syntax for
invoking an overridden method is quite similar to the syntax for accessing a shadowed field: both use the super keyword.
The following code illustrates:

class A {
 int i = 1; // An instance field shadowed by subclass B
 int f() { return i; } // An instance method overridden by subclass B
}
class B extends A {
 int i; // This field shadows i in A
 int f() { // This method overrides f() in A
 i = super.i + 1; // It can retrieve A.i like this
 return super.f() + i; // It can invoke A.f() like this
 }
}

Recall that when you use super to refer to a shadowed field, it is the same as casting this to the superclass type and
accessing the field through that. Using super to invoke an overridden method, however, is not the same as casting this.
In other words, in the previous code, the expression super.f() is not the same as ((A)this).f().

When the interpreter invokes an instance method with this super syntax, a modified form of dynamic method lookup is
performed. The first step, as in regular dynamic method lookup, is to determine the actual class of the object through which
the method is invoked. Normally, the dynamic search for an appropriate method definition would begin with this class.

file:///C|/orielly/jnut/ch03_04.htm (8 of 9) [2/5/2003 7:47:33 PM]

Subclasses and Inheritance (Java in a Nutshell)

When a method is invoked with the super syntax, however, the search begins at the superclass of the class. If the
superclass implements the method directly, that version of the method is invoked. If the superclass inherits the method, the
inherited version of the method is invoked.

Note that the super keyword invokes the most immediately overridden version of a method. Suppose class A has a
subclass B that has a subclass C, and all three classes define the same method f(). Then the method C.f() can invoke the
method B.f(), which it overrides directly, with super.f(). But there is no way for C.f() to invoke A.f() directly:
super.super.f() is not legal Java syntax. Of course, if C.f() invokes B.f(), it is reasonable to suppose that
B.f() might also invoke A.f(). This kind of chaining is relatively common when working with overridden methods: it
is a way of augmenting the behavior of a method without replacing the method entirely. We saw this technique in the the
example finalize() method shown earlier in the chapter: that method invoked super.finalize() to run its
superclass finalization method.

Don't confuse the use of super to invoke an overridden method with the super() method call used in constructor
methods to invoke a superclass constructor. Although they both use the same keyword, these are two entirely different
syntaxes. In particular, you can use super to invoke an overridden method anywhere in the overriding method, while you
can use super() only to invoke a superclass constructor as the very first statement of a constructor.

It is also important to remember that super can be used only to invoke an overridden method from within the method that
overrides it. Given an Ellipse object e, there is no way for a program that uses an object (with or without the super
syntax) to invoke the area() method defined by the Circle class on this object.

I've already explained that class methods can shadow class methods in superclasses, but cannot override them. The
preferred way to invoke class methods is to include the name of the class in the invocation. If you do not do this, however,
you can use the super syntax to invoke a shadowed class method, just as you would invoke an instance method or refer to
a shadowed field.

3.3. Destroying and
Finalizing Objects

3.5. Data Hiding and
Encapsulation

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch03_04.htm (9 of 9) [2/5/2003 7:47:33 PM]

file:///C|/orielly/jnut/copyrght.htm

Data Hiding and Encapsulation (Java in a Nutshell)

Chapter 3: Object-Oriented

Programming in Java

3.5. Data Hiding and Encapsulation

We started this chapter by describing a class as "a collection of data and methods." One of the important object-
oriented techniques we haven't discussed so far is hiding the data within the class and making it available only through
the methods. This technique is known as encapsulation because it seals the data (and internal methods) safely inside
the "capsule" of the class, where it can be accessed only by trusted users (i.e., by the methods of the class).

Why would you want to do this? The most important reason is to hide the internal implementation details of your class.
If you prevent programmers from relying on those details, you can safely modify the implementation without worrying
that you will break existing code that uses the class.

Another reason for encapsulation is to protect your class against accidental or willful stupidity. A class often contains a
number of interdependent fields that must be in a consistent state. If you allow a programmer (including yourself) to
manipulate those fields directly, he may change one field without changing important related fields, thus leaving the
class in an inconsistent state. If, instead, he has to call a method to change the field, that method can be sure to do
everything necessary to keep the state consistent. Similarly, if a class defines certain methods for internal use only,
hiding these methods prevents users of the class from calling them.

Here's another way to think about encapsulation: when all the data for a class is hidden, the methods define the only
possible operations that can be performed on objects of that class. Once you have carefully tested and debugged your
methods, you can be confident that the class will work as expected. On the other hand, if all the fields of the class can
be directly manipulated, the number of possibilities you have to test becomes unmanageable.

There are other reasons to hide fields and methods of a class, as well:

● Internal fields and methods that are visible outside the class just clutter up the API. Keeping visible fields to a
minimum keeps your class tidy and therefore easier to use and understand.

● If a field or method is visible to the users of your class, you have to document it. Save yourself time and effort
by hiding it instead.

3.5.1. Access Control

All the fields and methods of a class can always be used within the body of the class itself. Java defines access control
rules that restrict members of a class from being used outside the class. In an number of examples in this chapter,
you've seen the public modifier used in field and method declarations. This public keyword, along with
protected and private, are accesscontrolmodifiers ; they specify the access rules for the field or method.

3.5.1.1. Access to packages

file:///C|/orielly/jnut/ch03_05.htm (1 of 6) [2/5/2003 7:47:36 PM]

Data Hiding and Encapsulation (Java in a Nutshell)

A package is always accessible to code defined within the package. Whether it is accessible to code from other
packages depends on the way the package is deployed on the host system. When the class files that comprise a package
are stored in a directory, for example, a user must have read access to the directory and the files within it in order to
have access to the package. Package access is not part of the Java language itself. Access control is usually done at the
level of classes and members of classes instead.

3.5.1.2. Access to classes

By default, top-level classes are accessible within the package in which they are defined. However, if a top-level class
is declared public, it is accessible everywhere (or everywhere that the package itself is accessible). The reason that
we've restricted these statements to top-level classes is that, as we'll see later in this chapter, classes can also be defined
as members of other classes. Because these inner classes are members of a class, they obey the member access-control
rules.

3.5.1.3. Access to members

As I've already said, the members of a class are always accessible within the body of the class. By default, members
are also accessible throughout the package in which the class is defined. This implies that classes placed in the same
package should trust each other with their internal implementation details.[6] This default level of access is often called
packageaccess. It is only one of four possible levels of access. The other three levels of access are defined by the
public, protected, and private modifiers. Here is some example code that uses these modifiers:

[6]C++ programmers might say that all classes within a package are friend-ly to each other.

public class Laundromat { // People can use this class.
 private Laundry[] dirty; // They cannot use this internal field,
 public void wash() { ... } // but they can use these public methods
 public void dry() { ... } // to manipulate the internal field.
}

Here are the access rules that apply to members of a class:

● If a member of a class is declared with the public modifier, it means that the member is accessible anywhere
the containing class is accessible. This is the least restrictive type of access control.

● If a member of a class is declared private, the member is never accessible, except within the class itself. This
is the most restrictive type of access control.

● If a member of a class is declared protected, it is accessible to all classes within the package (the same as
the default package accessibility) and also accessible within the body of any subclass of the class, regardless of
the package in which that subclass is defined. This is more restrictive than public access, but less restrictive
than package access.

● If a member of a class is not declared with any of these modifiers, it has the default package access: it is
accessible to code within all classes that are defined in the same package, but inaccessible outside of the
package.

file:///C|/orielly/jnut/ch03_05.htm (2 of 6) [2/5/2003 7:47:36 PM]

Data Hiding and Encapsulation (Java in a Nutshell)

protected access requires a little more elaboration. Suppose that the field r of our Circle class had been declared
protected and that our PlaneCircle class had been defined in a different package. In this case, every
PlaneCircle object inherits the field r, and the PlaneCircle code can use that field as it currently does. Now
suppose that PlaneCircle defines the following method to compare the size of a PlaneCircle object to the size
of some other Circle object:

// Return true if this object is bigger than the specified circle
public boolean isBigger(Circle c) {
 return (this.r > c.r); // If r is protected, c.r is illegal access!
}

In this scenario, this method does not compile. The expression this.r is perfectly legal, since it accesses a protected
field inherited by PlaneCircle. Accessing c.r is not legal, however, since it is attempting to access a protected
field it does not inherit. To make this method legal, we either have to declare PlaneCircle in the same package as
Circle or change the type of the isBigger() parameter to be a PlaneCircle instead of a Circle.

3.5.1.4. Access control and inheritance

The Java specification states that a subclass inherits all the instance fields and instance methods of its superclass
accessible to it. If the subclass is defined in the same package as the superclass, it inherits all non-private instance
fields and methods. If the subclass is defined in a different package, however, it inherits all protected and public
instance fields and methods. private fields and methods are never inherited; neither are class fields or class
methods. Finally, constructors are not inherited; they are chained, as described earlier in this chapter.

The statement that a subclass does not inherit the inaccessible fields and methods of its superclass can be a confusing
one. It would seem to imply that when you create an instance of a subclass, no memory is allocated for any private
fields defined by the superclass. This is not the intent of the statement, however. Every instance of a subclass does, in
fact, include a complete instance of the superclass within it, including all inaccessible fields and methods. It is simply a
matter of terminology. Because the inaccessible fields cannot be used in the subclass, we say they are not inherited. I
stated earlier in this section that the members of a class are always accessible within the body of the class. If this
statement is to apply to all members of the class, including inherited members, then we have to define "inherited
members" to include only those members that are accessible. If you don't care for this definition, you can think of it
this way instead:

● A class inherits all instance fields and instance methods (but not constructors) of its superclass.

● The body of a class can always access all the fields and methods it declares itself. It can also access the
accessible fields and members it inherits from its superclass.

3.5.1.5. Member access summary

Table 3-1 summarizes the member access rules.

Table 3-1. Class Member Accessibility

Member Visibility

file:///C|/orielly/jnut/ch03_05.htm (3 of 6) [2/5/2003 7:47:36 PM]

Data Hiding and Encapsulation (Java in a Nutshell)

Accessible to: public protected package private

Defining class Yes Yes Yes Yes

Class in same package Yes Yes Yes No

Subclass in different package Yes Yes No No

Non-subclass different package Yes No No No

Here are some simple rules of thumb for using visibility modifiers:

● Use public only for methods and constants that form part of the public API of the class. Certain important or
frequently used fields can also be public, but it is common practice to make fields non-public and
encapsulate them with public accessor methods.

● Use protected for fields and methods that aren't required by most programmers using the class, but that may
be of interest to anyone creating a subclass as part of a different package. Note that protected members are
technically part of the exported API of a class. They should be documented and cannot be changed without
potentially breaking code that relies on them.

● Use the default package visibility for fields and methods that are internal implementation details, but are used
by cooperating classes in the same package. You cannot take real advantage of package visibility unless you use
the package directive to group your cooperating classes into a package.

● Use private for fields and methods that are used only inside the class and should be hidden everywhere else.

If you are not sure whether to use protected, package, or private accessibility, it is better to start with overly
restrictive member access. You can always relax the access restrictions in future versions of your class, if necessary.
Doing the reverse is not a good idea because increasing access restrictions is not a backwards-compatible change.

3.5.2. Data Accessor Methods

In the Circle example we've been using, we've declared the circle radius to be a public field. The Circle class is
one in which it may well be reasonable to keep that field publicly accessible; it is a simple enough class, with no
dependencies between its fields. On the other hand, our current implementation of the class allows a Circle object to
have a negative radius, and circles with negative radii should simply not exist. As long as the radius is stored in a
public field, however, any programmer can set the field to any value she wants, no matter how unreasonable. The
only solution is to restrict the programmer's direct access to the field and define public methods that provide indirect
access to the field. Providing public methods to read and write a field is not the same as making the field itself
public. The crucial difference is that methods can perform error checking.

Example 3-4 shows how we might reimplement Circle to prevent circles with negative radii. This version of
Circle declares the r field to be protected and defines accessor methods named getRadius() and
setRadius() to read and write the field value while enforcing the restriction on negative radius values. Because the
r field is protected, it is directly (and more efficiently) accessible to subclasses.

Example 3-4. The Circle Class Using Data Hiding and Encapsulation

file:///C|/orielly/jnut/ch03_05.htm (4 of 6) [2/5/2003 7:47:36 PM]

Data Hiding and Encapsulation (Java in a Nutshell)

package shapes; // Specify a package for the class

public class Circle { // The class is still public
 // This is a generally useful constant, so we keep it public
 public static final double PI = 3.14159;

 protected double r; // Radius is hidden, but visible to subclasses

 // A method to enforce the restriction on the radius
 // This is an implementation detail that may be of interest to subclasses
 protected checkRadius(double radius) {
 if (radius < 0.0)
 throw new IllegalArgumentException("radius may not be negative.");
 }

 // The constructor method
 public Circle(double r) {
 checkRadius(r);
 this.r = r;
 }

 // Public data accessor methods
 public double getRadius() { return r; };
 public void setRadius(double r) {
 checkRadius(r);
 this.r = r;
 }

 // Methods to operate on the instance field
 public double area() { return PI * r * r; }
 public double circumference() { return 2 * PI * r; }
}

We have defined the Circle class within a package named shapes. Since r is protected, any other classes in
the shapes package have direct access to that field and can set it however they like. The assumption here is that all
classes within the shapes package were written by the same author or a closely cooperating group of authors, and
that the classes all trust each other not to abuse their privileged level of access to each other's implementation details.

Finally, the code that enforces the restriction against negative radius values is itself placed within a protected
method, checkRadius(). Although users of the Circle class cannot call this method, subclasses of the class can
call it and even override it if they want to change the restrictions on the radius.

Note particularly the getRadius() and setRadius() methods of Example 3-4. It is almost universal in Java that
data accessor methods begin with the prefixes "get" and "set." If the field being accessed is of type boolean,
however, the get() method may be replaced with an equivalent method that begins with "is." For example, the
accessor method for a boolean field named readable is typically called isReadable() instead of
getReadable(). In the programming conventions of the JavaBeans component model (covered in Chapter 6,
"JavaBeans"), a hidden field with one or more data accessor methods whose names begin with "get," "is," or "set" is
called a property. An interesting way to study a complex class is to look at the set of properties it defines. Properties

file:///C|/orielly/jnut/ch03_05.htm (5 of 6) [2/5/2003 7:47:36 PM]

Data Hiding and Encapsulation (Java in a Nutshell)

are particularly common in the AWT and Swing APIs, which are covered in Java Foundation Classes in a Nutshell
(O'Reilly).

3.4. Subclasses and
Inheritance

3.6. Abstract Classes and
Methods

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch03_05.htm (6 of 6) [2/5/2003 7:47:36 PM]

file:///C|/orielly/jnut/copyrght.htm

Abstract Classes and Methods (Java in a Nutshell)

Chapter 3: Object-Oriented

Programming in Java

3.6. Abstract Classes and Methods

In Example 3-4, we declared our Circle class to be part of a package named shapes. Suppose we plan to implement
a number of shape classes: Rectangle, Square, Ellipse, Triangle, and so on. We can give these shape classes
our two basic area() and circumference() methods. Now, to make it easy to work with an array of shapes, it
would be helpful if all our shape classes had a common superclass, Shape. If we structure our class hierarchy this way,
every shape object, regardless of the actual type of shape it represents, can be assigned to variables, fields, or array
elements of type Shape. We want the Shape class to encapsulate whatever features all our shapes have in common
(e.g., the area() and circumference() methods). But our generic Shape class doesn't represent any real kind of
shape, so it cannot define useful implementations of the methods. Java handles this situation with abstract methods.

Java lets us define a method without implementing it by declaring the method with the abstract modifier. An
abstract method has no body; it simply has a signature definition followed by a semicolon.[7] Here are the rules
about abstract methods and the abstract classes that contain them:

[7] An abstract method in Java is something like a pure virtual function in C++ (i.e., a virtual function
that is declared = 0). In C++, a class that contains a pure virtual function is called an abstract class and
cannot be instantiated. The same is true of Java classes that contain abstract methods.

● Any class with an abstract method is automatically abstract itself and must be declared as such.

● An abstract class cannot be instantiated.

● A subclass of an abstract class can be instantiated only if it overrides each of the abstract methods of its
superclass and provides an implementation (i.e., a method body) for all of them. Such a class is often called a
concrete subclass, to emphasize the fact that it is not abstract.

● If a subclass of an abstract class does not implement all the abstract methods it inherits, that subclass is
itself abstract.

● static, private, and final methods cannot be abstract, since these types of methods cannot be
overridden by a subclass. Similarly, a final class cannot contain any abstract methods.

● A class can be declared abstract even if it does not actually have any abstract methods. Declaring such a
class abstract indicates that the implementation is somehow incomplete and is meant to serve as a superclass
for one or more subclasses that will complete the implementation. Such a class cannot be instantiated.

There is an important feature of the rules of abstract methods. If we define the Shape class to have
abstractarea() and circumference() methods, any subclass of Shape is required to provide
implementations of these methods so it can be instantiated. In other words, every Shape object is guaranteed to have

file:///C|/orielly/jnut/ch03_06.htm (1 of 3) [2/5/2003 7:47:38 PM]

Abstract Classes and Methods (Java in a Nutshell)

implementations of these methods defined. Example 3-5 shows how this might work. It defines an abstractShape
class and two concrete subclasses of it.

Example 3-5. An Abstract Class and Concrete Subclasses

public abstract class Shape {
 public abstract double area(); // Abstract methods: note
 public abstract double circumference(); // semicolon instead of body.
}

class Circle extends Shape {
 public static final double PI = 3.14159265358979323846;
 protected double r; // Instance data
 public Circle(double r) { this.r = r; } // Constructor
 public double getRadius() { return r; } // Accessor
 public double area() { return PI*r*r; } // Implementations of
 public double circumference() { return 2*PI*r; } // abstract methods.
}

class Rectangle extends Shape {
 protected double w, h; // Instance data
 public Rectangle(double w, double h) { // Constructor
 this.w = w; this.h = h;
 }
 public double getWidth() { return w; } // Accessor method
 public double getHeight() { return h; } // Another accessor
 public double area() { return w*h; } // Implementations of
 public double circumference() { return 2*(w + h); } // abstract methods.
}

Each abstract method in Shape has a semicolon right after its parentheses. There are no curly braces, and no
method body is defined. Using the classes defined in Example 3-5, we can now write code like this:

Shape[] shapes = new Shape[3]; // Create an array to hold shapes
shapes[0] = new Circle(2.0); // Fill in the array
shapes[1] = new Rectangle(1.0, 3.0);
shapes[2] = new Rectangle(4.0, 2.0);

double total_area = 0;
for(int i = 0; i < shapes.length; i++)
 total_area += shapes[i].area(); // Compute the area of the shapes

There are two important points to notice here:

● Subclasses of Shape can be assigned to elements of an array of Shape. No cast is necessary. This is another
example of a widening reference type conversion (discussed in Chapter 2, "Java Syntax from the Ground Up").

● You can invoke the area() and circumference() methods for any Shape object, even though the Shape
class does not define a body for these methods. When you do this, the method to be invoked is found using

file:///C|/orielly/jnut/ch03_06.htm (2 of 3) [2/5/2003 7:47:38 PM]

Abstract Classes and Methods (Java in a Nutshell)

dynamic method lookup, so the area of a circle is computed using the method defined by Circle, and the area
of a rectangle is computed using the method defined by Rectangle.

3.5. Data Hiding and
Encapsulation

3.7. Interfaces

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch03_06.htm (3 of 3) [2/5/2003 7:47:38 PM]

file:///C|/orielly/jnut/copyrght.htm

Interfaces (Java in a Nutshell)

Chapter 3: Object-Oriented

Programming in Java

3.7. Interfaces

Let's extend our shapes package further. Suppose we now want to implement a number of shapes that not only know
their sizes, but also know the position of their center point in the Cartesian coordinate plane. One way to do this is to
define an abstract CenteredShape class and then implement various subclasses of it, such as CenteredCircle,
CenteredRectangle, and so on.

But we also want these positionable shape classes to support the area() and circumference() methods we've
already defined, without reimplementing these methods. So, for example, we'd like to define CenteredCircle as a
subclass of Circle, so that it inherits area() and circumference(). But a class in Java can have only one
immediate superclass. If CenteredCircle extends Circle, it cannot also extend the abstractCenteredShape
class![8]

[8]C++ allows classes to have more than one superclass, using a technique known as multiple inheritance.
Multiple inheritance adds a lot of complexity to a language; Java supports what many believe is a more
elegant solution.

Java's solution to this problem is called an interface. Although a Java class can extend only a single superclass, it can
implement any number of interfaces.

3.7.1. Defining an Interface

An interface is a reference type that is closely related to a class. Almost everything you've read so far in this book about
classes applies equally to interfaces. Defining an interface is a lot like defining an abstract class, except that the keywords
abstract and class are replaced with the keyword interface. When you define an interface, you are creating a
new reference type, just as you are when you define a class. As its name implies, an interface specifies an interface, or
API, for certain functionality. It does not define any implementation of that API, however. There are a number of
restrictions that apply to the members of an interface:

● An interface contains no implementation whatsoever. All methods of an interface are implicitly abstract, even
if the abstract modifier is omitted. Interface methods have no implementation; a semicolon appears in place of
the method body. Because interfaces can contain only abstract methods, and class methods cannot be abstract,
the methods of an interface must all be instance methods.

● An interface defines a public API. All methods of an interface are implicitly public, even if the public
modifier is omitted. It is an error to define a protected or private method in an interface.

● Although a class defines data and methods that operate on that data, an interface cannot define instance fields.
Fields are an implementation detail, and an interface is a pure specification without any implementation. The only
fields allowed in an interface definition are constants that are declared both static and final.

file:///C|/orielly/jnut/ch03_07.htm (1 of 6) [2/5/2003 7:47:41 PM]

Interfaces (Java in a Nutshell)

● An interface cannot be instantiated, so it does not define a constructor.

Example 3-6 shows the definition of an interface named Centered. This interface defines the methods a Shape
subclass should implement if it knows the x,y coordinate of its center point.

Example 3-6. An Interface Definition

public interface Centered {
 public void setCenter(double x, double y);
 public double getCenterX();
 public double getCenterY();
}

3.7.2. Implementing an Interface

Just as a class uses extends to specify its superclass, it can use implements to name one or more interfaces it
supports. implements is a Java keyword that can appear in a class declaration following the extends clause.
implements should be followed by the name or names of the interface(s) the class implements, with multiple names
separated by commas.

When a class declares an interface in its implements clause, it is saying that it provides an implementation (i.e., a
body) for each method of that interface. If a class implements an interface but does not provide an implementation for
every interface method, it inherits those unimplemented abstract methods from the interface and must itself be
declared abstract. If a class implements more than one interface, it must implement every method of each interface it
implements (or be declared abstract).

Example 3-7 shows how we can define a CenteredRectangle class that extends our Rectangle class and
implements the Centered interface we defined in Example 3-6.

Example 3-7. Implementing an Interface

public class CenteredRectangle extends Rectangle implements Centered {
 // New instance fields
 private double cx, cy;

 // A constructor
 public CenteredRectangle(double cx, double cy, double w, double h) {
 super(w, h);
 this.cx = cx;
 this.cy = cy;
 }

 // We inherit all the methods of Rectangle, but must
 // provide implementations of all the Centered methods.
 public void setCenter(double x, double y) { cx = x; cy = y; }
 public double getCenterX() { return cx; }
 public double getCenterY() { return cy; }
}

file:///C|/orielly/jnut/ch03_07.htm (2 of 6) [2/5/2003 7:47:41 PM]

Interfaces (Java in a Nutshell)

As I noted earlier, constants can appear in an interface definition. Any class that implements the interface inherits the
constants and can use them as if they were defined directly in the class. There is no need to prefix them with the name of
the interface or provide any kind of implementation of the constants. When you have a set of constants used by more than
one class (e.g., a port number and other protocol constants used by a client and server), it can be convenient to define the
necessary constants in an interface that contains no methods. Then, any class that wants to use those constants needs only
to declare that it implements the interface. java.io.ObjectStreamConstants is just such an interface.

3.7.3. Using Interfaces

Suppose we implement CenteredCircle and CenteredSquare just as we implemented CenteredRectangle
in Example 3-7. Since each class extends Shape, instances of the classes can be treated as instances of the Shape class,
as we saw earlier. Since each class implements Centered, instances can also be treated as instances of that type. The
following code demonstrates both techniques:

Shape[] shapes = new Shape[3]; // Create an array to hold shapes

// Create some centered shapes, and store them in the Shape[]
// No cast necessary: these are all widening conversions
shapes[0] = new CenteredCircle(1.0, 1.0, 1.0);
shapes[1] = new CenteredSquare(2.5, 2, 3);
shapes[2] = new CenteredRectangle(2.3, 4.5, 3, 4);

// Compute average area of the shapes and average distance from the origin
double totalArea = 0;
double totalDistance;
for(int i = 0; i < shapes.length; i++) {
 totalArea += shapes[i].area(); // Compute the area of the shapes
 if (shapes[i] instanceof Centered) { // The shape is a Centered shape
 // Note the required cast from Shape to Centered (no cast
 // would be required to go from CenteredSquare to Centered, however).
 Centered c = (Centered) shapes[i]; // Assign it to a Centered variable
 double cx = c.getCenterX(); // Get coordinates of the center
 double cy = c.getCenterY(); // Compute distance from origin
 totalDistance += Math.sqrt(cx*cx + cy*cy);
 }
}
System.out.println("Average area: " + totalArea/shapes.length);
System.out.println("Average distance: " + totalDistance/shapes.length);

This example demonstrates that interfaces are data types in Java, just like classes. When a class implements an interface,
instances of that class can be assigned to variables of the interface type. Don't interpret this example, however, to imply
that you must assign a CenteredRectangle object to a Centered variable before you can invoke the
setCenter() method or to a Shape variable before you can invoke the area() method. CenteredRectangle
defines setCenter() and inherits area() from its Rectangle superclass, so you can always invoke these methods.

3.7.4. When to Use Interfaces

When defining an abstract type (e.g., Shape) that you expect to have many sub-types (e.g., Circle, Rectangle,
Square), you are often faced with a choice between interfaces and abstract classes. Since they have similar features, it is

file:///C|/orielly/jnut/ch03_07.htm (3 of 6) [2/5/2003 7:47:41 PM]

Interfaces (Java in a Nutshell)

not always clear when to use one over the other.

An interface is useful because any class can implement it, even if that class extends some entirely unrelated superclass.
But an interface is a pure API specification and contains no implementation. If an interface has numerous methods, it can
become tedious to implement the methods over and over, especially when much of the implementation is duplicated by
each implementing class.

On the other hand, a class that extends an abstract class cannot extend any other class, which can cause design difficulties
in some situations. However, an abstract class does not need to be entirely abstract; it can contain a partial implementation
that subclasses can take advantage of. In some cases, numerous subclasses can rely on default method implementations
provided by an abstract class.

Another important difference between interfaces and abstract classes has to do with compatibility. If you define an
interface as part of a public API and then later add a new method to the interface, you break any classes that implemented
the previous version of the interface. If you use an abstract clas, however, you can safely add nonabstract methods to that
class without requiring modifications to existing classes that extend the abstract class.

In some situations, it will be clear that an interface or an abstract class is the right design choice. In other cases, a common
design pattern is to use both. First, define the type as a totally abstract interface. Then create an abstract class that
implements the interface and provides useful default implementations subclasses can take advantage of. For example:

// Here is a basic interface. It represents a shape that fits inside
// of a rectangular bounding box. Any class that wants to serve as a
// RectangularShape can implement these methods from scratch.
public interface RectangularShape {
 public void setSize(double width, double height);
 public void setPosition(double x, double y);
 public void translate(double dx, double dy);
 public double area();
 public boolean isInside();
}

// Here is a partial implementation of that interface. Many
// implementations may find this a useful starting point.
public abstract class AbstractRectangularShape implements RectangularShape {
 // The position and size of the shape
 protected double x, y, w, h;

 // Default implementations of some of the interface methods
 public void setSize(double width, double height) { w = width; h = height; }
 public void setPosition(double x, double y) { this.x = x; this.y = y; }
 public void translate (double dx, double dy) { x += dx; y += dy; }
}

3.7.5. Implementing Multiple Interfaces

Suppose we want shape objects that can be positioned in terms of not only their center points, but also their upper-left
corners. And suppose we also want shapes that can be scaled larger and smaller. Remember that although a class can
extend only a single superclass, it can implement any number of interfaces. Assuming we have defined appropriate

file:///C|/orielly/jnut/ch03_07.htm (4 of 6) [2/5/2003 7:47:41 PM]

Interfaces (Java in a Nutshell)

UpperRightCornered and Scalable interfaces, we can declare a class as follows:

public class SuperDuperSquare extends Shape
 implements Centered, UpperRightCornered, Scalable {
 // class members omitted here.
}

When a class implements more than one interface, it simply means that it must provide implementations for all abstract
methods in all its interfaces.

3.7.6. Extending Interfaces

Interfaces can have subinterfaces, just as classes can have subclasses. A subinterface inherits all the abstract methods and
constants of its superinterface and can define new abstract methods and constants. Interfaces are different from classes in
one very important way, however: an interface can have an extends clause that lists more than one superinterface. For
example, here are some interfaces that extend other interfaces:

public interface Positionable extends Centered {
 public setUpperRightCorner(double x, double y);
 public double getUpperRightX();
 public double getUpperRightY();
}
public interface Transformable extends Scalable, Translatable, Rotatable {}
public interface SuperShape implements Positionable, Transformable {}

An interface that extends more than one interface inherits all the abstract methods and constants from each of those
interfaces and can define its own additional abstract methods and constants. A class that implements such an interface
must implement the abstract methods defined directly by the interface, as well as all the abstract methods inherited from
all the superinterfaces.

3.7.7. Marker Interfaces

Sometimes it is useful to define an interface that is entirely empty. A class can implement this interface simply by naming
it in its implements clause without having to implement any methods. In this case, any instances of the class become
valid instances of the interface. Java code can check whether an object is an instance of the interface using the
instanceof operator, so this technique is a useful way to provide additional information about an object. The
Cloneable interface in java.lang is an example of this type of marker interface. It defines no methods, but
identifies the class as one that allows its internal state to be cloned by the clone() method of the Object class. As of
Java 1.1, java.io.Serializable is another such marker interface. Given an arbitrary object, you can determine
whether it has a working clone() method with code like this:

Object o; // Initialized elsewhere
Object copy;
if (o instanceof Cloneable) copy = o.clone();
else copy = null;

file:///C|/orielly/jnut/ch03_07.htm (5 of 6) [2/5/2003 7:47:41 PM]

Interfaces (Java in a Nutshell)

3.6. Abstract Classes and
Methods

3.8. Inner Class Overview

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch03_07.htm (6 of 6) [2/5/2003 7:47:41 PM]

file:///C|/orielly/jnut/copyrght.htm

Inner Class Overview (Java in a Nutshell)

Chapter 3: Object-Oriented

Programming in Java

3.8. Inner Class Overview

The classes and interfaces we have seen so far in this chapter have all been top-level classes (i.e., they are
direct members of packages, not nested within any other classes). Starting in Java 1.1, however, there are
four other types of classes, loosely known as inner classes, that can be defined in a Java program. Used
correctly, inner classes are an elegant and powerful feature of the Java language. These four types of
classes are summarized here:

Static member classes

A static member class is a class (or interface) defined as a static member of another class. A
static method is called a class method, so, by analogy, we could call this type of inner class a
"class class," but this terminology would obviously be confusing. A static member class behaves
much like an ordinary top-level class, except that it can access the static members of the class
that contains it. Interfaces can be defined as static members of classes.

Member classes

A member class is also defined as a member of an enclosing class, but is not declared with the
static modifier. This type of inner class is analogous to an instance method or field. An
instance of a member class is always associated with an instance of the enclosing class, and the
code of a member class has access to all the fields and methods (both static and non-static)
of its enclosing class. There are several features of Java syntax that exist specifically to work with
the enclosing instance of a member class. Interfaces can only be defined as static members of a
class, not as non-static members.

Local classes

A local class is a class defined within a block of Java code. Like a local variable, a local class is
visible only within that block. Although local classes are not member classes, they are still
defined within an enclosing class, so they share many of the features of member classes.
Additionally, however, a local class can access any final local variables or parameters that are
accessible in the scope of the block that defines the class. Interfaces cannot be defined locally.

Anonymous classes

file:///C|/orielly/jnut/ch03_08.htm (1 of 2) [2/5/2003 7:47:44 PM]

Inner Class Overview (Java in a Nutshell)

An anonymous class is a kind of local class that has no name; it combines the syntax for class
definition with the syntax for object instantiation. While a local class definition is a Java
statement, an anonymous class definition (and instantiation) is a Java expression, so it can appear
as part of a larger expression, such as method invocation. Interfaces cannot be defined
anonymously.

Java programmers have not reached a consensus on the appropriate names for the various kinds of inner
classes. Thus, you may find them referred to by different names in different situations. In particular,
static member classes are sometimes called "nested top-level" classes, and the term "nested classes" may
refer to all types of inner classes. The term "inner classes" is itself overloaded and sometimes refers
specifically to member classes. On other occasions, "inner classes" refers to member classes, local
classes, and anonymous classes, but not static member classes. In this book, I use "inner class" to mean
any class other than a standard top-level class and the names shown previously to refer to the individual
types of inner classes.

3.7. Interfaces 3.9. Static Member Classes

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch03_08.htm (2 of 2) [2/5/2003 7:47:44 PM]

file:///C|/orielly/jnut/copyrght.htm

Static Member Classes (Java in a Nutshell)

Chapter 3: Object-Oriented

Programming in Java

3.9. Static Member Classes

A static member class (or interface) is much like a regular top-level class (or interface). For convenience,
however, it is nested within another class or interface. Example 3-8 shows a helper interface defined as a static
member of a containing class. The example also shows how this interface is used both within the class that
contains it and by external classes. Note the use of its hierarchical name in the external class.

Example 3-8. Defining and Using a Static Member Interface

// A class that implements a stack as a linked list
public class LinkedStack {
 // This static member interface defines how objects are linked
 public static interface Linkable {
 public Linkable getNext();
 public void setNext(Linkable node);
 }

 // The head of the list is a Linkable object
 Linkable head;

 // Method bodies omitted
 public void push(Linkable node) { ... }
 public Object pop() { ... }
}

// This class implements the static member interface
class LinkableInteger implements LinkedStack.Linkable {
 // Here's the node's data and constructor
 int i;
 public LinkableInteger(int i) { this.i = i; }

 // Here are the data and methods required to implement the interface
 LinkedStack.Linkable next;
 public LinkedStack.Linkable getNext() { return next; }
 public void setNext(LinkedStack.Linkable node) { next = node; }
}

3.9.1. Features of Static Member Classes

file:///C|/orielly/jnut/ch03_09.htm (1 of 2) [2/5/2003 7:47:46 PM]

Static Member Classes (Java in a Nutshell)

A static member class or interface is defined as a static member of a containing class, making it analogous to
the class fields and methods that are also declared static. Like a class method, a static member class is not
associated with any instance of the containing class (i.e., there is no this object). A static member class does,
however, have access to all the static members (including any other static member classes and interfaces) of its
containing class. A static member class can use any other static member without qualifying its name with the name
of the containing class.

A static member class has access to all static members of its containing class, including private members. The
reverse is true as well: the methods of the containing class have access to all members of a static member class,
including the private members. A static member class even has access to all the members of any other static
member classes, including the private members of those classes.

Since static member classes are themselves class members, a static member class can be declared with its own
access control modifiers. These modifiers have the same meanings for static member classes as they do for other
members of a class. In Example 3-8, the Linkable interface is declared public, so it can be implemented by
any class that is interested in being stored on a LinkedStack.

3.9.2. Restrictions on Static Member Classes

A static member class cannot have the same name as any of its enclosing classes. In addition, static member
classes and interfaces can be defined only within top-level classes and other static member classes and interfaces.
This is actually part of a larger prohibition against static members of any sort within member, local, and
anonymous classes.

3.9.3. New Syntax for Static Member Classes

In code outside of the containing class, a static member class or interface is named by combining the name of the
outer class with the name of the inner class (e.g., LinkedStack.Linkable). You can use the import
directive to import a static member class:

import LinkedStack.Linkable; // Import a specific inner class
import LinkedStack.*; // Import all inner classes of LinkedStack

Importing inner classes is not recommended, however, because it obscures the fact that the inner class is tightly
associated with its containing class.

3.8. Inner Class Overview 3.10. Member Classes

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch03_09.htm (2 of 2) [2/5/2003 7:47:46 PM]

file:///C|/orielly/jnut/copyrght.htm

Member Classes (Java in a Nutshell)

Chapter 3: Object-Oriented

Programming in Java

3.10. Member Classes

A member class is a class that is declared as a non-static member of a containing class. If a static member class is
analogous to a class field or class method, a member class is analogous to an instance field or instance method.
Example 3-9 shows how a member class can be defined and used. This example extends the previous
LinkedStack example to allow enumeration of the elements on the stack by defining an enumerate() method
that returns an implementation of the java.util.Enumeration interface. The implementation of this interface
is defined as a member class.

Example 3-9. An Enumeration Implemented as a Member Class

public class LinkedStack {
 // Our static member interface; body omitted here...
 public static interface Linkable { ... }

 // The head of the list
 private Linkable head;

 // Method bodies omitted here
 public void push(Linkable node) { ... }
 public Linkable pop() { ... }

 // This method returns an Enumeration object for this LinkedStack
public java.util.Enumeration enumerate() { return new Enumerator(); }

 // Here is the implementation of the Enumeration interface,
 // defined as a member class.
 protected class Enumerator implements java.util.Enumeration {
 Linkable current;
 // The constructor uses the private head field of the containing class
public Enumerator() { current = head; }
 public boolean hasMoreElements() { return (current != null); }
 public Object nextElement() {
 if (current == null) throw new java.util.NoSuchElementException();
 Object value = current;
 current = current.getNext();
 return value;
 }
 }
}

file:///C|/orielly/jnut/ch03_10.htm (1 of 5) [2/5/2003 7:47:49 PM]

Member Classes (Java in a Nutshell)

Notice how the Enumerator class is nested within the LinkedStack class. Since Enumerator is a helper class
used only within LinkedStack, there is a real elegance to having it defined so close to where it is used by the
containing class.

3.10.1. Features of Member Classes

Like instance fields and instance methods, every member class is associated with an instance of the class within
which it is defined (i.e., every instance of a member class is associated with an instance of the containing class). This
means that the code of a member class has access to all the instance fields and instance methods (as well as the
static members) of the containing class, including any that are declared private.

This crucial feature is illustrated in Example 3-9. Here is the body of the LinkedStack.Enumerator()
constructor again:

current = head;

This single line of code sets the current field of the inner class to the value of the head field of the containing
class. The code works as shown, even though head is declared as a private field in the containing class.

A member class, like any member of a class, can be assigned one of three visibility levels: public, protected, or
private. If none of these visibility modifiers is specified, the default package visibility is used. In Example 3-9, the
Enumerator class is declared protected, so it is inaccessible to code using the LinkedStack class, but
accessible to any class that subclasses LinkedStack.

3.10.2. Restrictions on Member Classes

There are three important restrictions on member classes:

● A member class cannot have the same name as any containing class or package. This is an important rule, and
one not shared by fields and methods.

● Member classes cannot contain any static fields, methods, or classes (with the exception of constant fields
declared both static and final). static fields, methods, and classes are top-level constructs not
associated with any particular object, while every member class is associated with an instance of its enclosing
class. Defining a static top-level member within a non-top-level member class simply promotes confusion
and bad programming style, so you are required to define all static members within a top-level or static
member class or interface.

● Interfaces cannot be defined as member classes. An interface cannot be instantiated, so there is no object to
associate with an instance of the enclosing class. If you declare an interface as a member of a class, the
interface is implicitly static, making it a static member class.

3.10.3. New Syntax for Member Classes

The most important feature of a member class is that it can access the instance fields and methods in its containing

file:///C|/orielly/jnut/ch03_10.htm (2 of 5) [2/5/2003 7:47:49 PM]

Member Classes (Java in a Nutshell)

object. We saw this in the LinkedStack.Enumerator() constructor of Example 3-9:

public Enumerator() { current = head; }

In this example, head is a field of the LinkedStack class, and we assign it to the current field of the
Enumerator class. The current code works, but what if we want to make these references explicit? We could try
code like this:

public Enumerator() { this.current = this.head; }

This code does not compile, however. this.current is fine; it is an explicit reference to the current field in
the newly created Enumerator object. It is the this.head expression that causes the problem; it refers to a field
named head in the Enumerator object. Since there is no such field, the compiler generates an error. To solve this
problem, Java defines a special syntax for explicitly referring to the containing instance of the this object. Thus, if
we want to be explicit in our constructor, we can use the following syntax:

public Enumerator() { this.current = LinkedStack.this.head; }

The general syntax is classname.this, where classname is the name of a containing class. Note that member
classes can themselves contain member classes, nested to any depth. Since no member class can have the same name
as any containing class, however, the use of the enclosing class name prepended to this is a perfectly general way
to refer to any containing instance. This syntax is needed only when referring to a member of a containing class that
is hidden by a member of the same name in the member class.

3.10.3.1. Accessing superclass members of the containing class

When a class shadows or overrides a member of its superclass, you can use the keyword super to refer to the hidden
member. This super syntax can be extended to work with member classes as well. On the rare occasion when you
need to refer to a shadowed field f or an overridden method m of a superclass of a containing class C, use the
following expressions:

C.super.f
C.super.m()

This syntax was not implemented by Java 1.1 compilers, but it works correctly as of Java 1.2.

3.10.3.2. Specifying the containing instance

As we've seen, every instance of a member class is associated with an instance of its containing class. Look again at
our definition of the enumerate() method in Example 3-9:

public Enumeration enumerate() { return new Enumerator(); }

When a member class constructor is invoked like this, the new instance of the member class is automatically
associated with the this object. This is what you would expect to happen and exactly what you want to occur in
most cases. Occasionally, however, you may want to specify the containing instance explicitly when instantiating a

file:///C|/orielly/jnut/ch03_10.htm (3 of 5) [2/5/2003 7:47:49 PM]

Member Classes (Java in a Nutshell)

member class. You can do this by preceding the new operator with a reference to the containing instance. Thus, the
enumerate() method shown above is shorthand for the following:

public Enumeration enumerate() { return this.new Enumerator(); }

Let's pretend we didn't define an enumerate() method for LinkedStack. In this case, the code to obtain an
Enumerator object for a given LinkedStack object might look like this:

LinkedStack stack = new LinkedStack(); // Create an empty stack
Enumeration e = stack.new Enumerator(); // Create an Enumeration for it

The containing instance implicitly specifies the name of the containing class; it is a syntax error to explicitly specify
that containing class:

Enumeration e = stack.new LinkedStack.Enumerator(); // Syntax error

There is one other special piece of Java syntax that specifies an enclosing instance for a member class explicitly.
Before we consider it, however, let me point out that you should rarely, if ever, need to use this syntax. It is one of the
pathological cases that snuck into the language along with all the elegant features of inner classes.

As strange as it may seem, it is possible for a top-level class to extend a member class. This means that the subclass
does not have a containing instance, but its superclass does. When the subclass constructor invokes the superclass
constructor, it must specify the containing instance. It does this by prepending the containing instance and a period to
the super keyword. If we had not declared our Enumerator class to be a protected member of
LinkedStack, we could subclass it. Although it is not clear why we would want to do so, we could write code like
the following:

// A top-level class that extends a member class
class SpecialEnumerator extends LinkedStack.Enumerator {
 // The constructor must explicitly specify a containing instance
 // when invoking the superclass constructor.
 public SpecialEnumerator(LinkedStack s) { s.super(); }
 // Rest of class omitted...
}

3.10.4. Scope Versus Inheritance for Member Classes

We've just noted that a top-level class can extend a member class. With the introduction of member classes, there are
two separate hierarchies that must be considered for any class. The first is the classhierarchy, from superclass to
subclass, that defines the fields and methods a member class inherits. The second is the containmenthierarchy, from
containing class to contained class, that defines a set of fields and methods that are in the scope of (and are therefore
accessible to) the member class.

The two hierarchies are entirely distinct from each other; it is important that you do not confuse them. This should not
be a problem if you refrain from creating naming conflicts, where a field or method in a superclass has the same
name as a field or method in a containing class. If such a naming conflict does arise, however, the inherited field or

file:///C|/orielly/jnut/ch03_10.htm (4 of 5) [2/5/2003 7:47:49 PM]

Member Classes (Java in a Nutshell)

method takes precedence over the field or method of the same name in the containing class. This behavior is logical:
when a class inherits a field or method, that field or method effectively becomes part of that class. Therefore,
inherited fields and methods are in the scope of the class that inherits them and take precedence over fields and
methods by the same name in enclosing scopes.

Because this can be quite confusing, Java does not leave it to chance that you get it right. Whenever there is a naming
conflict between an inherited field or method and a field or method in a containing class, Java requires that you
explicitly specify which one you mean. For example, if a member class B inherits a field named x and is contained
within a class A that also defines a field named x, you must use this.x to specify the inherited field and
A.this.x to specify the field in the containing class. Any attempt to use the field x without an explicit
specification of the desired instance causes a compilation error.

A good way to prevent confusion between the class hierarchy and the containment hierarchy is to avoid deep
containment hierarchies. If a class is nested more than two levels deep, it is probably going to cause more confusion
than it is worth. Furthermore, if a class has a deep class hierarchy (i.e., it has many superclass ancestors), consider
defining it as a top-level class, rather than as a member class.

3.9. Static Member Classes 3.11. Local Classes

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch03_10.htm (5 of 5) [2/5/2003 7:47:49 PM]

file:///C|/orielly/jnut/copyrght.htm

Local Classes (Java in a Nutshell)

Chapter 3: Object-Oriented

Programming in Java

3.11. Local Classes

A local class is declared locally within a block of Java code, rather than as a member of a class. Typically, a local class is
defined within a method, but it can also be defined within a static initializer or instance initializer of a class. Because all
blocks of Java code appear within class definitions, all local classes are nested within containing classes. For this reason,
local classes share many of the features of member classes. It is usually more appropriate, however, to think of them as an
entirely separate kind of inner class. A local class has approximately the same relationship to a member class as a local
variable has to an instance variable of a class.

The defining characteristic of a local class is that it is local to a block of code. Like a local variable, a local class is valid
only within the scope defined by its enclosing block. If a member class is used only within a single method of its
containing class, for example, there is usually no reason it cannot be coded as a local class, rather than a member class.
Example 3-10 shows how we can modify the enumerate() method of the LinkedStack class so it defines
Enumerator as a local class instead of a member class. By doing this, we move the definition of the class even closer to
where it is used and hopefully improve the clarity of the code even further. For brevity, Example 3-10 shows only the
enumerate() method, not the entire LinkedStack class that contains it.

Example 3-10. Defining and Using a Local Class

// This method creates and returns an Enumeration object
public java.util.Enumeration enumerate() {

 // Here's the definition of Enumerator as a local class
 class Enumerator implements java.util.Enumeration {
 Linkable current;
 public Enumerator() { current = head; }
 public boolean hasMoreElements() { return (current != null); }
 public Object nextElement() {
 if (current == null) throw new java.util.NoSuchElementException();
 Object value = current;
 current = current.getNext();
 return value;
 }
 }

 // Now return an instance of the Enumerator class defined directly above
 return new Enumerator();
}

3.11.1. Features of Local Classes

Local classes have the following interesting features:

file:///C|/orielly/jnut/ch03_11.htm (1 of 4) [2/5/2003 7:47:52 PM]

Local Classes (Java in a Nutshell)

● Like member classes, local classes are associated with a containing instance, and can access any members,
including private members, of the containing class.

● In addition to accessing fields defined by the containing class, local classes can access any local variables, method
parameters, or exception parameters that are in the scope of the local method definition and declared final.

3.11.2. Restrictions on Local Classes

Local classes are subject to the following restrictions:

● A local class is visible only within the block that defines it; it can never be used outside that block.

● Local classes cannot be declared public, protected, private, or static. These modifiers are for
members of classes; they are not allowed with local variable declarations or local class declarations.

● Like member classes, and for the same reasons, local classes cannot contain static fields, methods, or classes.
The only exception is for constants that are declared both static and final.

● Interfaces cannot be defined locally.

● A local class, like a member class, cannot have the same name as any of its enclosing classes.

● As noted earlier, a local class can use the local variables, method parameters, and even exception parameters that
are in its scope, but only if those variables or parameters are declared final. This is because the lifetime of an
instance of a local class can be much longer than the execution of the method in which the class is defined. For this
reason, a local class must have a private internal copy of all local variables it uses (these copies are automatically
generated by the compiler). The only way to ensure that the local variable and the private copy are always the same
is to insist that the local variable is final.

3.11.3. New Syntax for Local Classes

In Java 1.0, only fields, methods, and classes can be declared final. The addition of local classes in Java 1.1 has
required a liberalization in the use of the final modifier. It can now be applied to local variables, method parameters,
and even the exception parameter of a catch statement. The meaning of the final modifier remains the same in these
new uses: once the local variable or parameter has been assigned a value, that value cannot be changed.

Instances of local classes, like instances of member classes, have an enclosing instance that is implicitly passed to all
constructors of the local class. Local classes can use the same this syntax as member classes, to refer explicitly to
members of enclosing classes. Because local classes are never visible outside the blocks that define them, however, there
is never a need to use the new and super syntax used by member classes to specify the enclosing instance explicitly.

3.11.4. Scope of a Local Class

In discussing member classes, we saw that a member class can access any members inherited from superclasses and any
members defined by its containing classes. The same is true for local classes, but local classes can also access final
local variables and parameters. The following code illustrates the many fields and variables that may be accessible to a

file:///C|/orielly/jnut/ch03_11.htm (2 of 4) [2/5/2003 7:47:52 PM]

Local Classes (Java in a Nutshell)

local class:

class A { protected char a = 'a'; }
class B { protected char b = 'b'; }

public class C extends A {
 private char c = 'c'; // Private fields visible to local class
 public static char d = 'd';
 public void createLocalObject(final char e)
 {
 final char f = 'f';
 int i = 0; // i not final; not usable by local class
 class Local extends B
 {
 char g = 'g';
 public void printVars()
 {
 // All of these fields and variables are accessible to this class
 System.out.println(g); // (this.g) g is a field of this class
 System.out.println(f); // f is a final local variable
 System.out.println(e); // e is a final local parameter
 System.out.println(d); // (C.this.d) d -- field of containing class
 System.out.println(c); // (C.this.c) c -- field of containing class
 System.out.println(b); // b is inherited by this class
 System.out.println(a); // a is inherited by the containing class
 }
 }
 Local l = new Local(); // Create an instance of the local class
 l.printVars(); // and call its printVars() method.
 }
}

3.11.5. Local Classes and Local Variable Scope

A local variable is defined within a block of code, which defines its scope. A local variable ceases to exist outside of its
scope. Java is a lexically scoped language, which means that its concept of scope has to do with the way the source code is
written. Any code within the curly braces that define the boundaries of a block can use local variables defined in that
block.[9]

[9] This section covers advanced material; first-time readers may want to skip it for now and return to it
later.

Lexical scoping simply defines a segment of source code within which a variable can be used. It is common, however, to
think of a scope as a temporal scope--to think of a local variable as existing from the time the Java interpreter begins
executing the block until the time the interpreter exits the block. This is usually a reasonable way to think about local
variables and their scope.

The introduction of local classes confuses the picture, however, because local classes can use local variables, and
instances of a local class can have a lifetime much longer than the time it takes the interpreter to execute the block of

file:///C|/orielly/jnut/ch03_11.htm (3 of 4) [2/5/2003 7:47:52 PM]

Local Classes (Java in a Nutshell)

code. In other words, if you create an instance of a local class, the instance does not automatically go away when the
interpreter finishes executing the block that defines the class, as shown in the following code:

public class Weird {
 // A static member interface used below
 public static interface IntHolder { public int getValue(); }

 public static void main(String[] args) {
 IntHolder[] holders = new IntHolder[10]; // An array to hold 10 objects
 for(int i = 0; i < 10; i++) { // Loop to fill the array up
 final int fi = i; // A final local variable
 class MyIntHolder implements IntHolder { // A local class
 public int getValue() { return fi; } // It uses the final variable
 }
 holders[i] = new MyIntHolder(); // Instantiate the local class
 }

 // The local class is now out of scope, so we can't use it. But
 // we've got ten valid instances of that class in our array. The local
 // variable fi is not in our scope here, but it is still in scope for
 // the getValue() method of each of those ten objects. So call getValue()
 // for each object and print it out. This prints the digits 0 to 9.
 for(int i = 0; i < 10; i++) System.out.println(holders[i].getValue());
 }
}

The behavior of the previous program is pretty surprising. To make sense of it, remember that the lexical scope of the
methods of a local class has nothing to do with when the interpreter enters and exits the block of code that defines the
local class. Here's another way to think about it: each instance of a local class has an automatically created private copy of
each of the final local variables it uses, so, in effect, it has its own private copy of the scope that existed when it was
created.

3.10. Member Classes 3.12. Anonymous Classes

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch03_11.htm (4 of 4) [2/5/2003 7:47:52 PM]

file:///C|/orielly/jnut/copyrght.htm

Anonymous Classes (Java in a Nutshell)

Chapter 3: Object-Oriented

Programming in Java

3.12. Anonymous Classes

An anonymous class is a local class without a name. An anonymous class is defined and instantiated in a single succinct
expression using the new operator. While a local class definition is a statement in a block of Java code, an anonymous
class definition is an expression, which means that it can be included as part of a larger expression, such as a method
call. When a local class is used only once, consider using anonymous class syntax, which places the definition and use
of the class in exactly the same place.

Consider Example 3-11, which shows the Enumeration class implemented as an anonymous class within the
enumerate() method of the LinkedStack class. Compare it with Example 3-10, which shows the same class
implemented as a local class.

Example 3-11. An Enumeration Implemented with an Anonymous Class

public java.util.Enumeration enumerate() {
 // The anonymous class is defined as part of the return statement
 return new java.util.Enumeration() {
 Linkable current; = head;
 { current = head; } // Replace constructor with an instance initializer
 public boolean hasMoreElements() { return (current != null); }
 public Object nextElement() {
 if (current == null) throw new java.util.NoSuchElementException();
 Object value = current;
 current = current.getNext();
 return value;
 }
 }; // Note the required semicolon: it terminates the return statement
}

One common use for an anonymous class is to provide a simple implementation of an adapter class. An adapter class is
one that defines code that is invoked by some other object. Take, for example, the list() method of the
java.io.File class. This method lists the files in a directory. Before it returns the list, though, it passes the name of
each file to a FilenameFilter object you must supply. This FilenameFilter object accepts or rejects each file.
When you implement the FilenameFilter interface, you are defining an adapter class for use with the
File.list() method. Since the body of such a class is typically quite short, it is easy to define an adapter class as an
anonymous class. Here's how you can define a FilenameFilter class to list only those files whose names end with
.java :

File f = new File("/src"); // The directory to list

// Now call the list() method with a single FilenameFilter argument

file:///C|/orielly/jnut/ch03_12.htm (1 of 4) [2/5/2003 7:47:54 PM]

Anonymous Classes (Java in a Nutshell)

// Define and instantiate an anonymous implementation of FilenameFilter
// as part of the method invocation expression.
String[] filelist = f.list(new FilenameFilter() {
 public boolean accept(File f, String s) { return s.endsWith(".java"); }
}); // Don't forget the parenthesis and semicolon that end the method call!

As you can see, the syntax for defining an anonymous class and creating an instance of that class uses the new keyword,
followed by the name of a class and a class body definition in curly braces. If the name following the new keyword is
the name of a class, the anonymous class is a subclass of the named class. If the name following new specifies an
interface, as in the two previous examples, the anonymous class implements that interface and extends Object. The
syntax does not include any way to specify an extends clause, an implements clause, or a name for the class.

Because an anonymous class has no name, it is not possible to define a constructor for it within the class body. This is
one of the basic restrictions on anonymous classes. Any arguments you specify between the parentheses following the
superclass name in an anonymous class definition are implicitly passed to the superclass constructor. Anonymous
classes are commonly used to subclass simple classes that do not take any constructor arguments, so the parentheses in
the anonymous class definition syntax are often empty. In the previous examples, each anonymous class implemented an
interface and extended Object. Since the Object() constructor takes no arguments, the parentheses were empty in
those examples.

3.12.1. Features of Anonymous Classes

One of the most elegant things about anonymous classes is that they allow you to define a one-shot class exactly where
it is needed. In addition, anonymous classes have a succinct syntax that reduces clutter in your code.

3.12.2. Restrictions on Anonymous Classes

Because an anonymous class is just a type of local class, anonymous classes and local classes share the same
restrictions. An anonymous class cannot define any static fields, methods, or classes, except for staticfinal
constants. Interfaces cannot be defined anonymously, since there is no way to implement an interface without a name.
Also, like local classes, anonymous classes cannot be public, private, protected, or static.

Since an anonymous class has no name, it is not possible to define a constructor for an anonymous class. If your class
requires a constructor, you must use a local class instead. However, you can often use an instance initializer as a
substitute for a constructor. In fact, instance initializers were introduced into the language for this very purpose.

The syntax for defining an anonymous class combines definition with instantiation. Thus, using an anonymous class
instead of a local class is not appropriate if you need to create more than a single instance of the class each time the
containing block is executed.

3.12.3. New Syntax for Anonymous Classes

We've already seen examples of the syntax for defining and instantiating an anonymous class. We can express that
syntax more formally as:

new class-name ([argument-list]) { class-body }

file:///C|/orielly/jnut/ch03_12.htm (2 of 4) [2/5/2003 7:47:54 PM]

Anonymous Classes (Java in a Nutshell)

or:

new interface-name () { class-body }

As I already mentioned, instance initializers are another specialized piece of Java syntax that was introduced to support
anonymous classes. As we discussed earlier in the chapter, an instance initializer is a block of initialization code
contained within curly braces inside a class definition. The contents of an instance initializer for a class are
automatically inserted into all constructors for the class, including any automatically created default constructor. An
anonymous class cannot define a constructor, so it gets a default constructor. By using an instance initializer, you can get
around the fact that you cannot define a constructor for an anonymous class.

3.12.4. When to Use an Anonymous Class

As we've discussed, an anonymous class behaves just like a local class and is distinguished from a local class merely in
the syntax used to define and instantiate it. In your own code, when you have to choose between using an anonymous
class and a local class, the decision often comes down to a matter of style. You should use whichever syntax makes your
code clearer. In general, you should consider using an anonymous class instead of a local class if:

● The class has a very short body.

● Only one instance of the class is needed.

● The class is used right after it is defined.

● The name of the class does not make your code any easier to understand.

3.12.5. Anonymous Class Indentation and Formatting

The common indentation and formatting conventions we are familiar with for block-structured languages like Java and
C begin to break down somewhat once we start placing anonymous class definitions within arbitrary expressions. Based
on their experience with inner classes, the engineers at Sun recommend the following formatting rules:

● The opening curly brace should not be on a line by itself; instead, it should follow the close parenthesis of the
new operator. Similarly, the new operator should, when possible, appear on the same line as the assignment or
other expression of which it is a part.

● The body of the anonymous class should be indented relative to the beginning of the line that contains the new
keyword.

● The closing curly brace of an anonymous class should not be on a line by itself either; it should be followed by
whatever tokens are required by the rest of the expression. Often this is a semicolon or a close parenthesis
followed by a semicolon. This extra punctuation serves as a flag to the reader that this is not just an ordinary
block of code and makes it easier to understand anonymous classes in a code listing.

file:///C|/orielly/jnut/ch03_12.htm (3 of 4) [2/5/2003 7:47:54 PM]

Anonymous Classes (Java in a Nutshell)

3.11. Local Classes 3.13. How Inner Classes
Work

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch03_12.htm (4 of 4) [2/5/2003 7:47:54 PM]

file:///C|/orielly/jnut/copyrght.htm

How Inner Classes Work (Java in a Nutshell)

Chapter 3: Object-Oriented

Programming in Java

3.13. How Inner Classes Work

The preceding sections have explained the features and behavior of the various types of inner classes.
Strictly speaking, that should be all you need to know about inner classes. In practice, however, some
programmers find it easier to understand the details of inner classes if they understand how they are
implemented.

Inner classes were introduced in Java 1.1. Despite the dramatic changes to the Java language, the
introduction of inner classes did not change the Java Virtual Machine or the Java class file format. As far
as the Java interpreter is concerned, there is no such thing as an inner class: all classes are normal top-
level classes. In order to make an inner class behave as if it is actually defined inside another class, the
Java compiler ends up inserting hidden fields, methods, and constructor arguments into the classes it
generates. You may want to use the javap disassembler to disassemble some of the class files for inner
classes so you can see what tricks the compiler has used to make inner classes work. (See Chapter 8,
"Java Development Tools", for information on javap.)

3.13.1. Static Member Class Implementation

Recall our first LinkedStack example (Example 3-8), which defined a static member interface named
Linkable. When you compile this LinkedStack class, the compiler actually generates two class
files. The first one is LinkedStack.class, as expected. The second class file, however, is called
LinkedStack$Linkable.class. The $ in this name is automatically inserted by the Java compiler. This
second class file contains the implementation of the static member interface.

As we discussed earlier, a static member class can access all the static members of its containing
class. If a static member class does this, the compiler automatically qualifies the member access
expression with the name of the containing class. A static member class is even allowed to access the
privatestatic fields of its containing class. Since the static member class is compiled into an
ordinary top-level class, however, there is no way it can directly access the private members of its
container. Therefore, if a static member class uses a private member of its containing class (or vice
versa), the compiler automatically generates non-private access methods and converts the expressions
that access the private members into expressions that access these specially generated methods. These
methods are given the default package access, which is sufficient, as the member class and its containing
class are guaranteed to be in the same package.

file:///C|/orielly/jnut/ch03_13.htm (1 of 3) [2/5/2003 7:47:58 PM]

How Inner Classes Work (Java in a Nutshell)

3.13.2. Member Class Implementation

A member class is implemented much like a static member class. It is compiled into a separate top-level
class file, and the compiler performs various code manipulations to make interclass member access work
correctly.

The most significant difference between a member class and a static member class is that each instance
of a member class is associated with an instance of the enclosing class. The compiler enforces this
association by defining a synthetic field named this$0 in each member class. This field is used to hold
a reference to the enclosing instance. Every member class constructor is given an extra parameter that
initializes this field. Every time a member class constructor is invoked, the compiler automatically passes
a reference to the enclosing class for this extra parameter.

As we've seen, a member class, like any member of a class, can be declared public, protected, or
private, or given the default package visibility. However, as I mentioned earlier, there have been no
changes to the Java Virtual Machine to support member classes. Member classes are compiled to class
files just like top-level classes, but top-level classes can only have public or package access. Therefore,
as far as the Java interpreter is concerned, member classes can only have public or package visibility.
This means that a member class declared protected is actually treated as a public class, and a member
class declared private actually has package visibility. This does not mean you should never declare a
member class as protected or private. Although the interpreter cannot enforce these access control
modifiers, the modifiers are noted in the class file. This allows any conforming Java compiler to enforce
the access modifiers and prevent the member classes from being accessed in unintended ways.

3.13.3. Local and Anonymous Class Implementation

A local class is able to refer to fields and methods in its containing class for exactly the same reason that
a member class can; it is passed a hidden reference to the containing class in its constructor and saves
that reference away in a private field added by the compiler. Also, like member classes, local classes
can use private fields and methods of their containing class because the compiler inserts any required
accessor methods.

What makes local classes different from member classes is that they have the ability to refer to local
variables in the scope that defines them. The crucial restriction on this ability, however, is that local
classes can only reference local variables and parameters that are declared final. The reason for this
restriction becomes apparent from the implementation. A local class can use local variables because the
compiler automatically gives the class a private instance field to hold a copy of each local variable the
class uses. The compiler also adds hidden parameters to each local class constructor to initialize these
automatically created private fields. Thus, a local class does not actually access local variables, but
merely its own private copies of them. The only way this can work correctly is if the local variables are
declared final, so that they are guaranteed not to change. With this guarantee, the local class can be

file:///C|/orielly/jnut/ch03_13.htm (2 of 3) [2/5/2003 7:47:58 PM]

How Inner Classes Work (Java in a Nutshell)

assured that its internal copies of the variables are always in sync with the real local variables.

Since anonymous classes have no names, you may wonder what the class files that represent them are
named. This is an implementation detail, but the Java compiler from Sun uses numbers to provide
anonymous class names. If you compile the example shown in Example 3-11, you'll find that it produces
a file with a name like LinkedStack$1.class. This is the class file for the anonymous class.

3.12. Anonymous Classes 3.14. Modifier Summary

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch03_13.htm (3 of 3) [2/5/2003 7:47:58 PM]

file:///C|/orielly/jnut/copyrght.htm

Modifier Summary (Java in a Nutshell)

Chapter 3: Object-Oriented

Programming in Java

3.14. Modifier Summary

As we've seen, classes, interfaces, and their members can be declared with one or more modifiers--
keywords such as public, static, and final. This chapter has introduced the public,
protected, and private access modifiers, as well as the abstract, final, and static
modifiers. In addition to these six, Java defines five other less commonly used modifiers. Table 3-2 lists
the Java modifiers, explains what types of Java constructs they can modify, and explains what they do.

Table 3-2. Java Modifiers

Modifier Used on Meaning

abstract class
The class contains unimplemented methods and cannot be instantiated.

interface
All interfaces are abstract. The modifier is optional in interface
declarations.

abstract method

No body is provided for the method; it is provided by a subclass. The
signature is followed by a semicolon. The enclosing class must also be
abstract.

final class
The class cannot be subclassed.

method
The method cannot be overridden (and is not subject to dynamic method
lookup).

field
The field cannot have its value changed. static final fields are
compile-time constants.

variable
A local variable, method parameter, or exception parameter cannot have
its value changed (Java 1.1 and later). Useful with local classes.

file:///C|/orielly/jnut/ch03_14.htm (1 of 3) [2/5/2003 7:48:00 PM]

Modifier Summary (Java in a Nutshell)

native method
The method is implemented in some platform-dependent way (often in
C). No body is provided; the signature is followed by a semicolon.

none (package) class
A non-public class is accessible only in its package.

interface
A non-public interface is accessible only in its package.

member
A member that is not private, protected, or public has package
visibility and is accessible only within its package.

private member
The member is accessible only within the class that defines it.

protected member
The member is accessible only within the package in which it is defined
and within subclasses.

public class
The class is accessible anywhere its package is.

interface
The interface is accessible anywhere its package is.

member
The member is accessible anywhere its class is.

strictfp class
All methods of the class are implicitly strictfp (Java 1.2 and later).

strictfp method

All floating-point computation done by the method must be performed in
a way that strictly conforms to the IEEE 754 standard. In particular, all
values, including intermediate results, must be expressed as IEEE float
or double values and cannot take advantage of any extra precision or
range offered by native platform floating-point formats or hardware (
Java 1.2 and later). This modifier is rarely used.

static class
An inner class declared static is a top-level class, not associated with a
member of the containing class (Java 1.1 and later).

method
A static method is a class method. It is not passed an implicit this
object reference. It can be invoked through the class name.

file:///C|/orielly/jnut/ch03_14.htm (2 of 3) [2/5/2003 7:48:00 PM]

Modifier Summary (Java in a Nutshell)

field

A static field is a class field. There is only one instance of the field,
regardless of the number of class instances created. It can be accessed
through the class name.

initializer
The initializer is run when the class is loaded, rather than when an
instance is created.

synchronized method

The method makes non-atomic modifications to the class or instance, so
care must be taken to ensure that two threads cannot modify the class or
instance at the same time. For a static method, a lock for the class is
acquired before executing the method. For a non-static method, a lock
for the specific object instance is acquired.

transient field

The field is not part of the persistent state of the object and should not be
serialized with the object. Used with object serialization; see
java.io.ObjectOutputStream.

volatile field

The field can be accessed by unsynchronized threads, so certain
optimizations must not be performed on it. This modifier can sometimes
be used as an alternative to synchronized. This modifier is very
rarely used.

3.13. How Inner Classes
Work

3.15. C++ Features Not
Found in Java

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch03_14.htm (3 of 3) [2/5/2003 7:48:00 PM]

file:///C|/orielly/jnut/copyrght.htm

C++ Features Not Found in Java (Java in a Nutshell)

Chapter 3: Object-Oriented

Programming in Java

3.15. C++ Features Not Found in Java

Throughout this chapter, I've noted similarities and differences between Java and C++ in footnotes. Java
shares enough concepts and features with C++ to make it an easy language for C++ programmers to pick
up. There are several features of C++ that have no parallel in Java, however. In general, Java does not
adopt those features of C++ that make the language significantly more complicated.

C++ supports multiple inheritance of method implementations from more than one superclass at a time.
While this seems like a useful feature, it actually introduces many complexities to the language. The Java
language designers chose to avoid the added complexity by using interfaces instead. Thus, a class in Java
can inherit method implementations only from a single superclass, but it can inherit method declarations
from any number of interfaces.

C++ supports templates that allow you, for example, to implement a Stack class and then instantiate it
as Stack<int> or Stack<double> to produce two separate types: a stack of integers and a stack of
floating-point values. Java does not allow this, but efforts are underway to add this feature to the
language in a robust and standardized way. Furthermore, the fact that every class in Java is a subclass of
Object means that every object can be cast to an instance of Object. Thus, in Java it is often
sufficient to define a data structure (such as a Stack class) that operates on Object values; the objects
can be cast back to their actual types whenever necessary.

C++ allows you to define operators that perform arbitrary operations on instances of your classes. In
effect, it allows you to extend the syntax of the language. This is a nifty feature, called operator
overloading, that makes for elegant examples. In practice, however, it tends to make code quite difficult
to understand. After much debate, the Java language designers decided to omit such operator overloading
from the language. Note, though, that the use of the + operator for string concatenation in Java is at least
reminiscent of operator overloading.

C++ allows you to define conversion functions for a class that automatically invoke an appropriate
constructor method when a value is assigned to a variable of that class. This is simply a syntactic shortcut
(similar to overriding the assignment operator) and is not included in Java.

In C++, objects are manipulated by value by default; you must use & to specify a variable or function
argument automatically manipulated by reference. In Java, all objects are manipulated by reference, so
there is no need for this & syntax.

file:///C|/orielly/jnut/ch03_15.htm (1 of 2) [2/5/2003 7:48:01 PM]

C++ Features Not Found in Java (Java in a Nutshell)

3.14. Modifier Summary 4. The Java Platform

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch03_15.htm (2 of 2) [2/5/2003 7:48:01 PM]

file:///C|/orielly/jnut/copyrght.htm

The Java Platform (Java in a Nutshell)

Part 1: Introducing Java

Chapter 4. The Java Platform
Contents:

Java Platform Overview
Strings and Characters
Numbers and Math
Dates and Times
Arrays
Collections
Types, Reflection, and Dynamic Loading
Threads
Files and Directories
Input and Output Streams
Networking
Processes
Security
Cryptography

Chapter 2, "Java Syntax from the Ground Up", and Chapter 3, "Object-Oriented Programming in Java",
documented the Java programming language. This chapter switches gears and covers the Java platform,
which is the vast collection of predefined classes available to every Java program, regardless of the
underlying host system on which it is running. The classes of the Java platform are collected into related
groups, known as packages. This chapter begins with an overview of the packages of the Java platform
that are documented in this book. It then moves on to demonstrate, in the form of short examples, the
most useful classes in these packages.

4.1. Java Platform Overview

Table 4-1 summarizes the key packages of the Java platform that are covered in this book.

Table 4-1. Key Packages of the Java Platform

file:///C|/orielly/jnut/ch04_01.htm (1 of 4) [2/5/2003 7:48:04 PM]

The Java Platform (Java in a Nutshell)

Package Description

java.beans
The JavaBeans component model for reusable, embeddable
software components.

java.beans.beancontext
Additional classes that define bean context objects that hold and
provide services to the JavaBeans objects they contain.

java.io

Classes and interfaces for input and output. Although some of the
classes in this package are for working directly with files, most are
for working with streams of bytes or characters.

java.lang
The core classes of the language, such as String, Math,
System, Thread, and Exception.

java.lang.ref

Classes that define weak references to objects. A weak reference
is one that does not prevent the referent object from being garbage-
collected.

java.lang.reflect

Classes and interfaces that allow Java programs to reflect on
themselves by examining the constructors, methods, and fields of
classes.

java.math
A small package that contains classes for arbitrary-precision
integer and floating-point arithmetic.

java.net
Classes and interfaces for networking with other systems.

java.security
Classes and interfaces for access control and authentication.
Supports cryptographic message digests and digital signatures.

java.security.acl
A package that supports access control lists. Deprecated and
unused as of Java 1.2.

java.security.cert
Classes and interfaces for working with public key certificates.

java.security.interfaces
Interfaces used with DSA and RSA public-key encryption.

file:///C|/orielly/jnut/ch04_01.htm (2 of 4) [2/5/2003 7:48:04 PM]

The Java Platform (Java in a Nutshell)

java.security.spec
Classes and interfaces for transparent representations of keys and
parameters used in public-key cryptography.

java.text
Classes and interfaces for working with text in internationalized
applications.

java.util
Various utility classes, including the powerful collections
framework for working with collections of objects.

java.util.jar
Classes for reading and writing JAR files.

java.util.zip
Classes for reading and writing ZIP files.

javax.crypto
Classes and interfaces for encryption and decryption of data.

javax.crypto.interfaces
Interfaces that represent the Diffie-Hellman public/private keys
used in the Diffie-Hellman key agreement protocol.

javax.crypto.spec
Classes that define transparent representations of keys and
parameters used in cryptography.

Table 4-1 does not list all the packages in the Java platform, only those documented in this book. Java
also defines numerous packages for graphics and graphical user interface programming and for
distributed, or enterprise, computing. The graphics and GUI packages are java.awt and
javax.swing and their many subpackages. These packages, along with the java.applet package,
are documented in Java Foundation Classes in a Nutshell (O'Reilly). The enterprise packages of Java
include java.rmi, java.sql, javax.jndi, org.omg.CORBA, org.omg.CosNaming, and all
of their subpackages. These packages, as well as several standard extensions to the Java platform, are
documented in the book Java Enterprise in a Nutshell (O'Reilly).

3.15. C++ Features Not
Found in Java

4.2. Strings and Characters

file:///C|/orielly/jnut/ch04_01.htm (3 of 4) [2/5/2003 7:48:04 PM]

The Java Platform (Java in a Nutshell)

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch04_01.htm (4 of 4) [2/5/2003 7:48:04 PM]

file:///C|/orielly/jnut/copyrght.htm

Strings and Characters (Java in a Nutshell)

Chapter 4: The Java Platform

4.2. Strings and Characters

Strings of text are a fundamental and commonly used data type. In Java, however, strings are not a primitive type, like char,
int, and float. Instead, strings are represented by the java.lang.String class, which defines many useful methods
for manipulating strings. String are immutable : once a String object has been created, there is no way to modify the
string of text it represents. Thus, each method that operates on a string typically returns a new String object that holds the
modified string.

This code shows some of the basic operations you can perform on strings:

// Creating strings
String s = "Now"; // String objects have a special literal syntax
String t = s + " is the time."; // Concatenate strings with + operator
String t1 = s + " " + 23.4; // + converts other values to strings
t1 = String.valueOf('c'); // Get string corresponding to char value
t1 = String.valueOf(42); // Get string version of integer or any value
t1 = Object.toString(); // Convert objects to strings with toString()

// String length
int len = t.length(); // Number of characters in the string: 16

// Substrings of a string
String sub = t.substring(4); // Returns char 4 to end: "is the time."
sub = t.substring(4, 6); // Returns chars 4 and 5: "is"
sub = t.substring(0, 3); // Returns chars 0 through 2: "Now"
sub = t.substring(x, y); // Returns chars between pos x and y-1
int numchars = sub.length(); // Length of substring is always (y-x)

// Extracting characters from a string
char c = t.charAt(2); // Get the 3rd character of t: w
char[] ca = t.toCharArray(); // Convert string to an array of characters
t.getChars(0, 3, ca, 1); // Put 1st 4 chars of s into ca at position 2

// Case conversion
String caps = t.toUpperCase(); // Convert to uppercase
String lower = t.toLowerCase(); // Convert to lowercase

// Comparing strings
boolean b1 = t.equals("hello"); // Returns false: strings not equal
boolean b2 = t.equalsIgnoreCase(caps); // Case-insensitive compare: true
boolean b3 = t.startsWith("Now"); // Returns true
boolean b4 = t.endsWith("time."); // Returns true
int r1 = s.compareTo("Pow"); // Returns < 0: s comes before "Pow"
int r2 = s.compareTo("Now"); // Returns 0: strings are equal
int r3 = s.compareTo("Mow"); // Returns > 0: s comes after "Mow"

file:///C|/orielly/jnut/ch04_02.htm (1 of 4) [2/5/2003 7:48:07 PM]

Strings and Characters (Java in a Nutshell)

r1 = s.compareToIgnoreCase("pow"); // Returns < 0 (Java 1.2 and later)

// Searching for characters and substrings
int pos = t.indexOf('i'); // Position of first 'i': 4
pos = t.indexOf('i', pos+1); // Position of the next 'i': 12
pos = t.indexOf('i', pos+1); // No more 'i's in string, returns -1
pos = t.lastIndexOf('i'); // Position of last 'i' in string: 12
pos = t.lastIndexOf('i', pos-1); // Search backwards for 'i' from char 11

pos = t.indexOf("is"); // Search for substring: returns 4
pos = t.indexOf("is", pos+1); // Only appears once: returns -1
pos = t.lastIndexOf("the "); // Search backwards for a string
String noun = t.substring(pos+4); // Extract word following "the"

// Replace all instances of one character with another character
String exclaim = t.replace('.', '!'); // Only works with chars, not substrings

// Strip blank space off the beginning and end of a string
String noextraspaces = t.trim();

// Obtain unique instances of strings with intern()
String s1 = s.intern(); // Returns s1 equal to s
String s2 = "Now".intern(); // Returns s2 equal to "Now"
boolean equals = (s1 == s2); // Now can test for equality with ==

Since String objects are immutable, you cannot manipulate the characters of a String in place. If you need to do this,
use a java.lang.StringBuffer instead:

// Create a string buffer from a string
StringBuffer b = new StringBuffer("Mow");

// Get and set individual characters of the StringBuffer
char c = b.charAt(0); // Returns 'M': just like String.charAt()
b.setCharAt(0, 'N'); // b holds "Now": can't do that with a String!

// Append to a StringBuffer
b.append(' '); // Append a character
b.append("is the time."); // Append a string
b.append(23); // Append an integer or any other value

// Insert Strings or other values into a StringBuffer
b.insert(6, "n't"); // b now holds: "Now isn't the time.23"

// Replace a range of characters with a string (Java 1.2 and later)
b.replace(4, 9, "is"); // Back to "Now is the time.23"

// Delete characters
b.delete(16, 18); // Delete a range: "Now is the time"
b.deleteCharAt(2); // Delete 2nd character: "No is the time"
b.setLength(5); // Truncate by setting the length: "No is"

// Other useful operations
b.reverse(); // Reverse characters: "si oN"

file:///C|/orielly/jnut/ch04_02.htm (2 of 4) [2/5/2003 7:48:07 PM]

Strings and Characters (Java in a Nutshell)

String s = b.toString(); // Convert back to an immutable string
s = b.substring(1,2); // Or take a substring: "i"
b.setLength(0); // Erase buffer; now it is ready for reuse

In addition to the String and StringBuffer classes, there are a number of other Java classes that operate on strings.
One notable class is java.util.StringTokenizer, which you can use to break a string of text into its component
words:

String s = "Now is the time";
java.util.StringTokenizer st = new java.util.StringTokenizer(s);
while(st.hasMoreTokens()) {
 System.out.println(st.nextToken());
}

You can even use this class to tokenize words that are delimited by characters other than spaces:

String s = "a:b:c:d";
java.util.StringTokenizer st = new java.util.StringTokenizer(s, ":");

As you know, individual characters are represented in Java by the primitive char type. The Java platform also defines a
Character class, which defines useful class methods for checking the type of a character and converting the case of a
character. For example:

char[] text; // An array of characters, initialized somewhere else
int p = 0; // Our current position in the array of characters
// Skip leading whitespace
while((p < text.length) && Character.isWhitespace(text[p])) p++;
// Capitalize the first word of text
while((p < text.length) && Character.isLetter(text[p])) {
 text[p] = Character.toUpperCase(text[p]);
 p++;
}

The compareTo() and equals() methods of the String class allow you to compare strings. compareTo() bases its
comparison on the character order defined by the Unicode encoding, while equals() defines string equality as strict
character-by-character equality. These are not always the right methods to use, however. In some languages, the character
ordering imposed by the Unicode standard does not match the dictionary ordering used when alphabetizing strings. In
Spanish, for example, the letters "ch" are considered a single letter that comes after "c" and before "d." When comparing
human-readable strings in an internationalized application, you should use the java.text.Collator class instead:

import java.text.*;

// Compare two strings; results depend on where the program is run
// Return values of Collator.compare() have same meanings as String.compareTo()
Collator c = Collator.getInstance(); // Get Collator for current locale
int result = c.compare("chica", "coche"); // Use it to compare two strings

4.1. Java Platform Overview 4.3. Numbers and Math

file:///C|/orielly/jnut/ch04_02.htm (3 of 4) [2/5/2003 7:48:07 PM]

Strings and Characters (Java in a Nutshell)

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch04_02.htm (4 of 4) [2/5/2003 7:48:07 PM]

file:///C|/orielly/jnut/copyrght.htm

Numbers and Math (Java in a Nutshell)

Chapter 4: The Java Platform

4.3. Numbers and Math

Java provides the byte, short, int, long, float, and double primitive types for representing numbers. The
java.lang package includes the corresponding Byte, Short, Integer, Long, Float, and Double classes, each of
which is a subclass of Number. These classes can be useful as object wrappers around their primitive types, and they also
define some useful constants:

// Integral range constants: Integer, Long, and Character also define these
Byte.MIN_VALUE // The smallest (most negative) byte value
Byte.MAX_VALUE // The largest byte value
Short.MIN_VALUE // The most negative short value
Short.MAX_VALUE // The largest short value

// Floating-point range constants: Double also defines these
Float.MIN_VALUE // Smallest (closest to zero) positive float value
Float.MAX_VALUE // Largest positive float value

// Other useful constants
Math.PI // 3.14159265358979323846
Math.E // 2.7182818284590452354

A Java program that operates on numbers must get its input values from somewhere. Often, such a program reads a textual
representation of a number and must convert it to a numeric representation. The various Number subclasses define useful
conversion methods:

String s = "-42";
byte b = Byte.parseByte(s); // s as a byte
short sh = Short.parseShort(sh); // s as a short
int i = Integer.parseInt(s); // s as an int
long l = Long.parseLong(s); // s as a long
float f = Float.parseFloat(s); // s as a float (Java 1.2 and later)
f = Float.valueOf(s).floatValue(); // s as a float (prior to Java 1.2)
double d = Double.parseDouble(s); // s as a double (Java 1.2 and later)
d = Double.valueOf(s).doubleValue(); // s as a double (prior to Java 1.2)

// The integer conversion routines handle numbers in other bases
byte b = Byte.parseByte("1011", 2); // 1011 in binary is 11 in decimal
short sh = Short.parseShort("ff", 16); // ff in base 16 is 255 in decimal

// The valueOf() method can handle arbitrary bases
int i = Integer.valueOf("egg", 17).intValue(); // Base 17!

// The decode() method handles octal, decimal, or hexadecimal, depending
// on the numeric prefix of the string
short sh = Short.decode("0377").byteValue(); // Leading 0 means base 8

file:///C|/orielly/jnut/ch04_03.htm (1 of 3) [2/5/2003 7:48:14 PM]

Numbers and Math (Java in a Nutshell)

int i = Integer.decode("0xff").shortValue(); // Leading 0x means base 16
long l = Long.decode("255").intValue(); // Other numbers mean base 10

// Integer class can convert numbers to strings
String decimal = Integer.toString(42);
String binary = Integer.toBinaryString(42);
String octal = Integer.toOctalString(42);
String hex = Integer.toHexString(42);
String base36 = Integer.toString(42, 36);

Numeric values are often printed differently in different countries. For example, many European languages use a comma to
separate the integral part of a floating-point value from the fractional part (instead of a decimal point). Formatting differences
can diverge even further when displaying numbers that represent monetary values. When converting numbers to strings for
display, therefore, it is best to use the java.text.NumberFormat class to perform the conversion in a locale-specific
way:

import java.text.*;

// Use NumberFormat to format and parse numbers for the current locale
NumberFormat nf = NumberFormat.getNumberInstance(); // Get a NumberFormat
System.out.println(nf.format(9876543.21)); // Format number for current locale
try {
 Number n = nf.parse("1.234.567,89"); // Parse strings according to locale
} catch (ParseException e) { /* Handle exception */ }

// Monetary values are sometimes formatted differently than other numbers
NumberFormat moneyFmt = NumberFormat.getCurrencyInstance();
System.out.println(moneyFmt.format(1234.56)); // Prints $1,234.56 in U.S.

The Math class defines a number of methods that provide trigonometric, logarithmic, exponential, and rounding operations,
among others. This class is primarily useful with floating-point values. For the trigonometric functions, angles are expressed
in radians. The logarithm and exponentiation functions are base e, not base 10. Here are some examples:

double d = Math.toRadians(27); // Convert 27 degrees to radians
d = Math.cos(d); // Take the cosine
d = Math.sqrt(d); // Take the square root
d = Math.log(d); // Take the natural logarithm
d = Math.exp(d); // Do the inverse: e to the power d
d = Math.pow(10, d); // Raise 10 to this power
d = Math.atan(d); // Compute the arc tangent
d = Math.toDegrees(d); // Convert back to degrees
double up = Math.ceil(d); // Round to ceiling
double down = Math.floor(d); // Round to floor
long nearest = Math.round(d); // Round to nearest

The Math class also defines a rudimentary method for generating pseudo-random numbers, but the java.util.Random
class is more flexible. If you need very random pseudo-random numbers, you can use the
java.security.SecureRandom class:

// A simple random number
double r = Math.random(); // Returns d such that: 0.0 <= d < 1.0

file:///C|/orielly/jnut/ch04_03.htm (2 of 3) [2/5/2003 7:48:14 PM]

Numbers and Math (Java in a Nutshell)

// Create a new Random object, seeding with the current time
java.util.Random generator = new java.util.Random(System.currentTimeMillis());
double d = generator.nextDouble(); // 0.0 <= d < 1.0
float f = generator.nextFloat(); // 0.0 <= d < 1.0
long l = generator.nextLong(); // Chosen from the entire range of long
int i = generator.nextInt(); // Chosen from the entire range of int
i = generator.nextInt(limit); // 0 <= i < limit (Java 1.2 and later)
boolean b = generator.nextBoolean(); // true or false (Java 1.2 and later)
d = generator.nextGaussian(); // Mean value: 0.0; std. deviation: 1.0
byte[] randomBytes = new byte[128];
generator.nextBytes(randomBytes); // Fill in array with random bytes

// For cryptographic strength random numbers, use the SecureRandom subclass
java.security.SecureRandom generator2 = new java.security.SecureRandom();
// Have the generator generate its own 16-byte seed; takes a *long* time
generator2.setSeed(generator2.generateSeed(16)); // Extra random 16-byte seed
// Then use SecureRandom like any other Random object
generator2.nextBytes(randomBytes); // Generate more random bytes

The java.math package contains the BigInteger and BigDecimal classes. These classes allow you to work with
arbitrary-size and arbitrary-precision integers and floating-point values. For example:

import java.math.*;

// Compute the factorial of 1000
BigInteger total = BigInteger.valueOf(1);
for(int i = 2; i <= 1000; i++)
 total = total.multiply(BigInteger.valueOf(i));
System.out.println(total.toString());

4.2. Strings and Characters 4.4. Dates and Times

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch04_03.htm (3 of 3) [2/5/2003 7:48:14 PM]

file:///C|/orielly/jnut/copyrght.htm

Dates and Times (Java in a Nutshell)

Chapter 4: The Java Platform

4.4. Dates and Times

Java uses several different classes for working with dates and times. The java.util.Date class represents an instant in
time (precise down to the millisecond). This class is nothing more than a wrapper around a long value that holds the
number of milliseconds since midnight GMT, January 1, 1970. Here are two ways to determine the current time:

long t0 = System.currentTimeMillis(); // Current time in milliseconds
java.util.Date now = new java.util.Date(); // Basically the same thing
long t1 = now.getTime(); // Convert a Date to a long value

The Date class has a number of interesting-sounding methods, but almost all of them have been deprecated in favor of
methods of the java.util.Calendar and java.text.DateFormat classes. To print a date or a time, use the
DateFormat class, which automatically handles locale-specific conventions for date and time formatting. DateFormat
even works correctly in locales that use a calendar other than the common era (Gregorian) calendar in use in much of the
world:

import java.util.Date;
import java.text.*;

// Display today's date using a default format for the current locale
DateFormat defaultDate = DateFormat.getDateInstance();
System.out.println(defaultDate.format(new Date()));

// Display the current time using a short time format for the current locale
DateFormat shortTime = DateFormat.getTimeInstance(DateFormat.SHORT);
System.out.println(shortTime.format(new Date()));

// Display date and time using a long format for both
DateFormat longTimestamp =
 DateFormat.getDateTimeInstance(DateFormat.FULL, DateFormat.FULL);
System.out.println(longTimestamp.format(new Date()));

// Use SimpleDateFormat to define your own formatting template
// See java.text.SimpleDateFormat for the template syntax
DateFormat myformat = new SimpleDateFormat("yyyy.MM.dd");
System.out.println(myformat.format(new Date()));
try { // DateFormat can parse dates too
 Date leapday = myformat.parse("2000.02.29");
}
catch (ParseException e) { /* Handle parsing exception */ }

The Date class and its millisecond representation allow only a very simple form of date arithmetic:

long now = System.currentTimeMillis(); // The current time

file:///C|/orielly/jnut/ch04_04.htm (1 of 2) [2/5/2003 7:48:17 PM]

Dates and Times (Java in a Nutshell)

long anHourFromNow = now + (60 * 60 * 1000); // Add 3,600,000 milliseconds

To perform more sophisticated date and time arithmetic and manipulate dates in ways humans (rather than computers)
typically care about, use the java.util.Calendar class:

import java.util.*;

// Get a Calendar for current locale and time zone
Calendar cal = Calendar.getInstance();

// Figure out what day of the year today is
cal.setTime(new Date()); // Set to the current time
int dayOfYear = cal.get(Calendar.DAY_OF_YEAR); // What day of the year is it?

// What day of the week does the leap day in the year 2000 occur on?
cal.set(2000, Calendar.FEBRUARY, 29); // Set year, month, day fields
int dayOfWeek = cal.get(Calendar.DAY_OF_WEEK); // Query a different field

// What day of the month is the 3rd Thursday of May, 2001?
cal.set(Calendar.YEAR, 2001); // Set the year
cal.set(Calendar.MONTH, Calendar.MAY); // Set the month
cal.set(Calendar.DAY_OF_WEEK, Calendar.THURSDAY); // Set the day of week
cal.set(Calendar.DAY_OF_WEEK_IN_MONTH, 3); // Set the week
int dayOfMonth = cal.get(Calendar.DAY_OF_MONTH); // Query the day in month

// Get a Date object that represents 30 days from now
Date today = new Date(); // Current date
cal.setTime(today); // Set it in the Calendar object
cal.add(Calendar.DATE, 30); // Add 30 days
Date expiration = cal.getTime(); // Retrieve the resulting date

4.3. Numbers and Math 4.5. Arrays

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch04_04.htm (2 of 2) [2/5/2003 7:48:17 PM]

file:///C|/orielly/jnut/copyrght.htm

Arrays (Java in a Nutshell)

Chapter 4: The Java Platform

4.5. Arrays

The java.lang.System class defines an arraycopy() method that is useful for copying specified elements in one
array to a specified position in a second array. The second array must be the same type as the first, and it can even be the same
array:

char[] text = "Now is the time".toCharArray();
char[] copy = new char[100];
// Copy 10 characters from element 4 of text into copy, starting at copy[0]
System.arraycopy(text, 4, copy, 0, 10);

// Move some of the text to later elements, making room for insertions
System.arraycopy(copy, 3, copy, 6, 7);

In Java 1.2 and later, the java.util.Arrays class defines useful array-manipulation methods, including methods for
sorting and searching arrays:

import java.util.Arrays;

int[] intarray = new int[] { 10, 5, 7, -3 }; // An array of integers
Arrays.sort(intarray); // Sort it in place
int pos = Arrays.binarySearch(intarray, 7); // Value 7 is found at index 2
pos = Arrays.binarySearch(intarray, 12); // Not found: negative return value

// Arrays of objects can be sorted and searched too
String[] strarray = new String[] { "now", "is", "the", "time" };
Arrays.sort(strarray); // { "is", "now", "the", "time" }

// Arrays.equals() compares all elements of two arrays
String[] clone = (String[]) strarray.clone();
boolean b1 = Arrays.equals(strarray, clone); // Yes, they're equal

// Arrays.fill() initializes array elements
byte[] data = new byte[100]; // An empty array; elements set to 0
Arrays.fill(data, (byte) -1); // Set them all to -1
Arrays.fill(data, 5, 10, (byte) -2); // Set elements 5, 6, 7, 8, 9 to -2

Arrays can be treated and manipulated as objects in Java. Given an arbitrary object o, you can use code such as the following
to find out if the object is an array and, if so, what type of array it is:

Class type = o.getClass();
if (type.isArray()) {
 Class elementType = type.getComponentType();
}

file:///C|/orielly/jnut/ch04_05.htm (1 of 2) [2/5/2003 7:48:19 PM]

Arrays (Java in a Nutshell)

4.4. Dates and Times 4.6. Collections

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch04_05.htm (2 of 2) [2/5/2003 7:48:19 PM]

file:///C|/orielly/jnut/copyrght.htm

Collections (Java in a Nutshell)

Chapter 4: The Java Platform

4.6. Collections

The Java collection framework is a set of important utility classes and interfaces in the java.util package for working
with collections of objects. The collection framework defines two fundamental types of collections. A Collection is a
group of objects, while a Map is a set of mappings, or associations, between objects. A Set is a type of Collection in
which there are no duplicates, and a List is a Collection in which the elements are ordered. Collection, Set,
List, and Map are all interfaces, but the java.util package also defines various concrete implementations (see Chapter
23, "The java.util Package"). Other important interfaces are Iterator and ListIterator, which allow you to loop
through the objects in a collection. The collection framework is new as of Java 1.2, but prior to that release you can use
Vector and Hashtable, which are approximately the same as ArrayList and HashMap.

The following code demonstrates how you might create and perform basic manipulations on sets, lists, and maps:

import java.util.*;

Set s = new HashSet(); // Implementation based on a hash table
s.add("test"); // Add a String object to the set
boolean b = s.contains("test2"); // Check whether a set contains an object
s.remove("test"); // Remove a member from a set

Set ss = new TreeSet(); // TreeSet implements SortedSet
ss.add("b"); // Add some elements
ss.add("a");
// Now iterate through the elements (in sorted order) and print them
for(Iterator i = ss.iterator(); i.hasNext();)
 System.out.println(i.next());

List l = new LinkedList(); // LinkedList implements a doubly linked list
l = new ArrayList(); // ArrayList is more efficient, usually
Vector v = new Vector(); // Vector is an alternative in Java 1.1/1.0
l.addAll(ss); // Append some elements to it
l.addAll(1, ss); // Insert the elements again at index 1
Object o = l.get(1); // Get the second element
l.set(3, "new element"); // Set the fourth element
l.add("test"); // Append a new element to the end
l.add(0, "test2"); // Insert a new element at the start
l.remove(1); // Remove the second element
l.remove("a"); // Remove the element "a"
l.removeAll(ss); // Remove elements from this set
if (!l.isEmpty()) // If list is not empty,
 System.out.println(l.size()); // print out the number of elements in it
boolean b1 = l.contains("a"); // Does it contain this value?
boolean b2 = l.containsAll(ss); // Does it contain all these values?
List sublist = l.subList(1,3); // A sublist of the 2nd and 3rd elements
Object[] elements = l.toArray(); // Convert it to an array

file:///C|/orielly/jnut/ch04_06.htm (1 of 3) [2/5/2003 7:48:21 PM]

Collections (Java in a Nutshell)

l.clear(); // Delete all elements

Map m = new HashMap(); // Hashtable an alternative in Java 1.1/1.0
m.put("key", new Integer(42)); // Associate a value object with a key object
Object value = m.get("key"); // Look up the value associated with a key
m.remove("key"); // Remove the association from the Map
Set keys = m.keySet(); // Get the set of keys held by the Map

Arrays of objects and collections serve similar purposes. It is possible to convert from one to the other:

Object[] members = set.toArray(); // Get set elements as an array
Object[] items = list.toArray(); // Get list elements as an array
Object[] keys = map.keySet().toArray(); // Get map key objects as an array
Object[] values = map.values().toArray(); // Get map value objects as an array

List l = Arrays.asList(a); // View array as an ungrowable list
List l = new ArrayList(Arrays.asList(a)); // Make a growable copy of it

Just as the java.util.Arrays class defined methods to operate on arrays, the java.util.Collections class
defines methods to operate on collections. Most notable are methods to sort and search the elements of collections:

Collections.sort(list);
int pos = Collections.binarySearch(list, "key"); // list must be sorted first

Here are some other interesting Collections methods:

Collections.copy(list1, list2); // Copy list2 into list1, overwriting list1
Collections.fill(list, o); // Fill list with Object o
Collections.max(c); // Find the largest element in Collection c
Collections.min(c); // Find the smallest element in Collection c
Collections.reverse(list); // Reverse list
Collections.shuffle(list); // Mix up list

Set s = Collections.singleton(o); // Return an immutable set with one element o
List ul = Collections.unmodifiableList(list); // Immutable wrapper for list
Map sm = Collections.synchronizedMap(map); // Synchronized wrapper for map

One particularly useful collection class is java.util.Properties. Properties is a subclass of Hashtable that
predates the collections framework of Java 1.2, making it a legacy collection. A Properties object maintains a mapping
between string keys and string values, and defines methods that allow the mappings to be written to and read from a simple-
format text file. This makes the Properties class ideal for configuration and user preference files. The Properties
class is also used for the system properties returned by System.getProperty():

import java.util.*;
import java.io.*;

String homedir = System.getProperty("user.home"); // Get a system property
Properties sysprops = System.getProperties(); // Get all system properties

// Print the names of all defined system properties
for(Enumeration e = sysprops.propertyNames(); e.hasMoreElements();)

file:///C|/orielly/jnut/ch04_06.htm (2 of 3) [2/5/2003 7:48:21 PM]

Collections (Java in a Nutshell)

 System.out.println(e.nextElement());

sysprops.list(System.out); // Here's an even easier way to list the properties

// Read properties from a configuration file
Properties options = new Properties(); // Empty properties list
File configfile = new File(homedir, ".config"); // The configuration file
try {
 options.load(new FileInputStream(configfile)); // Load props from the file
} catch (IOException e) { /* Handle exception here */ }

// Query a property ("color"), specifying a default ("gray") if undefined
String color = options.getProperty("color", "gray");

// Set a property named "color" to the value "green"
options.setProperty("color", "green");

// Store the contents of the Properties object back into a file
try {
 options.store(new FileOutputStream(configfile), // Output stream
 "MyApp Config File"); // File header comment text
} catch (IOException e) { /* Handle exception */ }

4.5. Arrays 4.7. Types, Reflection, and
Dynamic Loading

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch04_06.htm (3 of 3) [2/5/2003 7:48:21 PM]

file:///C|/orielly/jnut/copyrght.htm

Types, Reflection, and Dynamic Loading (Java in a Nutshell)

Chapter 4: The Java Platform

4.7. Types, Reflection, and Dynamic Loading

The java.lang.Class class represents data types in Java and, along with the classes in the java.lang.reflect
package, gives Java programs the capability of introspection (or self-reflection); a Java class can look at itself, or any other
class, and determine its superclass, what methods it defines, and so on. There are several ways you can obtain a Class
object in Java:

// Obtain the Class of an arbitrary object o
Class c = o.getClass();

// Obtain a Class object for primitive types with various predefined constants
c = Void.TYPE; // The special "no-return-value" type
c = Byte.TYPE; // Class object that represents a byte
c = Integer.TYPE; // Class object that represents an int
c = Double.TYPE; // etc. See also Short, Character, Long, Float.

// Express a class literal as a type name followed by ".class"
c = int.class; // Same as Integer.TYPE
c = String.class; // Same as "dummystring".getClass()
c = byte[].class; // Type of byte arrays
c = Class[][].class; // Type of array of arrays of Class objects

Once you have a Class object, you can perform some interesting reflective operations with it:

import java.lang.reflect.*;

Object o; // Some unknown object to investigate
Class c = o.getClass(); // Get its type

// If it is an array, figure out its base type
while (c.isArray()) c = c.getComponentType();

// If c is not a primitive type, print its class hierarchy
if (!c.isPrimitive()) {
 for(Class s = c; s != null; s = s.getSuperclass())
 System.out.println(s.getName() + " extends");
}

// Try to create a new instance of c; this requires a no-arg constructor
Object newobj = null;
try { newobj = c.newInstance(); }
catch (Exception e) {
 // Handle InstantiationException, IllegalAccessException
}

file:///C|/orielly/jnut/ch04_07.htm (1 of 2) [2/5/2003 7:48:24 PM]

Types, Reflection, and Dynamic Loading (Java in a Nutshell)

// See if the class has a method named setText that takes a single String
// If so, call it with a string argument
try {
 Method m = c.getMethod("setText", new Class[] { String.class });
 m.invoke(newobj, new Object[] { "My Label" });
} catch(Exception e) { /* Handle exceptions here */ }

Class also provides a simple mechanism for dynamic class loading in Java. For more complete control over dynamic
class loading, however, you should use a java.lang.ClassLoader object, typically a
java.net.URLClassLoader. This technique is useful, for example, when you want to load a class that is named in a
configuration file instead of being hardcoded into your program:

// Dynamically load a class specified by name in a config file
String classname = // Look up the name of the class
 config.getProperties("filterclass", // The property name
 "com.davidflangan.filters.Default"); // A default

try {
 Class c = Class.forName(classname); // Dynamically load the class
 Object o = c.newInstance(); // Dynamically instantiate it
} catch (Exception e) { /* Handle exceptions */ }

// If the class to be loaded is not in the classpath, create a custom
// class loader to load it.
// Use the config file again to specify the custom path
import java.net.URLClassLoader;
String classdir = config.getProperties("classpath");
try {
 ClassLoader loader = new URLClassLoader(new URL[] { new URL(classdir) });
 Class c = loader.loadClass(classname);
}
catch (Exception e) { /* Handle exceptions */ }

4.6. Collections 4.8. Threads

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch04_07.htm (2 of 2) [2/5/2003 7:48:24 PM]

file:///C|/orielly/jnut/copyrght.htm

Threads (Java in a Nutshell)

Chapter 4: The Java Platform

4.8. Threads

Java makes it easy to define and work with multiple threads of execution within a program. java.lang.Thread is the
fundamental thread class in the Java API. There are two ways to define a thread. One is to subclass Thread, override the
run() method, and then instantiate your Thread subclass. The other is to define a class that implements the Runnable
method (i.e., define a run() method) and then pass an instance of this Runnable object to the Thread() constructor. In
either case, the result is a Thread object, where the run() method is the body of the thread. When you call the start()
method of the Thread object, the interpreter creates a new thread to execute the run() method. This new thread continues
to run until the run() method exits, at which point it ceases to exist. Meanwhile, the original thread continues running
itself, starting with the statement following the start() method. The following code demonstrates:

final List list; // Some long unsorted list of objects; initialized elsewhere

/** A Thread class for sorting a List in the background */
class BackgroundSorter extends Thread {
 List l;
 public BackgroundSorter(List l) { this.l = l; } // Constructor
 public void run() { Collections.sort(l); } // Thread body
}

// Create a BackgroundSorter thread
Thread sorter = new BackgroundSorter(list);
// Start it running; the new thread runs the run() method above, while
// the original thread continues with whatever statement comes next.
sorter.start();

// Here's another way to define a similar thread
Thread t = new Thread(new Runnable() { // Create a new thread
 public void run() { Collections.sort(list); } // to sort the list of objects.
});
t.start(); // Start it running

Threads can run at different priority levels. A thread at a given priority level does not run unless there are no higher-priority
threads waiting to run. Here is some code you can use when working with thread priorities:

// Set a thread t to lower-than-normal priority
t.setPriority(Thread.NORM_PRIORITY-1);

// Set a thread to lower priority than the current thread
t.setPriority(Thread.currentThread().getPriority() - 1);

// Threads that don't pause for I/O should explicitly yield the CPU
// to give other threads with the same priority a chance to run.
Thread t = new Thread(new Runnable() {
 public void run() {

file:///C|/orielly/jnut/ch04_08.htm (1 of 5) [2/5/2003 7:48:27 PM]

Threads (Java in a Nutshell)

 for(int i = 0; i < data.length; i++) { // Loop through a bunch of data
 process(data[i]); // Process it
 if ((i % 10) == 0) // But after every 10 iterations,
 Thread.yield(); // pause to let other threads run.
 }
 }
});

Often, threads are used to perform some kind of repetitive task at a fixed interval. This is particularly true when doing
graphical programming that involves animation or similar effects:

public class Clock extends Thread {
 java.text.DateFormat f = // How to format the time for this locale
 java.text.DateFormat.getTimeInstance(java.text.DateFormat.MEDIUM);
 boolean keepRunning = true;

 public Clock() { // The constructor
 setDaemon(true); // Daemon thread: interpreter can exit while it runs
 start(); // This thread starts itself
 }

 public void run() { // The body of the thread
 while(keepRunning) { // This thread runs until asked to stop
 String time = f.format(new java.util.Date()); // Current time
 System.out.println(time); // Print the time
 try { Thread.sleep(1000); } // Wait 1000 milliseconds
 catch (InterruptedException e) {} // Ignore this exception
 }
 }

 // Ask the thread to stop running
 public void pleaseStop() { keepRunning = false; }
}

Notice the pleaseStop() method in the previous example. You can forcefully terminate a thread by calling its stop()
method, but this method has been deprecated because a thread that is forcefully stopped can leave objects it is manipulating
in an inconsistent state. If you need a thread that can be stopped, you should define a method such as pleaseStop() that
stops the thread in a controlled way.

In Java 1.3, the java.util.Timer and java.util.TimerTask classes make it even easier to run repetitive tasks.
Here is some code that behaves much like the previous Clock class:

import java.util.*;

// How to format the time for this locale
final java.text.DateFormat timeFmt =
 java.text.DateFormat.getTimeInstance(java.text.DateFormat.MEDIUM);
// Define the time-display task
TimerTask displayTime = new TimerTask() {
 public void run() { System.out.println(timeFmt.format(new Date())); }
};

file:///C|/orielly/jnut/ch04_08.htm (2 of 5) [2/5/2003 7:48:27 PM]

Threads (Java in a Nutshell)

// Create a timer object to run the task (and possibly others)
Timer timer = new Timer();
// Now schedule that task to be run every 1000 milliseconds, starting now
Timer.schedule(displayTime, 0, 1000);
// To stop the time-display task
displayTime.cancel();

Sometimes one thread needs to stop and wait for another thread to complete. You can accomplish this with the join()
method:

List list; // A long list of objects to be sorted; initialized elsewhere

// Define a thread to sort the list: lower its priority, so it only runs
// when the current thread is waiting for I/O, and then start it running.
Thread sorter = new BackgroundSorter(list); // Defined earlier
sorter.setPriority(Thread.currentThread.getPriority()-1); // Lower priority
sorter.start(); // Start sorting

// Meanwhile, in this original thread, read data from a file
byte[] data = readData(); // Method defined elsewhere

// Before we can proceed, we need the list to be fully sorted, so
// we've got to wait for the sorter thread to exit, if it hasn't already.
sorter.join();

When using multiple threads, you must be very careful if you allow more than one thread to access the same data structure.
Consider what would happen if one thread was trying to loop through the elements of a List while another thread was
sorting those elements. Preventing this problem is called threadsynchronization and is one of the central problems of
multithreaded computing. The basic technique for preventing two threads from accessing the same object at the same time is
to require a thread to obtain a lock on the object before the thread can modify it. While any one thread holds the lock, another
thread that requests the lock has to wait until the first thread is done and releases the lock. Every Java object has the
fundamental ability to provide such a locking capability.

The easiest way to keep objects thread-safe is to declare any sensitive methods synchronized. A thread must obtain a
lock on an object before it can execute any of its synchronized methods, which means that no other thread can execute
any other synchronized method at the same time. (If a static method is declared synchronized, the thread must
obtain a lock on the class, and this works in the same manner.) To do finer-grained locking, you can specify
synchronized blocks of code that hold a lock on a specified object for a short time:

// This method swaps two array elements in a synchronized block
public static void swap(Object[] array, int index1, int index2) {
 synchronized(array) {
 Object tmp = array[index1];
 array[index1] = array[index2];
 array[index2] = tmp;
 }
}

// The Collection, Set, List, and Map implementations in java.util do
// not have synchronized methods (except for the legacy implementations
// Vector and Hashtable). When working with multiple threads, you can

file:///C|/orielly/jnut/ch04_08.htm (3 of 5) [2/5/2003 7:48:27 PM]

Threads (Java in a Nutshell)

// obtain synchronized wrapper objects.
List synclist = Collections.synchronizedList(list);
Map syncmap = Collections.synchronizedMap(map);

When you are synchronizing threads, you must be careful to avoid deadlock, which occurs when two threads end up waiting
for each other to release a lock they need. Since neither can proceed, neither one can release the lock it holds, and they both
stop running:

// When two threads try to lock two objects, deadlock can occur unless
// they always request the locks in the same order.
final Object resource1 = new Object(); // Here are two objects to lock
final Object resource2 = new Object();
Thread t1 = new Thread(new Runnable() { // Locks resource1 then resource2
 public void run() {
 synchronized(resource1) {
 synchronized(resource2) { compute(); }
 }
 }
});

Thread t2 = new Thread(new Runnable() { // Locks resource2 then resource1
 public void run() {
 synchronized(resource2) {
 synchronized(resource1) { compute(); }
 }
 }
});

t1.start(); // Locks resource1
t2.start(); // Locks resource2 and now neither thread can progress!

Sometimes a thread needs to stop running and wait until some kind of event occurs, at which point it is told to continue
running. This is done with the wait() and notify() methods. These aren't methods of the Thread class, however; they
are methods of Object. Just as every Java object has a lock associated with it, every object can maintain a list of waiting
threads. When a thread calls the wait() method of an object, it is added to the list of waiting threads for that object and
stops running. When another thread calls the notify() method of the same object, the object wakes up one of the waiting
threads and allows it to continue running:

/**
 * A queue. One thread calls push() to put an object on the queue.
 * Another calls pop() to get an object off the queue. If there is no
 * data, pop() waits until there is some, using wait()/notify().
 * wait() and notify() must be used within a synchronized method or
 * block.
 */
import java.util.*;

public class Queue {
 LinkedList q = new LinkedList(); // Where objects are stored
 public synchronized void push(Object o) {
 q.add(o); // Append the object to the end of the list

file:///C|/orielly/jnut/ch04_08.htm (4 of 5) [2/5/2003 7:48:27 PM]

Threads (Java in a Nutshell)

 this.notify(); // Tell waiting threads that data is ready
 }
 public synchronized Object pop() {
 while(q.size() == 0) {
 try { this.wait(); }
 catch (InterruptedException e) { /* Ignore this exception */ }
 }
 return q.remove(0);
 }
}

4.7. Types, Reflection, and
Dynamic Loading

4.9. Files and Directories

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch04_08.htm (5 of 5) [2/5/2003 7:48:27 PM]

file:///C|/orielly/jnut/copyrght.htm

Files and Directories (Java in a Nutshell)

Chapter 4: The Java Platform

4.9. Files and Directories

The java.io.File class represents a file or a directory and defines a number of important methods for manipulating files
and directories. Note, however, that none of these methods allow you to read the contents of a file; that is the job of
java.io.FileInputStream, which is just one of the many types of input/output streams used in Java and discussed in
the next section. Here are some things you can do with File:

import java.io.*;

// Get the name of the user's home directory and represent it with a File
File homedir = new File(System.getProperty("user.home"));

// Create a File object to represent a file in that directory
File f = new File(homedir, ".configfile");

// Find out how big a file is and when it was last modified
long filelength = f.length();
Date lastModified = new java.util.Date(f.lastModified());

// If the file exists, is not a directory, and is readable,
// move it into a newly created directory.
if (f.exists() && f.isFile() && f.canRead()) { // Check config file
 File configdir = new File(homedir, ".configdir"); // A new config directory
 configdir.mkdir(); // Create that directory
 f.renameTo(new File(configdir, ".config")); // Move the file into it
}

// List all files in the home directory
String[] allfiles = homedir.list();

// List all files that have a ".java" suffix
String[] sourcecode = homedir.list(new FilenameFilter() {
 public boolean accept(File d, String name) { return name.endsWith(".java"); }
});

The File class provides some important additional functionality as of Java 1.2:

// List all filesystem root directories; on Windows, this gives us
// File objects for all drive letters (Java 1.2 and later).
File[] rootdirs = File.listRoots();

// Atomically, create a lock file, then delete it (Java 1.2 and later)
File lock = new File(configdir, ".lock");
if (lock.createNewFile()) {
 // We successfully created the file, so do something
 ...

file:///C|/orielly/jnut/ch04_09.htm (1 of 2) [2/5/2003 7:48:30 PM]

Files and Directories (Java in a Nutshell)

 // Then delete the lock file
 lock.delete();
}
else {
 // We didn't create the file; someone else has a lock
 System.err.println("Can't create lock file; exiting.");
 System.exit(0);
}

// Create a temporary file to use during processing (Java 1.2 and later)
File temp = File.createTempFile("app", ".tmp"); // Filename prefix and suffix
// Make sure file gets deleted when we're done with it (Java 1.2 and later)
temp.deleteOnExit();

The java.io package also defines a RandomAccessFile class that allows you to read binary data from arbitrary
locations in a file. This can be a useful thing to do in certain situations, but most applications read files sequentially, using
the stream classes described in the next section. Here is a short example of using RandomAccessFile:

// Open a file for read/write ("rw") access
File datafile = new File(configdir, "datafile");
RandomAccessFile f = new RandomAccessFile(datafile, "rw");
f.seek(100); // Move to byte 100 of the file
byte[] data = new byte[100]; // Create a buffer to hold data
f.read(data); // Read 100 bytes from the file
int i = f.readInt(); // Read a 4-byte integer from the file
f.seek(100); // Move back to byte 100
f.writeInt(i); // Write the integer first
f.write(data); // Then write the 100 bytes
f.close(); // Close file when done with it

4.8. Threads 4.10. Input and Output
Streams

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch04_09.htm (2 of 2) [2/5/2003 7:48:30 PM]

file:///C|/orielly/jnut/copyrght.htm

Input and Output Streams (Java in a Nutshell)

Chapter 4: The Java Platform

4.10. Input and Output Streams

The java.io package defines a large number of classes for reading and writing streaming, or sequential, data. The
InputStream and OutputStream classes are for reading and writing streams of bytes, while the Reader and
Writer classes are for reading and writing streams of characters. Streams can be nested, meaning you might read
characters from a FilterReader object that reads and processes characters from an underlying Reader stream. This
underlying Reader stream might read bytes from an InputStream and convert them to characters.

There are a number of common operations you can perform with streams. One is to read lines of input the user types at the
console:

import java.io.*;

BufferedReader console = new BufferedReader(new InputStreamReader(System.in));
System.out.print("What is your name: ");
String name = null;
try {
 name = console.readLine();
}
catch (IOException e) { name = "<" + e + ">"; } // This should never happen
System.out.println("Hello " + name);

Reading lines of text from a file is a similar operation. The following code reads an entire text file and quits when it reaches
the end:

String filename = System.getProperty("user.home") + File.separator + ".cshrc";
try {
 BufferedReader in = new BufferedReader(new FileReader(filename));
 String line;
 while((line = in.readLine()) != null) { // Read line, check for end-of-file
 System.out.println(line); // Print the line
 }
 in.close(); // Always close a stream when you are done with it
}
catch (IOException e) {
 // Handle FileNotFoundException, etc. here
}

Throughout this book, you've seen the use of the System.out.println() method to display text on the console.
System.out simply refers to an output stream. You can print text to any output stream using similar techniques. The
following code shows how to output text to a file:

try {
 File f = new File(homedir, ".config");

file:///C|/orielly/jnut/ch04_10.htm (1 of 5) [2/5/2003 7:48:35 PM]

Input and Output Streams (Java in a Nutshell)

 PrintWriter out = new PrintWriter(new FileWriter(f));
 out.println("## Automatically generated config file. DO NOT EDIT!");
 out.close(); // We're done writing
}
catch (IOException e) { /* Handle exceptions */ }

Not all files contain text, however. The following lines of code treat a file as a stream of bytes and read the bytes into a
large array:

try {
 File f; // File to read; initialized elsewhere
 int filesize = (int) f.length(); // Figure out the file size
 byte[] data = new byte[filesize]; // Create an array that is big enough
 // Create a stream to read the file
 DataInputStream in = new DataInputStream(new FileInputStream(f));
 in.readFully(data); // Read file contents into array
 in.close();
}
catch (IOException e) { /* Handle exceptions */ }

Various other packages of the Java platform define specialized stream classes that operate on streaming data in some useful
way. The following code shows how to use stream classes from java.util.zip to compute a checksum of data and
then compress the data while writing it to a file:

import java.io.*;
import java.util.zip.*;

try {
 File f; // File to write to; initialized elsewhere
 byte[] data; // Data to write; initialized elsewhere
 Checksum check = new Adler32(); // An object to compute a simple checksum

 // Create a stream that writes bytes to the file f
 FileOutputStream fos = new FileOutputStream(f);
 // Create a stream that compresses bytes and writes them to fos
 GZIPOutputStream gzos = new GZIPOutputStream(fos);
 // Create a stream that computes a checksum on the bytes it writes to gzos
 CheckedOutputStream cos = new CheckedOutputStream(gzos, check);

 cos.write(data); // Now write the data to the nested streams
 cos.close(); // Close down the nested chain of streams
 long sum = check.getValue(); // Obtain the computed checksum
}
catch (IOException e) { /* Handle exceptions */ }

The java.util.zip package also contains a ZipFile class that gives you random access to the entries of a ZIP
archive and allows you to read those entries through a stream:

import java.io.*;
import java.util.zip.*;

file:///C|/orielly/jnut/ch04_10.htm (2 of 5) [2/5/2003 7:48:35 PM]

Input and Output Streams (Java in a Nutshell)

String filename; // File to read; initialized elsewhere
String entryname; // Entry to read from the ZIP file; initialized elsewhere
ZipFile zipfile = new ZipFile(filename); // Open the ZIP file
ZipEntry entry = zipfile.getEntry(entryname); // Get one entry
InputStream in = zipfile.getInputStream(entry); // A stream to read the entry
BufferedInputStream bis = new BufferedInputStream(in); // Improves efficiency
// Now read bytes from bis...
// Print out contents of the ZIP file
for(java.util.Enumeration e = zipfile.entries(); e.hasMoreElements();) {
 ZipEntry zipentry = (ZipEntry) e.nextElement();
 System.out.println(zipentry.getName());
}

If you need to compute a cryptographic-strength checksum (also knows as a message digest), use one of the stream classes
of the java.security package. For example:

import java.io.*;
import java.security.*;
import java.util.*;

File f; // File to read and compute digest on; initialized elsewhere
List text = new ArrayList(); // We'll store the lines of text here

// Get an object that can compute an SHA message digest
MessageDigest digester = MessageDigest.getInstance("SHA");
// A stream to read bytes from the file f
FileInputStream fis = new FileInputStream(f);
// A stream that reads bytes from fis and computes an SHA message digest
DigestInputStream dis = new DigestInputStream(fis, digester);
// A stream that reads bytes from dis and converts them to characters
InputStreamReader isr = new InputStreamReader(dis);
// A stream that can read a line at a time
BufferedReader br = new BufferedReader(isr);
// Now read lines from the stream
for(String line; (line = br.readLine()) != null; text.add(line)) ;
// Close the streams
br.close();
// Get the message digest
byte[] digest = digester.digest();

So far, we've used a variety of stream classes to manipulate streaming data, but the data itself ultimately comes from a file
or is written to the console. The java.io package defines other stream classes that can read data from and write data to
arrays of bytes or strings of text:

import java.io.*;

// Set up a stream that uses a byte array as its destination
ByteArrayOutputStream baos = new ByteArrayOutputStream();
DataOutputStream out = new DataOutputStream(baos);
out.writeUTF("hello"); // Write some string data out as bytes

file:///C|/orielly/jnut/ch04_10.htm (3 of 5) [2/5/2003 7:48:35 PM]

Input and Output Streams (Java in a Nutshell)

out.writeDouble(Math.PI); // Write a floating-point value out as bytes
byte[] data = baos.toByteArray(); // Get the array of bytes we've written
out.close(); // Close the streams

// Set up a stream to read characters from a string
Reader in = new StringReader("Now is the time!");
// Read characters from it until we reach the end
int c;
while((c = in.read()) != -1) System.out.print((char) c);

Other classes that operate this way include ByteArrayInputStream, StringWriter, CharArrayReader, and
CharArrayWriter.

PipedInputStream and PipedOutputStream and their character-based counterparts, PipedReader and
PipedWriter, are another interesting set of streams defined by java.io. These streams are used in pairs by two
threads that want to communicate. One thread writes bytes to a PipedOutputStream or characters to a
PipedWriter, and another thread reads bytes or characters from the corresponding PipedInputStream or
PipedReader:

// A pair of connected piped I/O streams forms a pipe. One thread writes
// bytes to the PipedOutputStream, and another thread reads them from the
// corresponding PipedInputStream. Or use PipedWriter/PipedReader for chars.
final PipedOutputStream writeEndOfPipe = new PipedOutputStream();
final PipedInputStream readEndOfPipe = new PipedInputStream(writeEndOfPipe);

// This thread reads bytes from the pipe and discards them
Thread devnull = new Thread(new Runnable() {
 public void run() {
 try { while(readEndOfPipe.read() != -1); }
 catch (IOException e) {} // ignore it
 }
});
devnull.start();

One of the most important features of the java.io package is the ability to serialize objects: to convert an object into a
stream of bytes that can later be deserialized back into a copy of the original object. The following code shows how to use
serialization to save an object to a file and later read it back:

Object o; // The object we are serializing; it must implement Serializable
File f; // The file we are saving it to

try {
 // Serialize the object
 ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream(f));
 oos.writeObject(o);
 oos.close();

 // Read the object back in:
 ObjectInputStream ois = new ObjectInputStream(new FileInputStream(f));
 Object copy = ois.readObject();
 ois.close();

file:///C|/orielly/jnut/ch04_10.htm (4 of 5) [2/5/2003 7:48:35 PM]

Input and Output Streams (Java in a Nutshell)

}
catch (IOException e) { /* Handle input/output exceptions */ }
catch (ClassNotFoundException cnfe) { /* readObject() can throw this */ }

The previous example serializes to a file, but remember, you can write serialized objects to any type of stream. Thus, you
can write an object to a byte array, then read it back from the byte array, creating a deep copy of the object. You can write
the object's bytes to a compression stream or even write the bytes to a stream connected across a network to another
program!

4.9. Files and Directories 4.11. Networking

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch04_10.htm (5 of 5) [2/5/2003 7:48:35 PM]

file:///C|/orielly/jnut/copyrght.htm

Networking (Java in a Nutshell)

Chapter 4: The Java Platform

4.11. Networking

The java.net package defines a number of classes that make writing networked applications surprisingly easy. The
easiest class to use is URL, which represents a uniform resource locator. Different Java implementations may support
different sets of URL protocols, but, at a minimum, you can rely on support for the http:, ftp:, and file: protocols.
Here are some ways you can use the URL class:

import java.net.*;
import java.io.*;

// Create some URL objects
URL url=null, url2=null, url3=null;
try {
 url = new URL("http://www.oreilly.com"); // An absolute URL
 url2 = new URL(url, "catalog/books/javanut3/"); // A relative URL
 url3 = new URL("http:", "www.oreilly.com", "index.html");
} catch (MalformedURLException e) { /* Ignore this exception */ }

// Read the content of a URL from an input stream:
InputStream in = url.openStream();

// For more control over the reading process, get a URLConnection object
URLConnection conn = url.openConnection();

// Now get some information about the URL
String type = conn.getContentType();
String encoding = conn.getContentEncoding();
java.util.Date lastModified = new java.util.Date(conn.getLastModified());
int len = conn.getContentLength();

// If necessary, read the contents of the URL using this stream
InputStream in = conn.getInputStream();

Sometimes you need more control over your networked application than is possible with the URL class. In this case, you can
use a Socket to communicate directly with a server. For example:

import java.net.*;
import java.io.*;

// Here's a simple client program that connects to a web server,
// requests a document, and reads the document from the server.
String hostname = "java.oreilly.com"; // The server to connect to
int port = 80; // Standard port for HTTP
String filename = "/index.html"; // The file to read from the server
Socket s = new Socket(hostname, port); // Connect to the server

file:///C|/orielly/jnut/ch04_11.htm (1 of 4) [2/5/2003 7:48:39 PM]

Networking (Java in a Nutshell)

// Get I/O streams we can use to talk to the server
InputStream sin = s.getInputStream();
BufferedReader fromServer = new BufferedReader(new InputStreamReader(sin));
OutputStream sout = s.getOutputStream();
PrintWriter toServer = new PrintWriter(new OutputStreamWriter(sout));

// Request the file from the server, using the HTTP protocol
toServer.print("GET " + filename + " HTTP/1.0\n\n");
toServer.flush();

// Now read the server's response, assume it is a text file, and print it out
for(String l = null; (l = fromServer.readLine()) != null;)
 System.out.println(l);

// Close everything down when we're done
toServer.close();
fromServer.close();
s.close();

A client application uses a Socket to communicate with a server. The server does the same thing: it uses a Socket object
to communicate with each of its clients. However, the server has an additional task, in that it must be able to recognize and
accept client connection requests. This is done with the ServerSocket class. The following code shows how you might
use a ServerSocket. The code implements a simple HTTP server that responds to all requests by sending back (or
mirroring) the exact contents of the HTTP request. A dummy server like this is useful when debugging HTTP clients:

import java.io.*;
import java.net.*;

public class HttpMirror {
 public static void main(String[] args) {
 try {
 int port = Integer.parseInt(args[0]); // The port to listen on
 ServerSocket ss = new ServerSocket(port); // Create a socket to listen
 for(;;) { // Loop forever
 Socket client = ss.accept(); // Wait for a connection
 ClientThread t = new ClientThread(client); // A thread to handle it
 t.start(); // Start the thread running
 } // Loop again
 }
 catch (Exception e) {
 System.err.println(e.getMessage());
 System.err.println("Usage: java HttpMirror <port>");
 }
 }

 static class ClientThread extends Thread {
 Socket client;
 ClientThread(Socket client) { this.client = client; }
 public void run() {
 try {
 // Get streams to talk to the client

file:///C|/orielly/jnut/ch04_11.htm (2 of 4) [2/5/2003 7:48:39 PM]

Networking (Java in a Nutshell)

 BufferedReader in =
 new BufferedReader(new InputStreamReader(client.getInputStream()));
 PrintWriter out =
 new PrintWriter(new OutputStreamWriter(client.getOutputStream()));

 // Send an HTTP response header to the client
 out.print("HTTP/1.0 200\nContent-Type: text/plain\n\n");

 // Read the HTTP request from the client and send it right back
 // Stop when we read the blank line from the client that marks
 // the end of the request and its headers.
 String line;
 while((line = in.readLine()) != null) {
 if (line.length() == 0) break;
 out.println(line);
 }

 out.close();
 in.close();
 client.close();
 }
 catch (IOException e) { /* Ignore exceptions */ }
 }
 }
}

Note how elegantly both the URL and Socket classes use the input/output streams that we saw earlier in the chapter. This is
one of the features that makes the Java networking classes so powerful.

Both URL and Socket perform networking on top of a stream-based network connection. Setting up and maintaining a
stream across a network takes work at the network level, however. Sometimes you need a low-level way to speed a packet of
data across a network, but you don't care about maintaining a stream. If, in addition, you don't need a guarantee that your
data will get there or that the packets of data will arrive in the order you sent them, you may be interested in the
DatagramSocket and DatagramPacket classes:

import java.net.*;

// Send a message to another computer via a datagram
try {
 String hostname = "host.domain.org"; // The computer to send the data to
 InetAddress address = // Convert the DNS hostname
 InetAddress.getByName(hostname); // to a lower-level IP address.
 int port = 1234; // The port to connect to
 String message = "The eagle has landed."; // The message to send
 byte[] data = message.getBytes(); // Convert string to bytes
 DatagramSocket s = new DatagramSocket(); // Socket to send message with
 DatagramPacket p = // Create the packet to send
 new DatagramPacket(data, data.length, address, port);
 s.send(p); // Now send it!
 s.close(); // Always close sockets when done
}
catch (UnknownHostException e) {} // Thrown by InetAddress.getByName()

file:///C|/orielly/jnut/ch04_11.htm (3 of 4) [2/5/2003 7:48:39 PM]

Networking (Java in a Nutshell)

catch (SocketException e) {} // Thrown by new DatagramSocket()
catch (java.io.IOException e) {} // Thrown by DatagramSocket.send()

// Here's how the other computer can receive the datagram
try {
 byte[] buffer = new byte[4096]; // Buffer to hold data
 DatagramSocket s = new DatagramSocket(1234); // Socket to receive it through
 DatagramPacket p =
 new DatagramPacket(buffer, buffer.length); // The packet to receive it
 s.receive(p); // Wait for a packet to arrive
 String msg = // Convert the bytes from the
 new String(buffer, 0, p.getLength()); // packet back to a string.
 s.close(); // Always close the socket
}

catch (SocketException e) {} // Thrown by new DatagramSocket()
catch (java.io.IOException e) {} // Thrown by DatagramSocket.receive()

4.10. Input and Output
Streams

4.12. Processes

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch04_11.htm (4 of 4) [2/5/2003 7:48:39 PM]

file:///C|/orielly/jnut/copyrght.htm

Processes (Java in a Nutshell)

Chapter 4: The Java Platform

4.12. Processes

Earlier in the chapter, we saw how easy it is to create and manipulate multiple threads of execution running within the same
Java interpreter. Java also has a java.lang.Process class that represents a program running externally to the
interpreter. A Java program can communicate with an external process using streams in the same way that it might
communicate with a server running on some other computer on the network. Using a Process is always platform-
dependent and is rarely portable, but it is sometimes a useful thing to do:

// Maximize portability by looking up the name of the command to execute
// in a configuration file.
java.util.Properties config;
String cmd = config.getProperty("sysloadcmd");
if (cmd != null) {
 // Execute the command; Process p represents the running command
 Process p = Runtime.getRuntime().exec(cmd); // Start the command
 InputStream pin = p.getInputStream(); // Read bytes from it
 InputStreamReader cin = new InputStreamReader(pin); // Convert them to chars
 BufferedReader in = new BufferedReader(cin); // Read lines of chars
 String load = in.readLine(); // Get the command output
 in.close(); // Close the stream
}

4.11. Networking 4.13. Security

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch04_12.htm [2/5/2003 7:48:41 PM]

file:///C|/orielly/jnut/copyrght.htm

Security (Java in a Nutshell)

Chapter 4: The Java Platform

4.13. Security

The java.security package defines quite a few classes related to the Java access-control architecture, which is
discussed in more detail in Chapter 5, "Java Security". These classes allow Java programs to run untrusted code in a
restricted environment from which it can do no harm. While these are important classes, you rarely need to use them.

The more interesting classes are the ones used for authentication. A message digest is a value, also known as cryptographic
checksum or secure hash, that is computed over a sequence of bytes. The length of the digest is typically much smaller than
the length of the data for which it is computed, but any change, no matter how small, in the input bytes, produces a change
in the digest. When transmitting data (a message), you can transmit a message digest along with it. Then, the recipient of
the message can recompute the message digest on the received data and, by comparing the computed digest to the received
digest, determine whether the message or the digest was corrupted or tampered with during transmission. We saw a way to
compute a message digest earlier in the chapter when we discussed streams. A similar technique can be used to compute a
message digest for non-streaming binary data:

import java.security.*;

// Obtain an object to compute message digests using the "Secure Hash
// Algorithm"; this method can throw NoSuchAlgorithmException.
MessageDigest md = MessageDigest.getInstance("SHA");

byte[] data, data1, data2, secret; // Some byte arrays initialized elsewhere

// Create a digest for a single array of bytes
byte[] digest = md.digest(data);

// Create a digest for several chunks of data
md.reset(); // Optional: automatically called by digest()
md.update(data1); // Process the first chunk of data
md.update(data2); // Process the second chunk of data
digest = md.digest(); // Compute the digest

// Create a keyed digest that can be verified if you know the secret bytes
md.update(data); // The data to be transmitted with the digest
digest = md.digest(secret); // Add the secret bytes and compute the digest

// Verify a digest like this
byte[] receivedData, receivedDigest; // The data and the digest we received
byte[] verifyDigest = md.digest(receivedData); // Digest the received data
// Compare computed digest to the received digest
boolean verified = java.util.Arrays.equals(receivedDigest, verifyDigest);

A digital signature combines a message-digest algorithm with public-key cryptography. The sender of a message, Alice,
can compute a digest for a message and then encrypt that digest with her private key. She then sends the message and the
encrypted digest to a recipient, Bob. Bob knows Alice's public key (it is public, after all), so he can use it to decrypt the

file:///C|/orielly/jnut/ch04_13.htm (1 of 3) [2/5/2003 7:48:44 PM]

Security (Java in a Nutshell)

digest and verify that the message has not been tampered with. In performing this verification, Bob also learns that the
digest was encrypted with Alice's private key, since he was able to decrypt the digest successfully using Alice's public key.
As Alice is the only one who knows her private key, the message must have come from Alice. A digital signature is called
such because, like a pen-and-paper signature, it serves to authenticate the origin of a document or message. Unlike a pen-
and-paper signature, however, a digital signature is very difficult, if not impossible, to forge, and it cannot simply be cut
and pasted onto another document.

Java makes creating digital signatures easy. In order to create a digital signature, however, you need a
java.security.PrivateKey object. Assuming that a keystore exists on your system (see the keytool documentation
in Chapter 8, "Java Development Tools"), you can get one with code like the following:

// Here is some basic data we need
File homedir = new File(System.getProperty("user.home"));
File keyfile = new File(homedir, ".keystore"); // Or read from config file
String filepass = "KeyStore password" // Password for entire file
String signer = "david"; // Read from config file
String password = "No one can guess this!"; // Better to prompt for this
PrivateKey key; // This is the key we want to look up from the keystore

try {
 // Obtain a KeyStore object and then load data into it
 KeyStore keystore = KeyStore.getInstance(KeyStore.getDefaultType());
 keystore.load(new BufferedInputStream(new FileInputStream(keyfile)),
 filepass.toCharArray());
 // Now ask for the desired key
 key = (PrivateKey) keystore.getKey(signer, password.toCharArray());
}
catch (Exception e) { /* Handle various exception types here */ }

Once you have a PrivateKey object, you create a digital signature with a java.security.Signature object:

PrivateKey key; // Initialized as shown previously
byte[] data; // The data to be signed
Signature s = // Obtain object to create and verify signatures
 Signature.getInstance("SHA1withDSA"); // Can throw NoSuchAlgorithmException
s.initSign(key); // Initialize it; can throw InvalidKeyException
s.update(data); // Data to sign; can throw SignatureException
/* s.update(data2); */ // Call multiple times to specify all data
byte[] signature = s.sign(); // Compute signature

A Signature object can verify a digital signature:

byte[] data; // The signed data; initialized elsewhere
byte[] signature; // The signature to be verified; initialized elsewhere
String signername; // Who created the signature; initialized elsewhere
KeyStore keystore; // Where certificates stored; initialize as shown earlier

// Look for a public key certificate for the signer
java.security.cert.Certificate cert = keystore.getCertificate(signername);
PublicKey publickey = cert.getPublicKey(); // Get the public key from it

file:///C|/orielly/jnut/ch04_13.htm (2 of 3) [2/5/2003 7:48:44 PM]

Security (Java in a Nutshell)

Signature s = Signature.getInstance("SHA1withDSA"); // Or some other algorithm
s.initVerify(publickey); // Setup for verification
s.update(data); // Specify signed data
boolean verified = s.verify(signature); // Verify signature data

The java.security.SignedObject class is a convenient utility for wrapping a digital signature around an object.
The SignedObject can then be serialized and transmitted to a recipient, who can deserialize it and use the verify()
method to verify the signature:

Serializable o; // The object to be signed; must be Serializable
PrivateKey k; // The key to sign with; initialized elsewhere
Signature s = Signature.getInstance("SHA1withDSA"); // Signature "engine"
SignedObject so = new SignedObject(o, k, s); // Create the SignedObject

// The SignedObject encapsulates the object o; it can now be serialized
// and transmitted to a recipient.

// Here's how the recipient verifies the SignedObject
SignedObject so; // The deserialized SignedObject
Object o; // The original object to extract from it
PublicKey pk; // The key to verify with
Signature s = Signature.getInstance("SHA1withDSA"); // Verification "engine"
if (so.verify(pk,s)) // If the signature is valid,
 o = so.getObject(); // retrieve the encapsulated object.

4.12. Processes 4.14. Cryptography

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch04_13.htm (3 of 3) [2/5/2003 7:48:44 PM]

file:///C|/orielly/jnut/copyrght.htm

Cryptography (Java in a Nutshell)

Chapter 4: The Java Platform

4.14. Cryptography

The java.security package includes cryptography-based classes, but it does not contain classes for actual encryption
and decryption. That is the job of the javax.crypto package. This package supports symmetric-key cryptography, in
which the same key is used for both encryption and decryption and must be known by both the sender and the receiver of
encrypted data. The SecretKey interface represents an encryption key; the first step of any cryptographic operation is to
obtain an appropriate SecretKey. Unfortunately, the keytool program supplied with the Java SDK cannot generate and
store secret keys, so a program must handle these tasks itself. Here is some code that shows various ways to work with
SecretKey objects:

import javax.crypto.*;
import javax.crypto.spec.*;

// Generate encryption keys with a KeyGenerator object
KeyGenerator desGen = KeyGenerator.getInstance("DES"); // DES algorithm
SecretKey desKey = desGen.generateKey(); // Generate a key
KeyGenerator desEdeGen = KeyGenerator.getInstance("DESede"); // Triple DES
SecretKey desEdeKey = desEdeGen.generateKey(); // Generate a key

// SecretKey is an opaque representation of a key. Use SecretKeyFactory to
// convert to a transparent representation that can be manipulated: saved
// to a file, securely transmitted to a receiving party, etc.
SecretKeyFactory desFactory = SecretKeyFactory.getInstance("DES");
DESKeySpec desSpec = (DESKeySpec)
 desFactory.getKeySpec(desKey, javax.crypto.spec.DESKeySpec.class);
byte[] rawDesKey = desSpec.getKey();
// Do the same for a DESede key
SecretKeyFactory desEdeFactory = SecretKeyFactory.getInstance("DESede");
DESedeKeySpec desEdeSpec = (DESedeKeySpec)
 desEdeFactory.getKeySpec(desEdeKey, javax.crypto.spec.DESedeKeySpec.class);
byte[] rawDesEdeKey = desEdeSpec.getKey();

// Convert the raw bytes of a key back to a SecretKey object
DESedeKeySpec keyspec = new DESedeKeySpec(rawDesEdeKey);
SecretKey k = desEdeFactory.generateSecret(keyspec);

// For DES and DESede keys, there is an even easier way to create keys
// SecretKeySpec implements SecretKey, so use it to represent these keys
byte[] desKeyData = new byte[8]; // Read 8 bytes of data from a file
byte[] tripleDesKeyData = new byte[24]; // Read 24 bytes of data from a file
SecretKey myDesKey = new SecretKeySpec(desKeyData, "DES");
SecretKey myTripleDesKey = new SecretKeySpec(tripleDesKeyData, "DESede");

Once you have obtained an appropriate SecretKey object, the central class for encryption and decryption is Cipher. Use
it like this:

file:///C|/orielly/jnut/ch04_14.htm (1 of 3) [2/5/2003 7:48:48 PM]

Cryptography (Java in a Nutshell)

SecretKey key; // Obtain a SecretKey as shown earlier
byte[] plaintext; // The data to encrypt; initialized elsewhere

// Obtain an object to perform encryption or decryption
Cipher cipher = Cipher.getInstance("DESede"); // Triple-DES encryption
// Initialize the cipher object for encryption
cipher.init(Cipher.ENCRYPT_MODE, key);
// Now encrypt data
byte[] ciphertext = cipher.doFinal(plaintext);

// If we had multiple chunks of data to encrypt, we can do this
cipher.update(message1);
cipher.update(message2);
byte[] ciphertext = cipher.doFinal();

// We simply reverse things to decrypt
cipher.init(Cipher.DECRYPT_MODE, key);
byte[] decryptedMessage = cipher.doFinal(ciphertext);

// To decrypt multiple chunks of data
byte[] decrypted1 = cipher.update(ciphertext1);
byte[] decrypted2 = cipher.update(ciphertext2);
byte[] decrypted3 = cipher.doFinal(ciphertext3);

The Cipher class can also be used with CipherInputStream or CipherOutputStream to encrypt or decrypt while
reading or writing streaming data:

byte[] data; // The data to encrypt
SecretKey key; // Initialize as shown earlier
Cipher c = Cipher.getInstance("DESede"); // The object to perform encryption
c.init(Cipher.ENCRYPT_MODE, key); // Initialize it

// Create a stream to write bytes to a file
FileOutputStream fos = new FileOutputStream("encrypted.data");

// Create a stream that encrypts bytes before sending them to that stream
// See also CipherInputStream to encrypt or decrypt while reading bytes
CipherOutputStream cos = new CipherOutputStream(fos, c);

cos.write(data); // Encrypt and write the data to the file
cos.close(); // Always remember to close streams
java.util.Arrays.fill(data, (byte)0); // Erase the unencrypted data

Finally, the javax.crypto.SealedObject class provides an especially easy way to perform encryption. This class
serializes a specified object and encrypts the resulting stream of bytes. The SealedObject can then be serialized itself and
transmitted to a recipient. The recipient is only able to retrieve the original object if she knows the required SecretKey:

Serializable o; // The object to be encrypted; must be Serializable
SecretKey key; // The key to encrypt it with
Cipher c = Cipher.getInstance("Blowfish"); // Object to perform encryption
c.init(Cipher.ENCRYPT_MODE, key); // Initialize it with the key

file:///C|/orielly/jnut/ch04_14.htm (2 of 3) [2/5/2003 7:48:48 PM]

Cryptography (Java in a Nutshell)

SealedObject so = new SealedObject(o, c); // Create the sealed object

// Object so is a wrapper around an encrypted form of the original object o;
// it can now be serialized and transmitted to another party.
// Here's how the recipient decrypts the original object
Object original = so.getObject(key); // Must use the same SecretKey

4.13. Security 5. Java Security

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch04_14.htm (3 of 3) [2/5/2003 7:48:48 PM]

file:///C|/orielly/jnut/copyrght.htm

Java Security (Java in a Nutshell)

Part 1: Introducing Java

Chapter 5. Java Security
Contents:

Security Risks
Java VM Security and Class File Verification
Authentication and Cryptography
Access Control
Security for Everyone
Permission Classes

Java programs can dynamically load Java classes from a variety of sources, including untrusted sources,
such as web sites reached across an insecure network. The ability to create and work with such mobile
code is one of the great strengths and features of Java. To make it work successfully, however, Java puts
great emphasis on a security architecture that allows untrusted code to run safely, without fear of damage
to the host system.

The need for a security system in Java is most acutely demonstrated by applets--miniature Java
applications designed to be embedded in web pages.[1] When a user visits a web page (with a Java-
enabled web browser) that contains an applet, the web browser downloads the Java class files that define
that applet and runs them. In the absence of a security system, an applet could wreak havoc on the user's
system by deleting files, installing a virus, stealing confidential information, and so on. Somewhat more
subtly, an applet could take advantage of the user's system to forge email, generate spam, or launch
hacking attempts on other systems.

[1] Applets are documented in Java Foundation Classes in a Nutshell (O'Reilly) and are
not covered in this book. Still, they serve as good examples here.

Java's main line of defense against such malicious code is access control : untrusted code is simply not
given access to certain sensitive portions of the core Java API. For example, an untrusted applet is not
typically allowed to read, write, or delete files on the host system or connect over the network to any
computer other than the web server from which it was downloaded. This chapter describes the Java
access control architecture and a few other facets of the Java security system.

file:///C|/orielly/jnut/ch05_01.htm (1 of 2) [2/5/2003 7:48:50 PM]

Java Security (Java in a Nutshell)

5.1. Security Risks

Java has been designed from the ground up with security in mind; this gives it a great advantage over
many other existing systems and platforms. Nevertheless, no system can guarantee 100% security, and
Java is no exception.

The Java security architecture was designed by security experts and has been studied and probed by
many other security experts. The consensus is that the architecture itself is strong and robust,
theoretically without any security holes (at least none that have been discovered yet). The
implementation of the security architecture is another matter, however, and there is a long history of
security flaws being found and patched in particular implementations of Java. For example, in April
1999, a flaw was found in Sun's implementation of the class verifier in Java 1.1. Patches for Java 1.1.6
and 1.1.7 were issued and the problem was fixed in Java 1.1.8. Even more recently, in August 1999, a
severe flaw was found in Microsoft's Java Virtual Machine (which is used by the Internet Explorer 4.0
and 5.0 web browsers). The flaw was a particularly dangerous one because it allowed a malicious applet
to gain unrestricted access to the underlying system. Microsoft has released a new version of their VM,
and (as of this writing) there have not been any known attacks that took advantage of the flaw.

In all likelihood, security flaws will continue to be discovered (and patched) in Java VM
implementations. Despite this, Java remains perhaps the most secure platform currently available. There
have been few, if any, reported instances of malicious Java code exploiting security holes "in the wild."
For practical purposes, the Java platform appears to be adequately secure, especially when contrasted
with some of the insecure and virus-ridden alternatives.

4.14. Cryptography 5.2. Java VM Security and
Class File Verification

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch05_01.htm (2 of 2) [2/5/2003 7:48:50 PM]

file:///C|/orielly/jnut/copyrght.htm

Java VM Security and Class File Verification (Java in a Nutshell)

Chapter 5: Java Security

5.2. Java VM Security and Class File Verification

The lowest level of the Java security architecture involves the design of the Java Virtual Machine and the
byte codes it executes. The Java VM does not allow any kind of direct access to individual memory
addresses of the underlying system, which prevents Java code from interfering with the native hardware
and operating system. These intentional restrictions on the VM are reflected in the Java language itself,
which does not support pointers or pointer arithmetic. The language does not allow an integer to be cast
to an object reference or vice versa, and there is no way whatsoever to obtain an object's address in
memory. Without capabilities like these, malicious code simply cannot gain a foothold.

In addition to the secure design of the Virtual Machine instruction set, the VM goes through a process
known as byte-codeverification whenever it loads an untrusted class. This process ensures that the byte
codes of a class (and their operands) are all valid; that the code never underflows or overflows the VM
stack; that local variables are not used before they are initialized; that field, method, and class access
control modifiers are respected; and so on. The verification step is designed to prevent the VM from
executing byte codes that might crash it or put it into an undefined and untested state where it might be
vulnerable to other attacks by malicious code. Byte-code verification is a defense against malicious hand-
crafted Java byte codes and untrusted Java compilers that might output invalid byte codes.

5.1. Security Risks 5.3. Authentication and
Cryptography

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch05_02.htm [2/5/2003 7:48:54 PM]

file:///C|/orielly/jnut/copyrght.htm

Authentication and Cryptography (Java in a Nutshell)

Chapter 5: Java Security

5.3. Authentication and Cryptography

In Java 1.1 and later, the java.security package (and its subpackages) provides classes and
interfaces for authentication. As described in Chapter 4, "The Java Platform", this piece of the security
architecture allows Java code to create and verify message digests and digital signatures. These
technologies can ensure that any data (such as a Java class file) is authentic; that it originates from the
person who claims to have originated it and has not been accidentally or maliciously modified in transit.

The Java Cryptography Extension, or JCE, consists of the javax.crypto package and its
subpackages. These packages define classes for encryption and decryption of data. This is an important
security-related feature for many applications, but is not directly relevant to the basic problem of
preventing untrusted code from damaging the host system, so it is not discussed in this chapter.

5.2. Java VM Security and
Class File Verification

5.4. Access Control

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch05_03.htm [2/5/2003 7:48:56 PM]

file:///C|/orielly/jnut/copyrght.htm

Access Control (Java in a Nutshell)

Chapter 5: Java Security

5.4. Access Control

As I noted at the beginning of this chapter, the heart of the Java security architecture is access control:
untrusted code simply must not be granted access to the sensitive parts of the Java API that would allow
it to do malicious things. As we'll discuss in the following sections, the Java access-control model
evolved significantly between Java 1.0 and Java 1.2. The Java 1.2 access-control model is relatively
stable; it has not changed significantly in Java 1.3.

5.4.1. Java 1.0: The Sandbox

In this first release of Java, all Java code installed locally on the system is trusted implicitly. All code
downloaded over the network, however, is untrusted and run in a restricted environment playfully called
"the sandbox." The access-control policies of the sandbox are defined by the currently installed
java.lang.SecurityManager object. When system code is about to perform a restricted
operation, such as reading a file from the local filesystem, it first calls an appropriate method (such as
checkRead()) of the currently installed SecurityManager object. If untrusted code is running, the
SecurityManager throws a SecurityException that prevents the restricted operation from
taking place.

The most common user of the SecurityManager class is a Java-enabled web browser, which installs
a SecurityManager object to allow applets to run without damaging the host system. The precise
details of the security policy are an implementation detail of the web browser, of course, but applets are
typically restricted in the following ways:

● An applet cannot read, write, rename, or delete files. It cannot query the length or modification
date of a file or even check whether a given file exists. Similarly, an applet cannot create, list, or
delete a directory.

● An applet cannot connect to or accept a connection from any computer other than the one it was
downloaded from. It cannot use any privileged ports (i.e., ports below and including port 1024).

● An applet cannot perform system-level functions, such as loading a native library, spawning a
new process, or exiting the Java interpreter. An applet cannot manipulate any threads or thread
groups, except for those it creates itself. In Java 1.1 and later, applets cannot use the Java
Reflection API to obtain information about the non-public members of classes, except for classes
that were downloaded with the applet.

file:///C|/orielly/jnut/ch05_04.htm (1 of 4) [2/5/2003 7:48:59 PM]

Access Control (Java in a Nutshell)

● An applet cannot access certain graphics- and GUI-related facilities. It cannot initiate a print job
or access the system clipboard or event queue. In addition, all windows created by an applet
typically display a prominent visual indicator that they are "insecure," to prevent an applet from
spoofing the appearance of some other application.

● An applet cannot read certain system properties, notably the user.home and user.dir
properties, that specify the user's home directory and current working directory.

● An applet cannot circumvent these security restrictions by registering a new
SecurityManager object.

5.4.1.1. How the sandbox works

Suppose that an applet (or some other untrusted code running in the sandbox) attempts to read the
contents of the file /etc/passwd by passing this filename to the FileInputStream() constructor. The
programmers who wrote the FileInputStream class were aware that the class provides access to a
system resource (a file), so use of the class should therefore be subject to access control. For this reason,
they coded the FileInputStream() constructor to use the SecurityManager class.

Every time FileInputStream() is called, it checks to see if a SecurityManager object has been
installed. If so, the constructor calls the checkRead() method of that SecurityManager object,
passing the filename (/etc/passwd, in this case) as the sole argument. The checkRead() method has no
return value; it either returns normally or throws a SecurityException. If the method returns, the
FileInputStream() constructor simply proceeds with whatever initialization is necessary and
returns. Otherwise, it allows the SecurityException to propagate to the caller. When this happens,
no FileInputStream object is created, and the applet does not gain access to the /etc/passwd file.

5.4.2. Java 1.1: Digitally Signed Classes

Java 1.1 retains the sandbox model of Java 1.0, but adds the java.security package and its digital
signature capabilities. With these capabilities, Java classes can be digitally signed and verified. Thus,
web browsers and other Java installations can be configured to trust downloaded code that bears a valid
digital signature of a trusted entity. Such code is treated as if it were installed locally, so it is given full
access to the Java APIs. In this release, the javakey program manages keys and digitally signs JAR files
of Java code. Although Java 1.1 adds the important ability to trust digitally signed code that would
otherwise be untrusted, it sticks to the basic sandbox model: trusted code gets full access and untrusted
code gets totally restricted access.

5.4.3. Java 1.2: Permissions and Policies

file:///C|/orielly/jnut/ch05_04.htm (2 of 4) [2/5/2003 7:48:59 PM]

Access Control (Java in a Nutshell)

Java 1.2 introduces major new access-control features into the Java security architecture. These features
are implemented by new classes in the java.security package. The Policy class is one of the
most important: it defines a Java security policy. A Policy object maps CodeSource objects to
associated sets of Permission objects. A CodeSource object represents the source of a piece of
Java code, which includes both the URL of the class file (and can be a local file) and a list of entities that
have applied their digital signatures to the class file. The Permission objects associated with a
CodeSource in the Policy define the permissions that are granted to code from a given source.
Various Java APIs includes subclasses of Permission that represent different types of permissions.
These include java.lang.RuntimePermission, java.io.FilePermission, and
java.net.SocketPermission, for example.

Under this new access-control model, the SecurityManager class continues to be the central class;
access-control requests are still made by invoking methods of a SecurityManager. However, the
default SecurityManager implementation now delegates most of those requests to a new
AccessController class that makes access decisions based on the Permission and Policy
architecture.

The new Java 1.2 access-control architecture has several important features:

● Code from different sources can be given different sets of permissions. In other words, the new
architecture supports fine-grained levels of trust. Even locally installed code can be treated as
untrusted or partially untrusted. Under this new architecture, only system classes and standard
extensions run as fully trusted.

● It is no longer necessary to define a custom subclass of SecurityManager to define a security
policy. Policies can be configured by a system administrator by editing a text file or using the new
policytool program.

● The new architecture is not limited to a fixed set of access control methods in the
SecurityManager class. New Permission subclasses can be defined easily to govern
access to new system resources (which might be exposed, for example, by new standard
extensions that include native code).

5.4.3.1. How policies and permissions work

Let's return to the example of an applet that attempts to create a FileInputStream to read the file
/etc/passwd. In Java 1.2, the FileInputStream() constructor behaves exactly the same as it does in
Java 1.0 and Java 1.1: it looks to see if a SecurityManager is installed and, if so, calls its
checkRead() method, passing the name of the file to be read.

What's new in Java 1.2 is the default behavior of the checkRead() method. Unless a program has
replaced the default security manager with one of its own, the default implementation creates a

file:///C|/orielly/jnut/ch05_04.htm (3 of 4) [2/5/2003 7:48:59 PM]

Access Control (Java in a Nutshell)

FilePermission object to represent the access being requested. This FilePermission object has
a target of "/etc/passwd" and an action of "read". The checkRead() method passes this
FilePermission object to the static checkPermission() method of the
java.security.AccessController class.

It is the AccessController and its checkPermission() method that do the real work of access
control in Java 1.2. The method determines the CodeSource of each calling method and uses the
current Policy object to determine the Permission objects associated with it. With this information,
the AccessController can determine whether read access to the /etc/passwd file should be allowed.

The Permission class represents both the permissions granted by a Policy and the permissions
requested by a method like the FileInputStream() constructor. When requesting a permission,
Java typically uses a FilePermission (or other Permission subclass) with a very specific target,
like "/etc/passwd". When granting a permission, however, a Policy commonly uses a
FilePermission object with a wildcard target, such as "/etc/*", to represent many files. One of the
key features of a Permission subclass such as FilePermission is that it defines an implies()
method that can determine whether permission to read "/etc/*" implies permission to read "/etc/passwd".

5.3. Authentication and
Cryptography

5.5. Security for Everyone

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch05_04.htm (4 of 4) [2/5/2003 7:48:59 PM]

file:///C|/orielly/jnut/copyrght.htm

Security for Everyone (Java in a Nutshell)

Chapter 5: Java Security

5.5. Security for Everyone

Programmers, system administrators, and end users all have different security concerns and, thus, different roles to play in the
Java 1.2 security architecture.

5.5.1. Security for System Programmers

System programmers are the people who define new Java APIs that allow access to sensitive system resources. These
programmers are typically working with native methods that have unprotected access to the system. They need to use the Java
access-control architecture to prevent untrusted code from executing those native methods. To do this, system programmers
must carefully insert SecurityManager calls at appropriate places in their code. A system programmer may choose to use
an existing Permission subclass to govern access to the system resources exposed by her API, or she may decide to define
a specialized subclass of Permission.

The system programmer carries a tremendous security burden: if she does not perform appropriate access control checks in her
code, she compromises the security of the entire Java platform. The details are complex and are beyond the scope of this book.
Fortunately, however, system programming that involves native methods is rare in Java; almost all of us are application
programmers who can simply rely on the existing APIs.

5.5.2. Security for Application Programmers

Programmers who use the core Java APIs and standard extensions, but do not define new extensions or write native methods,
can simply rely on the security efforts of the system programmers who created those APIs. In other words, most of us Java
programmers can simply use the Java APIs and need not worry about introducing security holes into the Java platform.

In fact, application programmers rarely have to use the access-control architecture. If you are writing Java code that may be
run as untrusted code, you should be aware of the restrictions placed on untrusted code by typical security policies. Keep in
mind that some methods (such as methods that read or write files) can throw SecurityException objects, but don't feel
you must write your code to catch these exceptions. Often, the appropriate response to a SecurityException is to allow
it to propagate uncaught, so that it terminates the application.

Sometimes, as an application programmer, you want to write an application (such as an applet viewer) that can load untrusted
classes and run them subject to access-control checks. To do this in Java 1.2, you must first install a security manager:

System.setSecurityManager(new SecurityManager());

Then use java.net.URLClassLoader to load the untrusted classes. URLClassLoader assigns a default set of safe
permissions to the classes it loads, but in some cases you may want to modify the permissions granted to the loaded code
through the Policy and PermissionCollection classes.

5.5.3. Security for System Administrators

In Java 1.2 and later, system administrators are responsible for defining the default security policy for the computers at their

file:///C|/orielly/jnut/ch05_05.htm (1 of 3) [2/5/2003 7:49:02 PM]

Security for Everyone (Java in a Nutshell)

site. The default policy is stored in the file lib/security/java.policy in the Java installation. A system administrator can edit this
text file by hand or use the policytool program from Sun to edit the file graphically. policytool is the preferred way to define
policies, so the syntax of the underlying policy file is not documented in this book.

The default java.policy file defines a policy that is much like the policy of Java 1.0 and Java 1.1: system classes and installed
extensions are fully trusted, while all other code is untrusted and only allowed a few simple permissions. While this default
policy is adequate for many purposes, it may not be appropriate for all sites. For example, at some organizations, it may be
appropriate to grant extra permissions to code downloaded from a secure intranet.

In order to define secure and effective security policies, a system administrator must understand the various Permission
subclasses of the Java platform, the target and action names they support, and the security implications of granting any
particular permission. These topics are explained well in a document titled "Permissions in the Java 2 SDK," which is part of
the Java 1.2 release and also available (at the time of this writing) online at:
http://java.sun.com/products/jdk/1.2/docs/guide/security/permissions.html.

5.5.4. Security for End Users

Most end users do not have to think about security at all: their Java programs should simply run in a secure way with no
intervention by them. Some sophisticated end users may want to define their own security policies, however. An end user can
do this by running policytool himself to define personal policy files that augment the system policy. The default personal
policy is stored in a file named .java.policy in the user's home directory. By default, Java loads this policy file and uses it to
augment the system policy file.

In Java 1.2 and later, a user can specify an additional policy file to use when starting up the Java interpreter, by defining the
java.security.policy property with the -D option. For example:

C:\> java -Djava.security.policy=policyfile UntrustedApp

This line runs the class UntrustedApp after augmenting the default system and user policies with the policy specified in the
file or URL policyfile. To replace the system and user policies instead of augmenting them, use a double equals sign in the
property specification:

C:\> java -Djava.security.policy==policyfile UntrustedApp

Note, however, that specifying a policy file is only useful if there is a SecurityManager installed. If a user doesn't trust an
application, he presumably doesn't trust that application to voluntarily install its own security manager. In this case, he can
define the java.security.manager system property:

C:\> java -Djava.security.manager -Djava.security.policy=policyfile UntrustedApp

The value of this property does not matter; simply defining it is enough to tell the Java interpreter to automatically install a
default SecurityManager object that subjects an application to the access control policies described in the system, user,
and java.security.policy policy files.

5.4. Access Control 5.6. Permission Classes

file:///C|/orielly/jnut/ch05_05.htm (2 of 3) [2/5/2003 7:49:02 PM]

http://java.sun.com/products/jdk/1.2/docs/guide/security/permissions.html

Security for Everyone (Java in a Nutshell)

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch05_05.htm (3 of 3) [2/5/2003 7:49:02 PM]

file:///C|/orielly/jnut/copyrght.htm

Permission Classes (Java in a Nutshell)

Chapter 5: Java Security

5.6. Permission Classes

Table 5-1 lists the various Permission subclasses, the target and action names they support, and the methods that
require those permissions (in Java 1.2 and later).

Table 5-1. Permission Classes and the Methods They Govern

Permission Target, Action Methods

AWT-
Permission "accessClipboard"

Toolkit.getSystemClipboard()

"accessEventQueue"
Toolkit.getSystemEventQueue()

"listenToAllAWTEvents"
Toolkit.{addAWTEventListener(),
removeAWTEventListener()}

"readDisplayPixels"
Graphics2D.setComposite()

"showWindowWithout-WarningBanner"
Window.Window() (if permission is not granted,
window has an "insecure" indication)

File-
Permission command, "execute"

Runtime.exec()

filename, "delete"
File.{delete(),
deleteOnExit()}

File-
Permission filename, "read"

FileInputStream.FileInputStream(),
File.{exists(), canRead(), isFile(),
isDirectory(), isHidden(),
lastModified(), length(), list(),
listFiles()},
RandomAccessFile.RandomAccessFile(),
ZipFile.ZipFile()

file:///C|/orielly/jnut/ch05_06.htm (1 of 6) [2/5/2003 7:49:08 PM]

Permission Classes (Java in a Nutshell)

filename, "write"

FileOutputStream.FileOutputStream(),
File.{canWrite(), createNewFile(),
createTempFile(), mkdir(), mkdirs(),
renameTo(), setLastModified(),
setReadOnly()},
RandomAccessFile.RandomAccessFile()

Net-
Permission

"requestPassword-Authentication"
Authenticator.requestPassword-
Authentication()

"setDefaultAuthenticator"
Authenticator.setDefault()

"specifyStreamHandler"
URL.URL()

Property-
Permission "*", "read, write"

Beans.{setDesignTime(),
setGuiAvailable()},
Introspector.setBeanInfo-
SearchPath(),
PropertyEditorManager.{register-
Editor(), setEditorSearchPath()},
System.{getProperties(),
setProperties()}

"user.language", "write"
Locale.setDefault()

prop, "read"
System.getProperty()

prop, "write"
System.setProperty()

Reflect-
Permission "suppressAccessChecks"

AccessibleObject.setAccessible()

Runtime-
Permission

"accessClassIn- Package.pkgname•"

Class.{getClasses(),
getDeclaredClasses(),
getConstructor(), getConstructors(),
getDeclaredFields(),
getDeclaredMethods(),
getDeclaredConstructors(),
getDeclaredField(),
getDeclaredMethod(),
getDeclaredConstructor(),

file:///C|/orielly/jnut/ch05_06.htm (2 of 6) [2/5/2003 7:49:08 PM]

Permission Classes (Java in a Nutshell)

Runtime-
Permission

getFields(), getMethods(), getField(),
getMethod()}

"accessDeclaredMembers"

Class.{getClasses(),
getDeclaredClasses(),
getDeclaredFields(),
getDeclaredMethods(),
getDeclaredConstructors(),
getDeclaredField(),
getDeclaredMethod(),
getDeclaredConstructor()}

"createClassLoader"

ClassLoader.Class-Loader(),
URLClassLoader.URL-ClassLoader(),
SecureClassLoader.Secure-
ClassLoader()

"exitVM"

Runtime.{exit(),
runFinalizersOnExit()},
System.{exit(),
runFinalizersOnExit()}

"getClassLoader"

Class.{forName(), getClassLoader()},
ClassLoader.{getSystemClassLoader(),
getParent()},
Thread.getContextClassLoader()

"getProtectionDomain"
Class.getProtectionDomain()

"loadLibrary.libName•"
Runtime.{load(), loadLibrary()},
System.{load(), loadLibrary()}

"modifyThread"

Thread.{checkAccess(), interrupt(),
suspend(), resume(), setPriority(),
setName(), setDaemon()},
ThreadGroup.{interrupt(), stop()}

"modifyThreadGroup"

Thread.{Thread(), enumerate()},
ThreadGroup.{ThreadGroup(),
enumerate(), getParent(), interrupt(),
setDaemon(), setMaxPriority(), stop(),
suspend(), resume(), destroy()}

file:///C|/orielly/jnut/ch05_06.htm (3 of 6) [2/5/2003 7:49:08 PM]

Permission Classes (Java in a Nutshell)

"queuePrintJob"
Toolkit.getPrintJob()

"readFileDescriptor"
FileInputStream.File-
InputStream(FileDescriptor)

"setContextClassLoader"
Thread.setContextClassLoader()

Runtime-
Permission "setFactory"

ServerSocket.setSocketFactory(),
Socket.setSocketImplFactory(),
URL.setURLStream-HandlerFactory(),
URLConnection.{setContent-
HandlerFactory(), setFileNameMap()},
HttpURLConnection.set-
FollowRedirects(),
activation.Activation-
Group.{createGroup(), setSystem()},
server.RMISocketFactory.set-
SocketFactory()

"setIO"
System.{setIn(), setOut(), setErr()}

"setSecurityManager"
System.setSecurityManager()

"stopThread"
Thread.stop(), ThreadGroup.stop()

"writeFileDescriptor"
FileOutputStream.File-
OutputStream(FileDescriptor)

Security-
"addIdentityCertificate"

Identity.addCertificate()

Permission
"clearProvider- Properties.provider•" Provider.clear()

"getPolicy"
Policy.getPolicy()

"getProperty.propname•"
Security.getProperty()

"getSignerPrivateKey"
Signer.getPrivateKey()

"insertProvider.provider•"
Security.{addProvider(),
insertProviderAt()}

file:///C|/orielly/jnut/ch05_06.htm (4 of 6) [2/5/2003 7:49:08 PM]

Permission Classes (Java in a Nutshell)

"printIdentity"
Identity.toString()

"putProvider- Property.provider•" Provider.put()

"removeIdentityCertificate"
Identity.removeCertificate()

"removeProvider.provider•" Security.removeProvider()

"removeProvider- Property.provider•" Provider.remove()

"setIdentityInfo"
Identity.setInfo(String)

"setIdentityPublicKey"
Identity.setPublicKey()

"setPolicy"
Policy.setPolicy();

"setProperty.propname•"
Security.setProperty()

"setSignerKeypair"
Signer.setKeyPair()

"setSystemScope"
IdentityScope.setSystemScope()

Serializable-
Permission

"enableSubclass- Implementation"

ObjectInputStream.Object-
InputStream(),
ObjectOutputStream.Object-
OutputStream()

"enableSubstitution"

ObjectInputStream.enable-
ResolveObject(),
ObjectOutputStream.enable-
ReplaceObject()

Socket-
Permission "localhost:port•", "listen"

ServerSocket.ServerSocket(),
DatagramSocket.DatagramSocket(),
MulticastSocket.MulticastSocket()

host, "accept, connect"
MulticastSocket.{joinGroup(),
leaveGroup(), send()}

file:///C|/orielly/jnut/ch05_06.htm (5 of 6) [2/5/2003 7:49:08 PM]

Permission Classes (Java in a Nutshell)

host, "resolve"

InetAddress.{getHostName(),
getAllByName(), getLocalHost()},
DatagramSocket.getLocalAddress()

host:port, "accept"

DatagramSocket.receive(),
ServerSocket.{accept(),
implAccept()}

host:port, "connect"
DatagramSocket.send(),
Socket.Socket()

5.5. Security for Everyone 6. JavaBeans

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch05_06.htm (6 of 6) [2/5/2003 7:49:08 PM]

file:///C|/orielly/jnut/copyrght.htm

JavaBeans (Java in a Nutshell)

Part 1: Introducing Java

Chapter 6. JavaBeans
Contents:

Bean Basics
JavaBeans Conventions
Bean Contexts and Services

The JavaBeans API provides a framework for defining reusable, embeddable, modular software
components. The JavaBeans specification includes the following definition of a bean: "a reusable
software component that can be manipulated visually in a builder tool." As you can see, this is a rather
loose definition; beans can take a variety of forms. The most common use of beans is for graphical user
interface components, such as components of the java.awt and javax.swing packages, which are
documented in Java Foundation Classes in a Nutshell (O'Reilly).[1] Although all beans can be
manipulated visually, this does not mean every bean has its own visual representation. For example, the
javax.sql.RowSet class (documented in Java Enterprise in a Nutshell (O'Reilly)) is a JavaBeans
component that represents the data resulting from a database query. There are no limits on the simplicity
or complexity of a JavaBeans component. The simplest beans are typically basic graphical interface
components, such as a java.awt.Button object. But even complex systems, such as an embeddable
spreadsheet application, can function as individual beans.

[1] JavaBeans are documented in this book instead of that one because the JavaBeans
component model is not specific to AWT or Swing programming. Nevertheless, it is
hardly possible to discuss beans without mentioning AWT and Swing components. You
will probably get the most out of this chapter if you have some familiarity with GUI
programming in Java using AWT or Swing.

One of the goals of the JavaBeans model is interoperability with similar component frameworks. So, for
example, a native Windows program can, with an appropriate bridge or wrapper object, use a JavaBeans
component as if it were a COM or ActiveX component. The details of this sort of interoperability are
beyond the scope of this chapter, however.

The JavaBeans component model consists of the java.beans and java.beans.beancontext
packages and a number of important naming and API conventions to which conforming beans and bean-
manipulation tools must adhere. Because JavaBeans is a framework for generic components, the

file:///C|/orielly/jnut/ch06_01.htm (1 of 5) [2/5/2003 7:49:11 PM]

JavaBeans (Java in a Nutshell)

JavaBeans conventions are, in many ways, more important than the actual API.

Two interesting technologies related to JavaBeans are the Java Activation Framework and InfoBus. Both
are standard extensions, implemented in the javax.activation and javax.infobus packages,
respectively. You can read more about them at the JavaBeans web site: http://java.sun.com/beans/.

Beans can be used at three levels by three different categories of programmers:

● If you are writing an application that uses beans developed by other programmers or using a
beanbox tool[2] to combine those beans into an application, you need to be familiar with general
JavaBeans concepts and terminology. You also need to read the documentation for the individual
beans you use in your application, but you do not need to understand the JavaBeans API. This
chapter begins with an overview of JavaBeans concepts that should be sufficient for programmers
using beans at this level.

[2]beanbox is the name of the sample bean-manipulation program provided by Sun
in its Beans Development Kit (BDK). The term is a useful one, and I'll use it to
describe any kind of graphical design tool or application builder that manipulates
beans.

● If you are writing beans, you need to understand and follow various JavaBeans naming and
packaging conventions. After the introduction to general bean concepts and terminology, this
chapter describes the basic bean conventions bean developers must follow. Although a JavaBeans
component can be implemented without using the JavaBeans API, most beans are distributed with
various auxiliary classes that make them easier to use within beanbox tools. These auxiliary
classes rely heavily on the JavaBeans API so that they can interoperate with beanbox tools.

● If you are developing a GUI editor, application builder, or other beanbox tool, you use the
JavaBeans API to help you manipulate beans within the tool. You also need to be intimately
familiar with all the various JavaBeans programming conventions. Although this chapter
describes the most important conventions, you should also refer to the primary source, the
JavaBeans specification (see http://java.sun.com/beans/•).

6.1. Bean Basics

Any object that conforms to certain basic rules can be a bean; there is no Bean class all beans are
required to subclass. Many beans are AWT components, but it is also quite possible, and often useful, to
write "invisible" beans that do not have an onscreen appearance. (•Just because a bean does not have an
onscreen appearance in a finished application does not mean it cannot be visually manipulated by a
beanbox tool, however.)

file:///C|/orielly/jnut/ch06_01.htm (2 of 5) [2/5/2003 7:49:11 PM]

http://java.sun.com/beans/
http://java.sun.com/beans

JavaBeans (Java in a Nutshell)

A bean is characterized by the properties, events, and methods it exports. It is these properties, events,
and methods an application designer manipulates in a beanbox tool. A property is a piece of the bean's
internal state that can be programmatically set and/or queried, usually through a standard pair of get and
set accessor methods.

A bean communicates with the application in which it is embedded and with other beans by generating
events. The JavaBeans API uses the same event model AWT and Swing components use. This model is
based on the java.util.EventObject class and the java.util.EventListener interface; it
is described in detail in Java Foundation Classes in a Nutshell (O'Reilly). In brief, the event model
works like this:

● A bean defines an event if it provides add and remove methods for registering and deregistering
listener objects for that event.

● An application that wants to be notified when an event of that type occurs uses these methods to
register an event listener object of the appropriate type.

● When the event occurs, the bean notifies all registered listeners by passing an event object that
describes the event to a method defined by the event listener interface.

A unicast event is a rare kind of event for which there can be only a single registered listener object. The
add registration method for a unicast event throws a TooManyListenersException if an attempt
is made to register more than a single listener.

The methods exported by a bean are simply any public methods defined by the bean, excluding those
methods that get and set property values and register and remove event listeners.

In addition to the regular sort of properties described earlier, the JavaBeans API also supports several
specialized property subtypes. An indexed proper ty is a property that has an array value, as well as getter
and setter methods that access both individual elements of the array and the entire array. A bound
property is one that sends a PropertyChangeEvent to any interested
PropertyChangeListener objects whenever the value of the property changes. A constrained
property is one that can have any changes vetoed by any interested listener. When the value of a
constrained property of a bean changes, the bean must send out a PropertyChangeEvent to the list
of interested VetoableChangeListener objects. If any of these objects throws a
PropertyVetoException, the property value is not changed, and the
PropertyVetoException is propagated back to the property setter method.

Because Java allows dynamic loading of classes, beanbox programs can load arbitrary beans. The
beanbox tool uses a process called introspection to determine the properties, events, and methods
exported by a bean. The introspection mechanism is implemented by the
java.beans.Introspector class; it relies on both the java.lang.reflect reflection

file:///C|/orielly/jnut/ch06_01.htm (3 of 5) [2/5/2003 7:49:11 PM]

JavaBeans (Java in a Nutshell)

mechanism and a number of JavaBeans naming conventions. Introspector can determine the list of
properties supported by a bean, for example, by scanning the class for methods that have the right names
and signatures to be get and set property accessor methods.

The introspection mechanism does not rely on the reflection capabilities of Java alone, however. Any
bean can define an auxiliary BeanInfo class that provides additional information about the bean and its
properties, events, and methods. The Introspector automatically attempts to locate and load the
BeanInfo class of a bean.

The BeanInfo class provides additional information about the bean primarily in the form of
FeatureDescriptor objects, each one describing a single feature of the bean. Each
FeatureDescriptor provides a name and brief description of the feature it documents. The beanbox
tool can display the name and description to the user, making the bean essentially self-documenting and
easier to use. Specific bean features, such as properties, events, and methods, are described by specific
subclasses of FeatureDescriptor, such as PropertyDescriptor, EventSetDescriptor,
and MethodDescriptor.

One of the primary tasks of a beanbox application is to allow the user to customize a bean by setting
property values. A beanbox defines property editors for commonly used property types, such as
numbers, strings, fonts, and colors. If a bean has a property of a more complicated type, however, it can
define a PropertyEditor class that enables the beanbox to let the user set values for that property.

In addition, a complex bean may not be satisfied with the property-by-property customization mechanism
provided by most beanbox tools. Such a bean can define a Customizer class to create a graphical
interface that allows the user to configure a bean in some useful way. A particularly complex bean can
even define customizers that serve as "wizards" that guide the user step by step through the
customization process.

A bean context is a logical container (and often a visual container) for JavaBeans and, optionally, for
other nested bean contexts. In practice, most JavaBeans are AWT or Swing components or containers.
Beanbox tools recognize this and allow component beans to be nested within container beans. A bean
context is a kind of heavyweight container that formalizes this nesting relationship. More importantly,
however, a bean context can provide a set of services (e.g., printing services, debugging services,
database connection services) to the beans it contains. Beans that are aware of their context can be
written to query the context and take advantage of the services that are available. Bean contexts are
implemented using the java.beans.beancontext API, which is new as of Java 1.2 and discussed
in more detail later in this chapter.

5.6. Permission Classes 6.2. JavaBeans Conventions

file:///C|/orielly/jnut/ch06_01.htm (4 of 5) [2/5/2003 7:49:11 PM]

JavaBeans (Java in a Nutshell)

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch06_01.htm (5 of 5) [2/5/2003 7:49:11 PM]

file:///C|/orielly/jnut/copyrght.htm

JavaBeans Conventions (Java in a Nutshell)

Chapter 6: JavaBeans

6.2. JavaBeans Conventions

The JavaBeans component model relies on a number of rules and conventions bean developers must follow. These
conventions are not part of the JavaBeans API itself, but in many ways, they are more important to bean
developers than the API itself. The conventions are sometimes referred to as designpatterns•; they specify such
things as method names and signatures for property accessor methods defined by a bean.

The reason for these design patterns is interoperability between beans and the beanbox programs that manipulate
them. As we've seen, beanbox programs may rely on introspection to determine the list of properties, events, and
methods a bean supports. In order for this to work, bean developers must use method names the beanbox can
recognize. The JavaBeans framework facilitates this process by establishing naming conventions. One such
convention, for example, is that the getter and setter accessor methods for a property should begin with get and
set.

Not all the patterns are absolute requirements. If a bean has property accessor methods that do not follow the
naming conventions, it is possible to use a PropertyDescriptor object (specified in a BeanInfo class) to
indicate the accessor methods for the property. Although the BeanInfo class provides an alternative to the
property-accessor-method naming convention, the property accessor method must still follow the conventions that
specify the number and type of its parameters and its return value.

6.2.1. Beans

A bean itself must adhere to the following conventions:

Class name

There are no restrictions on the class name of a bean.

Superclass

A bean can extend any other class. Beans are often AWT or Swing components, but there are no
restrictions.

Instantiation

A bean must provide a no-parameter constructor or a file that contains a serialized instance the beanbox can
deserialize for use as a prototype bean, so a beanbox can instantiate the bean. The file that contains the bean
should have the same name as the bean, with an extension of .ser.

file:///C|/orielly/jnut/ch06_02.htm (1 of 8) [2/5/2003 7:49:14 PM]

JavaBeans Conventions (Java in a Nutshell)

Bean name

The name of a bean is the name of the class that implements it or the name of the file that holds the
serialized instance of the bean (with the .ser extension removed and directory separator (/) characters
converted to dot (.) characters).

6.2.2. Properties

A bean defines a property p of type T if it has accessor methods that follow these patterns (if T is boolean, a
special form of getter method is allowed):

Getter

public T getP()

Boolean getter

public boolean isP()

Setter

public void setP(T)

Exceptions

Property accessor methods can throw any type of checked or unchecked exceptions

6.2.3. Indexed Properties

An indexed property is a property of array type that provides accessor methods that get and set the entire array, as
well as methods that get and set individual elements of the array. A bean defines an indexed property p of type
T[] if it defines the following accessor methods:

Array getter

public T[] getP()

Element getter

public T getP(int)

Array setter

public void setP(T[])

file:///C|/orielly/jnut/ch06_02.htm (2 of 8) [2/5/2003 7:49:14 PM]

JavaBeans Conventions (Java in a Nutshell)

Element setter

public void setP(int,T)

Exceptions

Indexed property accessor methods can throw any type of checked or unchecked exceptions. In particular,
they should throw an ArrayIndexOutOfBoundsException if the supplied index is out of bounds.

6.2.4. Bound Properties

A bound property is one that generates a PropertyChangeEvent when its value changes. Here are the
conventions for a bound property:

Accessor methods

The getter and setter methods for a bound property follow the same conventions as a regular property.

Introspection

A beanbox cannot distinguish a bound property from a nonbound property through introspection alone.
Therefore, you may want to implement a BeanInfo class that returns a PropertyDescriptor object
for the property. The isBound() method of this PropertyDescriptor should return true.

Listener registration

A bean that defines one or more bound properties must define a pair of methods for the registration of
listeners that are notified when any bound property value change. The methods must have these signatures:

public void addPropertyChangeListener(PropertyChangeListener)
public void removePropertyChangeListener(PropertyChangeListener)

Named property listener registration

A bean can optionally provide additional methods that allow event listeners to be registered for changes to
a single bound property value. These methods are passed the name of a property and have the following
signatures:

public void addPropertyChangeListener(String, PropertyChangeListener)
public void removePropertyChangeListener(String, PropertyChangeListener)

Per-property listener registration

A bean can optionally provide additional event listener registration methods that are specific to a single

file:///C|/orielly/jnut/ch06_02.htm (3 of 8) [2/5/2003 7:49:14 PM]

JavaBeans Conventions (Java in a Nutshell)

property. For a property p, these methods have the following signatures:

public void addPListener(PropertyChangeListener)
public void removePListener(PropertyChangeListener)

Methods of this type allow a beanbox to distinguish a bound property from a nonbound property.

Notification

When the value of a bound property changes, the bean should update its internal state to reflect the change
and then pass a PropertyChangeEvent to the propertyChange() method of every
PropertyChangeListener object registered for the bean or the specific bound property.

Support

java.beans.PropertyChangeSupport is a helpful class for implementing bound properties.

6.2.5. Constrained Properties

A constrained property is one for which any changes can be vetoed by registered listeners. Most constrained
properties are also bound properties. Here are the conventions for a constrained property:

Getter

The getter method for a constrained property is the same as the getter method for a regular property.

Setter

The setter method of a constrained property throws a PropertyVetoException if the property change
is vetoed. For a property p of type T, the signature looks like this:

public void setP(T) throws PropertyVetoException

Listener registration

A bean that defines one or more constrained properties must define a pair of methods for the registration of
listeners that are notified when any constrained property value changes. The methods must have these
signatures:

public void addVetoableChangeListener(VetoableChangeListener)
public void removeVetoableChangeListener(VetoableChangeListener)

Named property listener registration

file:///C|/orielly/jnut/ch06_02.htm (4 of 8) [2/5/2003 7:49:14 PM]

JavaBeans Conventions (Java in a Nutshell)

A bean can optionally provide additional methods that allow event listeners to be registered for changes to
a single constrained property value. These methods are passed the name of a property and have the
following signatures:

public void addVetoableChangeListener(String, VetoableChangeListener)
public void removeVetoableChangeListener(String, VetoableChangeListener)

Per-property listener registration

A bean can optionally provide additional listener registration methods that are specific to a single
constrained property. For a property p, these methods have the following signatures:

public void addPListener(VetoableChangeListener)
public void removePListener(VetoableChangeListener)

Notification

When the setter method of a constrained property is invoked, the bean must generate a
PropertyChangeEvent that describes the requested change and pass that event to the
vetoableChange() method of every VetoableChangeListener object registered for the bean or
the specific constrained property. If any listener vetos the change by throwing a
PropertyVetoException, the bean must send out another PropertyChangeEvent to revert the
property to its original value, and then it should throw a PropertyVetoException itself. If, on the
other hand, the property change is not vetoed, the bean should update its internal state to reflect the change.
If the constrained property is also a bound property, the bean should notify
PropertyChangeListener objects at this point.

Support

java.beans.VetoableChangeSupport is a helpful class for implementing constrained properties.

6.2.6. Events

In addition to PropertyChangeEvent events generated when bound and constrained properties are changed, a
bean can generate other types of events. An event named E should follow these conventions:

Event class

The event class should directly or indirectly extend java.util.EventObject and should be named
EEvent.

Listener interface

The event must be associated with an event listener interface that extends
java.util.EventListener and is named EListener.

file:///C|/orielly/jnut/ch06_02.htm (5 of 8) [2/5/2003 7:49:14 PM]

JavaBeans Conventions (Java in a Nutshell)

Listener methods

The event listener interface can define any number of methods that take a single argument of type EEvent
and return void.

Listener registration

The bean must define a pair of methods for registering event listeners that want to be notified when an E
event occurs. The methods should have the following signatures:

public void addEListener(EListener)
public void removeEListener(EListener)

Unicast events

A unicast event allows only one listener object to be registered at a single time. If E is a unicast event, the
listener registration method should have this signature:

public void addEListener(EListener) throws TooManyListenersException

6.2.7. Methods

A beanbox can expose the methods of a bean to application designers. The only formal convention is that these
methods must be declared public. The following guidelines are also useful, however:

Method name

A method can have any name that does not conflict with the property- and event-naming conventions. The
name should be as descriptive as possible.

Parameters

A method can have any number and type of parameters. However, beanbox programs may work best with
no-parameter methods or methods that have simple primitive parameters.

Excluding methods

A bean can explicitly specify the list of methods it exports by providing a BeanInfo implementation.

Documentation

A bean can provide user-friendly, human-readable localized names and descriptions for methods through
MethodDescriptor objects returned by a BeanInfo implementation.

file:///C|/orielly/jnut/ch06_02.htm (6 of 8) [2/5/2003 7:49:14 PM]

JavaBeans Conventions (Java in a Nutshell)

6.2.8. Auxiliary Classes

A bean can provide the following auxiliary classes:

BeanInfo

To provide additional information about a bean B, implement the BeanInfo interface in a class named
BBeanInfo.

Property editor for a specific type

To enable a beanbox to work with properties of type T, implement the PropertyEditor interface in a
class named TEditor. The class must have a no-parameter constructor.

Property editor for a specific property

To customize the way a beanbox allows the user to enter values for a single property, define a class that
implements the PropertyEditor interface and has a no-parameter constructor, and register that class
with a PropertyDescriptor object returned by the BeanInfo class for the bean.

Customizers

To define a customizer, or wizard, for configuring a bean B, define an AWT or Swing component with a no-
parameter constructor that does the customization. The class is commonly called BCustomizer, but this
is not required. Register the class with the BeanDescriptor object returned by the BeanInfo class for
the bean.

Documentation

Define default documentation for a bean B in HTML 2.0 format and store that documentation in a file
named B.html. Define localized translations of the documentation in files by the same name in locale-
specific directories.

6.2.9. Bean Packaging and Distribution

Beans are distributed in JAR archive files that have the following:

Content

The class or classes that implement a bean should be included in the JAR file, along with auxiliary classes
such as BeanInfo and PropertyEditor implementations. If the bean is instantiated from a serialized
instance, that instance should be included in the JAR archive with a filename ending in .ser. The JAR file
can contain HTML documentation for the bean and should also contain any resource files, such as images,
required by the bean and its auxiliary classes. A single JAR file can contain more than one bean.

file:///C|/orielly/jnut/ch06_02.htm (7 of 8) [2/5/2003 7:49:14 PM]

JavaBeans Conventions (Java in a Nutshell)

Java-Bean attribute

The manifest of the JAR file must mark any .class and .ser files that define a bean with the attribute:

Java-Bean: true

Depends-On attribute

The manifest of a JAR file can use the Depends-On attribute to specify all other files in the JAR archive
on which the bean depends. A beanbox application can use this information when generating applications
or repackaging beans. Each bean can have zero or more Depends-On attributes, each of which can list
zero or more space-separated filenames. Within a JAR file, / is always used as the directory separator.

Design-Time-Only attribute

The manifest of a JAR file can optionally use the Design-Time-Only attribute to specify auxiliary
files, such as BeanInfo implementations, that are used by a beanbox, but not used by applications that
use the bean. The beanbox can use this information when repackaging beans for use in an application.

6.1. Bean Basics 6.3. Bean Contexts and
Services

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch06_02.htm (8 of 8) [2/5/2003 7:49:14 PM]

file:///C|/orielly/jnut/copyrght.htm

Bean Contexts and Services (Java in a Nutshell)

Chapter 6: JavaBeans

6.3. Bean Contexts and Services

The JavaBeans component model was introduced in Java 1.1. Java 1.2 extends that model by introducing
a containment and services protocol, defined in the java.beans.beancontext package. A bean
context is a java.util.Collection of beans that implements the BeanContext interface and
provides a context for the beans it contains. Many bean contexts define one or more services, such as a
printing service, that beans can query and use. These bean contexts implement the
BeanContextServices interface. All bean contexts are also BeanContextChild
implementations, so contexts can be nested within each other.

Many beans never need to know about the contexts that contain them. A bean that does want to take
advantage of its context and the services it provides implements the BeanContextChild interface.
When a bean context child is added to a bean context, the setBeanContext() method of the
BeanContextChild interface is invoked by the bean context. The implementation of this method
should store the reference to the bean context for future use. The setBeanContext() method is a
bound and constrained property, so it must notify VetoableChangeListener and
PropertyChangeListener objects. For this reason, many beans delegate these responsibilities to a
BeanContextChildSuport object.

If a bean (or bean context) is nested within a bean context that implements BeanContextServices,
the bean can use the services provided by the bean context. A service is identified by the Java class that
defines it. So a printing service is identified by the Class object of the
java.awt.print.PrinterJob class, for example, and the system clipboard service is represented
by the java.awt.datatransfer.Clipboard class. A bean can call the hasService()
method of its containing BeanContextServices object to determine whether a specified service is
available. If so, it can use getService() to obtain an appropriate instance of the service class. If a
bean context is nested within another context, it can pass these hasService() and getService()
methods to its containing context.

In addition to getService() and hasService(), a BeanContext provides several other
methods beans can rely on. getResource() and getResourceAsStream() replace the methods
by the same name defined by Class and ClassLoader. The isDesignTime() method (from the
DesignMode interface) allows a bean to determine whether it is being displayed within a beanbox or
run in an application or applet. The BeanContext method is preferred to the static
Beans.isDesignTime() method because it is context-specific rather than global.

file:///C|/orielly/jnut/ch06_03.htm (1 of 2) [2/5/2003 7:49:16 PM]

Bean Contexts and Services (Java in a Nutshell)

BeanContext and BeanContextServices are large interfaces; implementations must adhere to
fairly complex specifications that govern the ways they interact with the beans they contain and the
contexts within which they are nested. For these reasons, bean developers do not often create custom
bean contexts. Instead, they rely on the contexts provided by the vendor of their beanbox tool. Advanced
bean developers who do need to create bean contexts can delegate many of their methods to the
BeanContextSupport and BeanContextServicesSupport classes that implement the basic
framework and protocols.

6.2. JavaBeans Conventions 7. Java Programming and
Documentation Conventions

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch06_03.htm (2 of 2) [2/5/2003 7:49:16 PM]

file:///C|/orielly/jnut/copyrght.htm

Java Programming and Documentation Conventions (Java in an Nutshell)

Part 1: Introducing Java

Chapter 7. Java Programming and
Documentation Conventions
Contents:

Naming and Capitalization Conventions
Portability Conventions and Pure Java Rules
Java Documentation Comments

This chapter explains a number of important and useful Java programming conventions. If you follow
these conventions, your Java code will be self-documenting, easier to read and maintain, and more
portable.

7.1. Naming and Capitalization Conventions

The following widely adopted naming conventions apply to packages, classes, methods, fields, and
constants in Java. Because these conventions are almost universally followed and because they affect the
public API of the classes you define, they should be followed carefully:

Packages

Ensure that your package names are unique by prefixing them with the inverted name of your
Internet domain (e.g., com.davidflanagan.utils). All package names, or at least their
unique prefixes, should be lowercase.

Classes

A class name should begin with a capital letter and be written in mixed case (e.g., String). If a
class name consists of more than one word, each word should begin with a capital letter (e.g.,
StringBuffer). If a class name, or one of the words of a class name, is an acronym, the
acronym can be written in all capital letters (e.g., URL, HTMLParser).

Since classes are designed to represent objects, you should choose class names that are nouns

file:///C|/orielly/jnut/ch07_01.htm (1 of 3) [2/5/2003 7:49:19 PM]

Java Programming and Documentation Conventions (Java in an Nutshell)

(e.g., Thread, Teapot, FormatConverter).

Interfaces

Interface names follow the same capitalization conventions as class names. When an interface is
used to provide additional information about the classes that implement it, it is common to choose
an interface name that is an adjective (e.g., Runnable, Cloneable, Serializable,
DataInput). When an interface works more like an abstract superclass, use a name that is a
noun (e.g., Document, FileNameMap, Collection).

Methods

A method name always begins with a lowercase letter. If the name contains more than one word,
every word after the first begins with a capital letter (e.g., insert(), insertObject(),
insertObjectAt()). Method names are typically chosen so that the first word is a verb.
Method names can be as long as is necessary to make their purpose clear, but choose succinct
names where possible.

Fields and constants

Nonconstant field names follow the same capitalization conventions as method names. If a field is
a static final constant, it should be written in uppercase. If the name of a constant includes
more than one word, the words should be separated with underscores (e.g., MAX_VALUE). A field
name should be chosen to best describe the purpose of the field or the value it holds.

Parameters

The names of method parameters appear in the documentation for a method, so you should choose
names that make the purpose of the parameters as clear as possible. Try to keep parameter names
to a single word and use them consistently. For example, if a WidgetProcessor class defines
many methods that accept a Widget object as the first parameter, name this parameter widget
or even w in each method.

Local variables

Local variable names are an implementation detail and never visible outside your class.
Nevertheless, choosing good names makes your code easier to read, understand, and maintain.
Variables are typically named following the same conventions as methods and fields.

In addition to the conventions for specific types of names, there are conventions regarding the characters
you should use in your names. Java allows the $ character in any identifier, but, by convention, its use is
reserved for synthetic names generated by source-code processors. (It is used by the Java compiler, for

file:///C|/orielly/jnut/ch07_01.htm (2 of 3) [2/5/2003 7:49:19 PM]

Java Programming and Documentation Conventions (Java in an Nutshell)

example, to make inner classes work.) Also, Java allows names to use any alphanumeric characters from
the entire Unicode character set. While this can be convenient for non-English-speaking programmers,
the use of Unicode characters should typically be restricted to local variables, private methods and fields,
and other names that are not part of the public API of a class.

6.3. Bean Contexts and
Services

7.2. Portability Conventions
and Pure Java Rules

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch07_01.htm (3 of 3) [2/5/2003 7:49:19 PM]

file:///C|/orielly/jnut/copyrght.htm

Portability Conventions and Pure Java Rules (Java in a Nutshell)

Chapter 7: Java

Programming and
Documentation Conventions

7.2. Portability Conventions and Pure Java Rules

Sun's motto, or core value proposition, for Java is "Write once, run anywhere." Java makes it easy to
write portable programs, but Java programs do not automatically run successfully on any Java platform.
To ensure portability, you must follow a few fairly simple rules that can be summarized as follows:

Native methods

Portable Java code can use any methods in the core Java APIs, including methods implemented as
native methods. However, portable code must not define its own native methods. By their very
nature, native methods must be ported to each new platform, so they directly subvert the "Write
once, run anywhere" promise of Java.

The Runtime.exec() method

Calling the Runtime.exec() method to spawn a process and execute an external command on
the native system is rarely allowed in portable code. This is because the native OS command to be
executed is never guaranteed to exist or behave the same way on all platforms. The only time it is
legal to use Runtime.exec() is when the user is allowed to specify the command to run,
either by typing the command at runtime or by specifying the command in a configuration file or
preferences dialog box.

The System.getenv() method

Using System.getenv() is nonportable, without exception. The method has actually been
deprecated for this reason.

Undocumented classes

Portable Java code must use only classes and interfaces that are a documented part of the Java
platform. Most Java implementations ship with additional undocumented public classes that are
part of the implementation, but not of the Java platform specification. There is nothing to prevent
a program from using and relying on these undocumented classes, but doing so is not portable

file:///C|/orielly/jnut/ch07_02.htm (1 of 4) [2/5/2003 7:49:22 PM]

Portability Conventions and Pure Java Rules (Java in a Nutshell)

because the classes are not guaranteed to exist in all Java implementations or on all platforms.

The java.awt.peer package

The interfaces in the java.awt.peer package are part of the Java platform, but are
documented for use by AWT implementors only. Applications that use these interfaces directly
are not portable.

Implementation-specific features

Portable code must not rely on features specific to a single implementation. For example, in a
widely controversial move, Microsoft distributed a version of the Java runtime system that
included a number of additional methods that were not part of the Java platform as defined by
Sun. Legal action between Sun and Microsoft is pending because of this. Any program that
depends on the Microsoft-specific extensions is obviously not portable to other platforms.

Implementation-specific bugs

Just as portable code must not depend on implementation-specific features, it must not depend on
implementation-specific bugs. If a class or method behaves differently than the specification says
it should, a portable program cannot rely on this behavior, which may be different on different
platforms.

Implementation-specific behavior

Sometimes different platforms and different implementations may present different behaviors, all
of which are legal according to the Java specification. Portable code must not depend on any one
specific behavior. For example, the Java specification does not specify whether threads of equal
priority share the CPU or if one long-running thread can starve another thread at the same priority.
If an application assumes one behavior or the other, it may not run properly on all platforms.

Standard extensions

Portable code can rely on standard extensions to the Java platform, but, if it does so, it should
clearly specify which extensions it uses and exit cleanly with an appropriate error message when
run on a system that does not have the extensions installed.

Complete programs

Any portable Java program must be complete and self-contained: it must supply all the classes it
uses, except core platform and standard extension classes.

file:///C|/orielly/jnut/ch07_02.htm (2 of 4) [2/5/2003 7:49:22 PM]

Portability Conventions and Pure Java Rules (Java in a Nutshell)

Defining system classes

Portable Java code never defines classes in any of the system or standard extension packages.
Doing so violates the protection boundaries of those packages and exposes package-visible
implementation details.

Hardcoded filenames

A portable program contains no hardcoded file or directory names. This is because different
platforms have significantly different filesystem organizations and use different directory
separator characters. If you need to work with a file or directory, have the user specify the
filename, or at least the base directory beneath which the file can be found. This specification can
be done at runtime, in a configuration file, or as a command-line argument to the program. When
concatenating a file or directory name to a directory name, use the File() constructor or the
File.separator constant.

Line separators

Different systems use different characters or sequences of characters as line separators. Do not
hardcode "\n", "\r", or "\r\n" as the line separator in your program. Instead, use the println()
method of PrintStream or PrintWriter, which automatically terminates a line with the
line separator appropriate for the platform, or use the value of the line.separator system
property.

Mixed event models

The AWT event model changed dramatically between Java 1.0 and Java 1.1. Although it is often
possible to mix these two event models in a program, doing so is not technically portable.

The previous rules are the focus of Sun's "100% Pure Java" portability certification program; you can
find out more about this program and read more about the "Pure Java" requirements at
http://java.sun.com/100percent/.

7.1. Naming and
Capitalization Conventions

7.3. Java Documentation
Comments

file:///C|/orielly/jnut/ch07_02.htm (3 of 4) [2/5/2003 7:49:22 PM]

http://java.sun.com/100percent/

Portability Conventions and Pure Java Rules (Java in a Nutshell)

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch07_02.htm (4 of 4) [2/5/2003 7:49:22 PM]

file:///C|/orielly/jnut/copyrght.htm

Java Documentation Comments (Java in a Nutshell)

Chapter 7: Java

Programming and
Documentation Conventions

7.3. Java Documentation Comments

Most ordinary comments within Java code explain the implementation details of that code. In contrast, the Java
language specification defines a special type of comment known as a doc comment that serves to document the API
of your code. A doc comment is an ordinary multiline comment that begins with /** (instead of the usual /*) and
ends with */. A doc comment appears immediately before a class, interface, method, or field definition and
contains documentation for that class, interface, method, or field. The documentation can include simple HTML
formatting tags and other special keywords that provide additional information. Doc comments are ignored by the
compiler, but they can be extracted and automatically turned into online HTML documentation by the javadoc
program. (See Chapter 8, "Java Development Tools", for more information about javadoc.) Here is an example class
that contains appropriate doc comments:

/**
 * This immutable class represents <i>complex
 * numbers</i>.
 *
 * @author David Flanagan
 * @version 1.0
 */
public class Complex {
 /**
 * Holds the real part of this complex number.
 * @see #y
 */
 protected double x;

 /**
 * Holds the imaginary part of this complex number.
 * @see #x
 */
 protected double y;

 /**
 * Creates a new Complex object that represents the complex number
 * x+yi.
 * @param x The real part of the complex number.
 * @param y The imaginary part of the complex number.
 */
 public Complex(double x, double y) {

file:///C|/orielly/jnut/ch07_03.htm (1 of 8) [2/5/2003 7:49:25 PM]

Java Documentation Comments (Java in a Nutshell)

 this.x = x;
 this.y = y;
 }

 /**
 * Adds two Complex objects and produces a third object that represents
 * their sum. * @param c1 A Complex object
 * @param c2 Another Complex object
 * @return A new Complex object that represents the sum of
 * <code>c1</code> and
 * <code>c2</code>.
 * @exception java.lang.NullPointerException
 * If either argument is <code>null</code>.
 */
 public Complex add(Complex c1, Complex c2) {
 return new Complex(c1.x + c2.x, c1.y + c2.y);
 }
}

7.3.1. Structure of a Doc Comment

The body of a doc comment should begin with a one-sentence summary of the class, interface, method, or field
being documented. This sentence may be displayed by itself, as summary documentation, so it should be written to
stand on its own. The initial sentence can be followed by any number of other sentences and paragraphs that
describe the class, interface, method, or field.

After the descriptive paragraphs, a doc comment can contain any number of other paragraphs, each of which begins
with a special doc-comment tag, such as @author, @param, or @returns. These tagged paragraphs provide
specific information about the class, interface, method, or field that the javadoc program displays in a standard way.
The full set of doc-comment tags is listed in the next section.

The descriptive material in a doc comment can contain simple HTML markup tags, such as such as <I> for
emphasis, <CODE> for class, method, and field names, and <PRE> for multiline code examples. It can also contain
<P> tags to break the description into separate paragraphs and , , and related tags to display bulleted
lists and similar structures. Remember, however, that the material you write is embedded within a larger, more
complex HTML document. For this reason, doc comments should not contain major structural HTML tags, such as
<H2> or <HR>, that might interfere with the structure of the larger document.

Avoid the use of the <A> tag to include hyperlinks or cross references in your doc comments. Instead, use the
special {@link} doc-comment tag, which, unlike the other doc-comment tags, can appear anywhere within a doc
comment. As described in the next section, the {@link} tag allows you to specify hyperlinks to other classes,
interfaces, methods, and fields without knowing the HTML-structuring conventions and filenames used by javadoc.

If you want to include an image in a doc comment, place the image file in a doc-files subdirectory of the source
code directory. Give the image the same name as the class, with an integer suffix. For example, the second image
that appears in the doc comment for a class named Circle can be included with this HTML tag:

file:///C|/orielly/jnut/ch07_03.htm (2 of 8) [2/5/2003 7:49:25 PM]

Java Documentation Comments (Java in a Nutshell)

Because the lines of a doc comment are embedded within a Java comment, any leading spaces and asterisks (*) are
stripped from each line of the comment before processing. Thus, you don't need to worry about the asterisks
appearing in the generated documentation or about the indentation of the comment affecting the indentation of code
examples included within the comment with a <PRE> tag.

7.3.2. Doc-Comment Tags

As I mentioned earlier, javadoc recognizes a number of special tags, each of which begins with an @ character.
These doc-comment tags allow you to encode specific information into your comments in a standardized way, and
they allow javadoc to choose the appropriate output format for that information. For example, the @param tag lets
you specify the name and meaning of a single parameter for a method. javadoc can extract this information and
display it using an HTML <DL> list, an HTML <TABLE>, or however it sees fit.

The doc-comment tags recognized by javadoc are the following; a doc comment should typically use these tags in
the order listed here:

@author name

Adds an "Author:" entry that contains the specified name. This tag should be used for every class or interface
definition, but must not be used for individual methods and fields. If a class has multiple authors, use
multiple @author tags on adjacent lines. For example:

@author David Flanagan
@author Paula Ferguson

List the authors in chronological order, with the original author first. If the author is unknown, you can use
"unascribed". javadoc does not output authorship information unless the -author command-line argument is
specified.

@version text

Inserts a "Version:" entry that contains the specified text. For example:

@version 1.32, 08/26/99

This tag should be included in every class and interface doc comment, but cannot be used for individual methods
and fields. This tag is often used in conjunction with the automated version-numbering capabilities of a version-
control system, such as SCCS, RCS, or CVS. javadoc does not output version information in its generated
documentation unless the -version command-line argument is specified.

@param parameter-name description

Adds the specified parameter and its description to the "Parameters:" section of the current method. The doc

file:///C|/orielly/jnut/ch07_03.htm (3 of 8) [2/5/2003 7:49:25 PM]

Java Documentation Comments (Java in a Nutshell)

comment for a method or constructor must contain one @param tag for each parameter the method expects.
These tags should appear in the same order as the parameters specified by the method. The tag cannot be
used in class, interface, or field doc comments. You are encouraged to use phrases and sentence fragments
where possible, to keep the descriptions brief. However, if a parameter requires detailed documentation, the
description can wrap onto multiple lines and include as much text as necessary. You can also use spaces to
align the descriptions with each other. For example:

@param o the object to insert
@param index the position to insert it at

@return description

Inserts a "Returns:" section that contains the specified description. This tag should appear in every doc
comment for a method, unless the method returns void or is a constructor. The tag must not appear in class,
interface, or field doc comments. The description can be as long as necessary, but consider using a sentence
fragment to keep it short. For example:

@return <code>true</code> if the insertion is successful, or
 <code>false</code> if the list already contains the
 specified object.

@exception full-classname description

Adds a "Throws:" entry that contains the specified exception name and description. A doc comment for a
method or constructor should contain an @exception tag for every checked exception that appears in its
throws clause. For example:

@exception java.io.FileNotFoundException
 If the specified file could not be found

The @exception tag can optionally be used to document unchecked exceptions (i.e., subclasses of
RuntimeException) the method may throw, when these are exceptions that a user of the method may
reasonably want to catch. If a method can throw more than one exception, use multiple @exception tags on
adjacent lines and list the exceptions in alphabetical order. The description can be as short or as long as necessary to
describe the significance of the exception. This doc-comment tag cannot be used in class, interface, or field
comments. The @throws tag is a synonym for @exception.

@throws full-classname description

This tag is a synonym for @exception. It was introduced in Java 1.2.

@see reference

Adds a "See Also:" entry that contains the specified reference. This tag can appear in any kind of doc
comment. reference can take three different forms. If it begins with a quote character, it is taken to be the
name of a book or some other printed resource and is displayed as is. If reference begins with a < character,

file:///C|/orielly/jnut/ch07_03.htm (4 of 8) [2/5/2003 7:49:25 PM]

Java Documentation Comments (Java in a Nutshell)

it is taken to be an arbitrary HTML hyperlink that uses the <A> tag and the hyperlink is inserted into the
output documentation as is. This form of the @see tag can insert links to other online documents, such as a
programmer's guide or user's manual.

If reference is not a quoted string or a hyperlink, the @see tag is expected to have the following form:

@see feature label

In this case, javadoc outputs the text specified by label and encodes it as a hyperlink to the specified feature. If label
is omitted (as it usually is), javadoc uses the name of the specified feature instead.

feature can refer to a package, class, interface, method, constructor, or field, using one of the following forms:

pkgname

A reference to the named package. For example:

@see java.lang.reflect

pkgname.classname

A reference to a class or interface specified with its full package name. For example:

@see java.util.List

classname

A reference to a class or interface specified without its package name. For example:

@see List

javadoc resolves this reference by searching the current package and the list of imported classes for a class with this
name.

classname#methodname

A reference to a named method or constructor within the specified class. For example:

@see java.io.InputStream#reset
@see InputStream#close

If the class is specified without its package name, it is resolved as described for classname. This syntax is
ambiguous if the method is overloaded or the class defines a field by the same name.

classname#methodname(paramtypes)

file:///C|/orielly/jnut/ch07_03.htm (5 of 8) [2/5/2003 7:49:25 PM]

Java Documentation Comments (Java in a Nutshell)

A reference to a method or constructor with the type of its parameters explicitly specified. This form of the
@see tag is useful when cross-referencing an overloaded method. For example:

@see InputStream#read(byte[], int, int)

#methodname

A reference to a non-overloaded method or constructor in the current class or interface or one of the
containing classes, superclasses, or superinterfaces of the current class or interface. Use this concise form to
refer to other methods in the same class. For example:

@see #setBackgroundColor

#methodname(paramtypes)

A reference to a method or constructor in the current class or interface or one of its superclasses or
containing classes. This form works with overloaded methods because it lists the types of the method
parameters explicitly. For example:

@see #setPosition(int, int)

classname#fieldname

A reference to a named field within the specified class. For example:

@see java.io.BufferedInputStream#buf

If the class is specified without its package name, it is resolved as described for classname.

#fieldname

A reference to a field in the current class or interface or one of the containing classes, superclasses, or
superinterfaces of the current class or interface. For example:

@see #x

{@link reference}

The @link tag is like the @see tag except that, instead of placing a link to the specified reference in a
special "See Also:" section, it inserts the link inline. A @link tag can appear anywhere that HTML text
appears in a doc comment. In other words, it can appear in the initial description of the class, interface,
method, or field and in the descriptions associated with the @param, @returns, @exception, and
@deprecated tags. Because the @link tag can appear within arbitrary HTML text, the curly braces are
required to delimit it. The reference for the @link tag uses the same syntax as the @see tag documented
previously. For example:

file:///C|/orielly/jnut/ch07_03.htm (6 of 8) [2/5/2003 7:49:25 PM]

Java Documentation Comments (Java in a Nutshell)

@param regexp The regular expression to search for. This string
 argument must follow the syntax rules described for
 {@link RegExpParser}.

@deprecated explanation

As of Java 1.1, this tag specifies that the following class, interface, method, or field has been deprecated and
that its use should be avoided. javadoc adds a prominent "Deprecated" entry to the documentation and
includes the specified explanation text. This text should specify when the class or member was deprecated,
and, if possible, suggest a replacement class or member and include a link to it. For example:

@deprecated As of Version 3.0, this method is replaced
 by {@link #setColor}.

Although the Java compiler ignores all comments, it does take note of the @deprecated tag in doc comments.
When this tag appears, the compiler notes the deprecation in the class file it produces. This allows it to issue
warnings for other classes that rely on the deprecated feature.

@since version

Used to specify when the class, interface, method, or field was added to the API. It should be followed by a
version number or other version specification. For example:

@since JNUT 3.0

Every class and interface doc comment should include a @since tag, and any methods or fields added after the
initial release of the class or interface should have @since tags in their doc comments.

@serial description

This tag should appear in the doc comment for any field that is part of the serialized state of a
Serializable class. For classes that use the default serialization mechanism, this means all fields that are
not declared transient, even fields declared private. The description should be a brief description of
the field and of its purpose within a serialized object.

@serialField name type description

A Serializable class can define its serialized format by declaring an array of ObjectStreamField
objects in a field named serialPersistentFields. For such a class, the doc comment for
serialPersistentFields should include a @serialField tag for each element of the array. Each
tag specifies the name, type, and description for a particular field in the serialized state of the class.

@serialData description

A Serializable class can define a writeObject() method to write additional data besides that

file:///C|/orielly/jnut/ch07_03.htm (7 of 8) [2/5/2003 7:49:25 PM]

Java Documentation Comments (Java in a Nutshell)

written by the default serialization mechanism. An Externalizable class defines a
writeExternal() method that is responsible for writing the complete state of an object to the
serialization stream. The @serialData tag should be used in the doc comments for these
writeObject() and writeExternal() methods, and the description should document the
serialization format used by the method.

@beaninfo info

This nonstandard tag provides information about JavaBeans components and their methods. This tag is not
used by javadoc, but it is apparently used by a tool internal to Sun that extracts information from
@beaninfo tags for a class and outputs an appropriate java.beans.BeanInfo class. This tag appears
in the source code of the Swing component classes in Java 1.2. A typical usage looks like this:

@beaninfo bound: true
 description: the background color of this JavaBeans component

7.3.3. Doc Comments for Packages

Documentation comments for classes, interfaces, methods, constructors, and fields appear in Java source code
immediately before the definitions of the features they document. javadoc can also read and display summary
documentation for packages. Since a package is defined in a directory, not in a single file of source code, javadoc
looks for the package documentation in a file named package.html in the directory that contains the source code for
the classes of the package.

The package.html file should contain simple HTML documentation for the package. It can also contain @see,
@link, @deprecated, and @since tags. Since package.html is not a file of Java source code, the
documentation it contains should not be a Java comment (i.e., it should not be enclosed within /** and */
characters). Finally, any @see and @link tags that appear in package.html must use fully qualified class names.

In addition to defining a package.html file for each package, you can also provide high-level documentation for a
group of packages by defining an overview.html file in the source tree for those packages. When javadoc is run over
that source tree, it uses overview.html as the highest level overview it displays.

7.2. Portability Conventions
and Pure Java Rules

8. Java Development Tools

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch07_03.htm (8 of 8) [2/5/2003 7:49:25 PM]

file:///C|/orielly/jnut/copyrght.htm

Java Development Tools (Java in a Nutshell)

Part 1: Introducing Java

Chapter 8. Java Development Tools
Sun's implementation of Java includes a number of tools for Java developers. Chief among these are the Java interpreter
and the Java compiler, of course, but there are a number of others as well. This chapter documents all the tools shipped with
the Java 2 SDK (formerly known as the JDK), except for the RMI and IDL tools that are specific to enterprise
programming. Those tools are documented in Java Enterprise in a Nutshell (O'Reilly).

The tools documented here are part of Sun's development kit; they are implementation details and not part of the Java
specification itself. If you are using a Java development environment other than Sun's SDK (or a port of it), you should
consult your vendor's tool documentation.

Some examples in this chapter use Unix conventions for file and path separators. If Windows is your development
platform, change forward slashes in filenames to backward slashes, and colons in path specifications to semicolons.

appletviewer JDK 1.0 and later

The Java Applet Viewer

Synopsis

appletviewer [options] url | file...

Description

appletviewer reads or downloads the one or more HTML documents specified by the filename or URL on the command
line. Next, it downloads any applets specified in any of those files and runs each applet in a separate window. If the
specified document or documents do not contain any applets, appletviewer does nothing.

appletviewer recognizes applets specified with the <APPLET> tag and, in Java 1.2 and later, the <OBJECT> and
<EMBED> tags.

Options

appletviewer recognizes the following options:

-debug

If this option is specified, appletviewer is started within jdb (the Java debugger). This allows you to debug the

file:///C|/orielly/jnut/ch08_01.htm (1 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

applets referenced by the document or documents.

-encodingenc

This option specifies the character encoding that appletviewer should use when reading the contents of the specified
files or URLs. It is used in the conversion of applet parameter values to Unicode. Java 1.1 and later.

-Jjavaoption

This option passes the specified javaoption as a command-line argument to the Java interpreter. javaoption should
not contain spaces. If a multiword option must be passed to the Java interpreter, multiple -J options should be used.
See java for a list of valid Java interpreter options. Java 1.1 and later.

appletviewer also recognizes the -classic, -native, and -green options that the Java interpreter recognizes. See
java for details on these options.

Commands

Each window displayed by appletviewer contains a single Applet menu, with the following commands available:

Restart

Stops and destroys the current applet, then reinitializes and restarts it.

Reload

Stops, destroys, and unloads the applet, then reloads, reinitializes, and restarts it.

Stop

Stops the current applet. Java 1.1 and later.

Save

Serializes the applet and saves the serialized applet in the file Applet.ser in the user's home directory. The applet
should be stopped before selecting this option. Java 1.1 and later.

Start

Restarts a stopped applet. Java 1.1 and later.

Clone

Creates a new copy of the applet in a new appletviewer window.

Tag

Pops up a dialog box that displays the <APPLET> tag and all associated <PARAM> tags that created the current

file:///C|/orielly/jnut/ch08_01.htm (2 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

applet.

Info

Pops up a dialog box that contains information about the applet. This information is provided by the
getAppletInfo() and getParameterInfo() methods implemented by the applet.

Edit

This command is not implemented. The Edit menu item is disabled.

Character Encoding

Displays the current character encoding in the status line. Java 1.1 and later.

Print

Prints the applet. Java 1.1 and later.

Properties

Displays a dialog that allows the user to set appletviewer preferences, including settings for firewall and caching
proxy servers.

Close

Closes the current appletviewer window.

Quit

Quits appletviewer, closing all open windows.

CLASSPATH

In Java 1.0 and Java 1.1, appletviewer uses the CLASSPATH environment variable in the same way the Java
interpreter does. See java for details. In Java 1.2 and later, however, appletviewer ignores this environment variable
to better simulate the action of a web browser.

Properties

When it starts up, appletviewer reads property definitions from the file ~/.hotjava/properties (Unix) or .hotjava\properties
relative to the HOME environment variable (Windows). These properties are stored in the system properties list and can
specify the various error and status messages the applet viewer displays, as well as its security policies and use of proxy
servers. The properties that affect security and proxies are described in the following sections. Most users of appletviewer
do not need to use these properties.

Security Properties

file:///C|/orielly/jnut/ch08_01.htm (3 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

The following properties specify the security restrictions appletviewer places on untrusted applets:

acl.read

A list of files and directories an untrusted applet is allowed to read. The elements of the list should be separated with
colons on Unix systems and semicolons on Windows systems. On Unix systems, the ~ character is replaced with the
home directory of the current user. If the plus character appears as an element in the list, it is replaced by the value
of the acl.read.default property. This provides an easy way to enable read access--by simply setting
acl.read to "+". By default, untrusted applets are not allowed to read any files or directories.

acl.read.default

A list of files and directories that are readable by untrusted applets if the acl.read property contains a plus
character.

acl.write

A list of files and directories an untrusted applet is allowed to write to. The elements of the list should be separated
with colons on Unix systems and semicolons on Windows systems. On Unix systems, the ~ character is replaced
with the home directory of the current user. If the plus character appears as an element in the list, it is replaced by
the value of the acl.write.default property. This provides an easy way to enable write access--by simply
setting acl.write to "+". By default, untrusted applets are not allowed to write to any files or directories.

acl.write.default

A list of files and directories that are writable by untrusted applets if the acl.write property contains a plus
character.

appletviewer.security.mode

Specifies the types of network access an untrusted applet is allowed to perform. If it is set to "none", the applet can
perform no networking at all. The value "host" is the default; it specifies that the applet can connect only to the host
from which it was loaded. The value "unrestricted" specifies that an applet can connect to any host without
restrictions.

package.restrict.access.package-prefix

Properties of this form can be set to true to prevent untrusted applets from using classes in any package that has
the specified package name prefix as the first component of its name. For example, to prevent applets from using
any of the Sun classes (such as the Java compiler and the applet viewer itself) that are shipped with the Java SDK,
you can specify the following property:

package.restrict.access.sun=true

appletviewer sets this property to true by default for the sun.* and netscape.* packages.

package.restrict.definition.package-prefix

file:///C|/orielly/jnut/ch08_01.htm (4 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

Properties of this form can be set to true to prevent untrusted applets from defining classes in a package that has
the specified package name prefix as the first component of its name. For example, to prevent an applet from
defining classes in any of the standard Java packages, you can specify the following property:

package.restrict.definition.java=true

appletviewer sets this property to true by default for the java.*, sun.*, and netscape.* packages.

property.applet

When a property of this form is set to true (as of Java 1.1), it specifies that an applet should be allowed to read the
property named property from the system properties list. By default, applets are allowed to read only 10 standard
system properties (as detailed in Java Foundation Classes in a Nutshell (O'Reilly)). For example, to allow an applet
to read the user.home property, specify a property of the form:

user.home.applet=true

Proxy Properties

appletviewer uses the following properties to configure its use of firewall and caching proxy servers:

firewallHost

The firewall proxy host to connect to if firewallSet is true.

firewallPort

The port of the firewall proxy host to connect to if firewallSet is true.

firewallSet

Whether the applet viewer should use a firewall proxy. Values are true or false.

proxyHost

The caching proxy host to connect to if proxySet is true.

proxyPort

The port of the caching proxy host to connect to if proxySet is true.

proxySet

Whether the applet viewer should use a caching proxy. Values are true or false.

See Also: java, javac, jdb

file:///C|/orielly/jnut/ch08_01.htm (5 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

extcheck
Java 2 SDK 1.2

and later

JAR Version Conflict Utility

Synopsis

extcheck -verbose jarfile

Description

extcheck checks to see if the extension contained in the specified jarfile (or a newer version of that extension) has already
been installed on the system. It does this by reading the Specification-Title and Specification-Version
manifest attributes from the specified jarfile and from all of the JAR files found in the system extensions directory.

extcheck is designed for use in automated installation scripts. Without the -verbose option, it does not print the results of
its check. Instead, it sets its exit code to 0 if the specified extension does not conflict with any installed extensions and can
be safely installed. It sets its exit code to a non-zero value if an extension with the same name is already installed and has a
specification version number equal to or greater than the version of the specified file.

-verbose

Lists the installed extensions as they are checked and displays the results of the check.

See Also: jar

jar JDK 1.1 and later

Java Archive Tool

Synopsis

jar c|t|u|x[f][m][M][0][v] [•jar] [manifest] [-C directory] [files]
jar -i [jar]

Description

jar is a tool that can create and manipulate Java Archive (JAR) files. A JAR file is a ZIP file that contains Java class files,
auxiliary resource files required by those classes, and optional meta-information. This meta-information includes a manifest
file that lists the contents of the JAR archive and provides auxiliary information about each file.

file:///C|/orielly/jnut/ch08_01.htm (6 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

The jar command can create JAR files, list the contents of JAR files, and extract files from a JAR archive. In Java 1.2 and
later, it can also add files to an existing archive or update the manifest file of an archive. In Java 1.3 and later, jar can also
add an index entry to a JAR file.

Options

The syntax of the jar command is reminiscent of the Unix tar (tape archive) command. Most options to jar are specified as
a block of concatenated letters passed as a single argument, rather than as individual command-line arguments. The first
letter of the first argument specifies what action jar is to perform; it is required. Other letters are optional. The various file
arguments depend on which letters are specified.

Command Options

The first letter of the first option to jar specifies the basic operation jar is to perform. Here are the four possible options:

c

Creates a new JAR archive. A list of input files and/or directories must be specified as the final arguments to jar.
The newly created JAR file has a META-INF/MANIFEST.MF file as its first entry. This automatically created
manifest lists the contents of the JAR file and contains a message digest for each file.

t

Lists the contents of a JAR archive.

u

Updates the contents of a JAR archive. Any files listed on the command line are added to the archive. When used
with the m option, this adds the specified manifest information to the JAR file. Java 1.2 and later.

x

Extracts the contents of a JAR archive. The files and directories specified on the command line are extracted and
created in the current working directory. If no file or directory names are specified, all the files and directories in the
JAR file are extracted.

Modifier Options

Each of the four command specifier letters can be followed by additional letters that provide further detail about the
operation to be performed:

f

Indicates that jar is to operate on a JAR file whose name is specified on the command line. If this option is not
present, jar reads a JAR file from standard input and/or writes a JAR file to standard output. If the f option is
present, the command line must contain the name of the JAR file to operate on.

m

file:///C|/orielly/jnut/ch08_01.htm (7 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

When jar creates or updates a JAR file, it automatically creates (or updates) a manifest file named META-
INF/MANIFEST.MF in the JAR archive. This default manifest simply lists the contents of the JAR file. Many JAR
files require additional information to be specified in the manifest; the m option tells the jar command that a
manifest template is specified on the command line. jar reads this manifest file and stores all the information it
contains into the META-INF/MANIFEST.MF file it creates. This m option should be used only with the c or u
commands, not with the t or x commands.

M

Used with the c and u commands to tell jar not to create a default manifest file.

v

Tells jar to produce verbose output.

0

Used with the c and u commands to tell jar to store files in the JAR archive without compressing them. Note that
this option is the digit zero, not the letter O.

Files

The first option to jar consists of an initial command letter and various option letters. This first option is followed by a list
of files:

jar

If the first option contains the letter f, that option must be followed by the name of the JAR file to create or
manipulate.

manifest

If the first option contains the letter m, that option must be followed by the name of the file that contains manifest
information. If the first option contains both the letters f and m, the JAR and manifest files should be listed in the
same order the f and m options appear. In other words, if f comes before m, the JAR filename should come before
the manifest filename. Otherwise, if m comes before f, the manifest filename should be specified before the JAR
filename.

files

The list of one or more files and/or directories to be inserted into or extracted from the JAR archive.

Additional Options

In addition to all the options listed previously, jar also supports the following:

-C dir

file:///C|/orielly/jnut/ch08_01.htm (8 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

Used within the list of files to process; it tells jar to change to the specified dir while processing the subsequent files
and directories. The subsequent file and directory names are interpreted relative to dir and are inserted into the JAR
archive without dir as a prefix. Any number of -C options can be used; each remains in effect until the next is
encountered. The directory specified by a -C option is interpreted relative to the current working directory, not the
directory specified by the previous -C option. Java 1.2 and later.

-i jarfile

The -i option is used instead of the c, t, u, and x commands. It tells jar to produce an index of all JAR files
referenced by the specified jarfile. The index is stored in a file named META-INF/INDEX.LIST ; a Java interpreter
or applet viewer can use the information in this index to optimize its class and resource lookup algorithm and avoid
downloading unnecessary JAR files. Java 1.3 and later.

Examples

The jar command has a confusing array of options, but, in most cases, its use is quite simple. To create a simple JAR file
that contains all the class files in the current directory and all files in a subdirectory called images, you can type:

% jar cf my.jar *.class images

Examples: To verbosely list the contents of a JAR archive:

% jar tvf your.jar

Examples: To extract the manifest file from a JAR file for examination or editing:

% jar xf the.jar META-INF/MANIFEST.MF

Examples: To update the manifest of a JAR file:

% jar ufm my.jar manifest.template

See Also: jarsigner

jarsigner
Java 2 SDK

1.2 and later

JAR Signing and Verification
Tool

Synopsis

file:///C|/orielly/jnut/ch08_01.htm (9 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

jarsigner [options] jarfile signer
jarsigner -verify jarfile

Description

jarsigner adds a digital signature to the specified jarfile, or, if the -verify option is specified, it verifies the digital
signature or signatures already attached to the JAR file. The specified signer is a case-insensitive nickname or alias for the
entity whose signature is to be used. The specified signer name is used to look up the private key that generates the
signature.

When you apply your digital signature to a JAR file, you are implicitly vouching for the contents of the archive. You are
offering your personal word that the JAR file contains only nonmalicious code, files that do not violate copyright laws, and
so forth. When you verify a digitally signed JAR file, you can determine who the signer or signers of the file are and (if the
verification succeeds) that the contents of the JAR file have not been changed, corrupted, or tampered with since the
signature or signatures were applied. Verifying a digital signature is entirely different from deciding whether or not you
trust the person or organization whose signature you verified.

jarsigner and the related keytool program replace the javakey program of Java 1.1.

Options

jarsigner defines a number of options, many of which specify how a private key is to be found for the specified signer.
Most of these options are unnecessary when using the -verify option to verify a signed JAR file:

-certs

If this option is specified along with either the -verify or -verbose option, it causes jarsigner to display details
of the public-key certificates associated with the signed JAR file.

-Jjavaoption

Passes the specified javaoption directly to the Java interpreter.

-keypass password

Specifies the password that encrypts the private key of the specified signer. If this option is not specified, jarsigner
prompts you for the password.

-keystore url

A keystore is a file that contains keys and certificates. This option specifies the filename or URL of the keystore in
which the private- and public-key certificates of the specified signer are looked up. The default is the file named
.keystore in the user's home directory (the value of the system property user.home). This is also the default
location of the keystore managed by keytool.

-sigfile basename

Specifies the base names of the .SF and .DSA files added to the META-INF/ directory of the JAR file. If you leave

file:///C|/orielly/jnut/ch08_01.htm (10 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

this option unspecified, the base filename is chosen based on the signer name.

-signedjar outputfile

Specifies the name for the signed JAR file created by jarsigner. If this option is not specified, jarsigner overwrites
the jarfile specified on the command line.

-storepass password

Specifies the password that verifies the integrity of the keystore (but does not encrypt the private key). If this option
is omitted, jarsigner prompts you for the password.

-storetype type

Specifies the type of keystore specified by the -keystore option. The default is the system-default keystore type,
which on most systems is the Java Keystore type, known as "JKS". If you have the Java Cryptography Extension
installed, you may want to use a "JCEKS" keystore instead.

-verbose

Displays extra information about the signing or verification process.

-verify

Specifies that jarsigner should verify the specified JAR file rather than sign it.

See Also: jar, keytool, javakey

java JDK 1.0 and later

The Java Interpreter

Synopsis

java [interpreter-options] classname [program-arguments]
java [interpreter-options] -jar jarfile [program-arguments]

Description

java is the Java byte-code interpreter; it runs Java programs. The program to be run is the class specified by classname.
This must be a fully qualified name: it must include the package name of the class, but not the .class file extension. For
example:

% java david.games.Checkers
% java Test

file:///C|/orielly/jnut/ch08_01.htm (11 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

The specified class must define a main() method with exactly the following signature:

public static void main(String[] args)

This method serves as the program entry point: the interpreter begins execution here.

In Java 1.2 and later, a program can be packaged in an executable JAR file. To run a program packaged in this fashion, use
the -jar option to specify the JAR file. The manifest of an executable JAR file must contain a Main-Class attribute
that specifies which class within the JAR file contains the main() method at which the interpreter is to begin execution.

Any command-line options that precede the name of the class or JAR file to execute are options to the Java interpreter
itself. Any options that follow the class name or JAR filename are options to the program; they are ignored by the Java
interpreter and passed as an array of strings to the main() method of the program.

The Java interpreter runs until the main() method exits, and any threads (except for threads marked as daemon threads)
created by the program have also exited.

Interpreter Versions

The java program is the basic version of the Java interpreter. In addition to this program, however, there are several other
versions of the Java interpreter. Each of these versions is similar to java, but has a specialized function. The various
interpreter programs are the following:

java

This is the basic version of the Java interpreter; it is usually the correct one to use. The behavior and set of supported
options changed between Java 1.1 and Java 1.2.

oldjava

This version of the interpreter is included in Java 1.2 and Java 1.3x for compatibility with the Java 1.1 interpreter. It
loads classes using the Java 1.1 class-loading scheme. Very few Java applications need to use this version of the
interpreter.

javaw

This version of the interpreter is included only on Windows platforms. Use javaw when you want to run a Java
program (from a script, for example) without forcing a console window to appear. In Java 1.2 and Java 1.3, there is
also an oldjavaw program that combines the features of oldjava and javaw.

java_g

In Java 1.0 and Java 1.1, java_g is a debugging version of the Java interpreter. It includes a few specialized
command-line options, but is rarely used. Windows platforms also define a javaw_g program. java_g is not included
in Java 1.2 or later versions.

Client or Classic VM

file:///C|/orielly/jnut/ch08_01.htm (12 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

In Java 1.3, the java application launcher tool can run a program using either of two VM implementations. The
"Client VM" uses Sun's Hotspot incremental compilation technology and is highly tuned for running client-side Java
applications (as opposed to server applications). This is the default VM. The "Classic VM" is essentially the same
VM used by Java 1.2. To select the "Classic VM," specify the -classic option.

Just-In-Time Compiler

In Java 1.2, and in Java 1.3 when you specify the -classic option, the Java interpreter uses a just-in-time
compiler (if one is available for your platform). A JIT converts Java byte codes to native machine instructions at
runtime and significantly speeds up the execution of a typical Java program. If you do not want to use the JIT, you
can disable it by setting the JAVA_COMPILER environment variable to "NONE" or the java.compiler system
property to "NONE" using the -D option:

% setenv JAVA_COMPILER NONE // Unix syntax
% java -Djava.compiler=NONE MyProgram

If you want to use a different JIT compiler implementation, set the environment variable or system property to the name of
the desired implementation.

Threading systems

On Solaris and related Unix platforms, you have a choice of the type of threads used by the Java 1.2 interpreter and
the "Classic VM" of Java 1.3. To use native OS threads, specify -native. To use nonnative, or green, threads (the
default), specify -green. In Java 1.3, the default "Client VM" uses native threads. Specifying -green or -
native in Java 1.3 implicitly specifies -classic as well.

Options

-classic

Runs the "Classic VM" instead of the default high-performance "Client VM." Java 1.3 and later.

-classpath path

Specifies the directories, JAR files, and ZIP files java searches when trying to load a class. In Java 1.0 and 1.1, and
with the oldjava interpreter, this option specifies the location of system classes, extension classes, and application
classes. In Java 1.2 and later, this option specifies only the location of application classes. See Loading Classes for
further details.

-cp

A synonym for -classpath. Java 1.2 and later.

-cs, -checksource

Both options tell java to check the modification times on the specified class file and its corresponding source file. If
the class file cannot be found or if it is out of date, it is automatically recompiled from the source. Java 1.0 and Java
1.1 only; these options are not available in Java 1.2 and later.

file:///C|/orielly/jnut/ch08_01.htm (13 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

-Dpropertyname=value

Defines propertyname to equal value in the system properties list. Your Java program can then look up the specified
value by its property name. You can specify any number of -D options. For example:

% java -Dawt.button.color=gray -Dmy.class.pointsize=14 my.class

-debug

Causes java to start up in a way that allows the jdb debugger to attach itself to the interpreter session. In Java 1.2 and
later, this option has been replaced with -Xdebug.

-green

On operating systems such as Solaris that support multiple styles of threading, this option selects nonnative, or
green, threads. This is the default in Java 1.2. In Java 1.3, using this option also selects the -classic option. See
also -native. Java 1.2 and later.

-help, -?

Prints a usage message and exits. See also -X.

-jar jarfile

Runs the specified executable jarfile. The manifest of the specified jarfile must contain a Main-Class attribute
that identifies the class with the main() method at which program execution is to begin. Java 1.2 and later.

-ldigit

Sets the logging level for trace output. See -t and -tm. java_g only.

-ms initmem[k|m]

Specifies how much memory is allocated for the heap when the interpreter starts up. In Java 1.2 and later, this option
has been renamed -Xms.

-mx maxmem[k|m]

Specifies the maximum heap size the interpreter can use for dynamically allocated objects and arrays. In Java 1.2
and later, this option has been renamed -Xmx.

-native

On operating systems such as Solaris that support multiple styles of threading, this option selects native threads,
instead of the default green threads. Using native threads can be advantageous in some circumstances, such as when
running on a multi-CPU computer. In Java 1.3, the default Hotspot virtual machine uses native threads. Selecting
this option in Java 1.3 implicitly selects the -classic option as well. Java 1.2 and later.

file:///C|/orielly/jnut/ch08_01.htm (14 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

-noasyncgc

Do not do garbage collection asynchronously. With this option specified, java performs garbage collection only
when it runs out of memory or when the garbage collector is explicitly invoked. Without this option, java runs the
garbage collector as a separate, low-priority thread. Java 1.0 and Java 1.1 only; this option has been removed in Java
1.2 and later versions.

-noclassgc

Do not garbage-collect loaded classes no longer in use. This option was added in Java 1.1; it has been renamed to -
Xnoclassgc as of Java 1.2.

-noverify

Never run the byte-code verifier. Java 1.0 and Java 1.1 only; this option has been removed in Java 1.2 and later
versions.

-oss stacksize[k|m]

Sets the size of each thread's Java code stack. By default, stacksize is specified in bytes. You can specify it in
kilobytes by appending the letter k or in megabytes by appending the letter m. The default value is 400 KB. You
must specify at least 1000 bytes. Java 1.0 and Java 1.1 only; this option has been removed in Java 1.2 and later
versions.

-prof[:file]

Outputs profiling information to the specified file or to the file java.prof in the current directory. The format of this
profiling information is not well-documented. Prior to Java 1.1, no file can be specified; profiling information is
always output to ./java.prof. Java 1.0 and Java 1.1 only; this option has been superseded in Java 1.2 by the -
Xrunhprof option and in Java 1.3 by -Xprof.

-showversion

This option works like the -version option, except that the interpreter continues running after printing the version
information. Java 1.3 and later.

-ss stacksize[k|m]

Sets the size of each thread's native code stack. By default, stacksize is specified in bytes. You can specify it in
kilobytes by appending the letter k or in megabytes by appending the letter m. The default value is 128 KB. You
must specify at least 1000 bytes. Java 1.0 and Java 1.1 only; this option has been removed in Java 1.2 and later
versions.

-t

Outputs a trace of all byte codes executed. java_g only.

-tm

file:///C|/orielly/jnut/ch08_01.htm (15 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

Outputs a trace of all methods executed. java_g only.

-verbose, -v, -verbose:class

Prints a message each time java loads a class. In Java 1.0 and Java 1.1, you can use -v as a synonym. In Java 1.2
and later, you can use -verbose:class as a synonym.

-verbosegc

Prints a message when garbage collection occurs. In Java 1.2 and later, this option has been renamed -
verbose:gc.

-verbose:gc

Prints a message when garbage collection occurs. Java 1.2 and later. Prior to Java 1.2, use -verbosegc.

-verbose:jni

Prints a message when native methods are called. Java 1.2 and later.

-verify

Runs the byte-code verifier on all classes that are loaded. Java 1.0 and Java 1.1 only; this option has been removed
in Java 1.2 and later.

-verifyremote

Runs the byte-code verifier on all classes that are loaded through a class loader. (This generally refers to classes that
are dynamically loaded from an untrusted location.) This is the default behavior for java. Java 1.0 and Java 1.1 only;
this option has been removed in Java 1.2 and later.

-version

Prints the version of the Java interpreter and exits.

-X

Displays usage information for the nonstandard interpreter options (those beginning with -X) and exits. See also -
help. Java 1.2 and later.

-Xbatch

Tells the Hotspot VM to perform all just-in-time compilation in the foreground, regardless of the time required for
compilation. Without this option, the VM compiles methods in the background while interpreting them in the
foreground. Java 1.3 and later.

-Xbootclasspath:path

file:///C|/orielly/jnut/ch08_01.htm (16 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

Specifies a search path consisting of directories, ZIP files, and JAR files the java interpreter should use to look up
system classes. With oldjava, use -classpath to specify this information. Use of this option is very rare. Java 1.2
and later.

-Xcheck:jni

Performs additional checks when using Java Native Interface functions. Java 1.2 and later.

-Xdebug

Starts the interpreter in a way that allows a debugger to communicate with it. Java 1.2 and later. Prior to Java 1.2,
use -debug.

-Xfuture

Strictly checks the format of all class files loaded. Without this option, java performs the same checks that were
performed in Java 1.1. Java 1.2 and later.

-Xincgc

Uses incremental garbage collection. In this mode the garbage collector runs continuously in the background, and a
running program is rarely, if ever, subject to noticeable pauses while garbage collection occurs. Using this option
typically results in a 10% decrease in overall performance, however. Java 1.3 and later.

-Xint

Tells the Hotspot VM to operate in interpreted mode only, without performing any just-in-time compilation. Java
1.3 and later.

-Xmixed

Tells the Hotspot VM to perform just-in-time compilation on frequently used methods ("hotspots") and execute
other methods in interpreted mode. This is the default behavior. Java 1.3 and later.

-Xms initmem[k|m]

Specifies how much memory is allocated for the heap when the interpreter starts up. By default, initmem is specified
in bytes. You can specify it in kilobytes by appending the letter k or in megabytes by appending the letter m. The
default is 1 MB. For large or memory-intensive applications (such as the Java compiler), you can improve runtime
performance by starting the interpreter with a larger amount of memory. You must specify an initial heap size of at
least 1000 bytes. Java 1.2 and later. Prior to Java 1.2, use -ms.

-Xmx maxmem[k|m]

Specifies the maximum heap size the interpreter uses for dynamically allocated objects and arrays. maxmem is
specified in bytes by default. You can specify maxmem in kilobytes by appending the letter k and in megabytes by
appending the letter m. The default is 16 MB. You cannot specify a heap size less than 1000 bytes. Java 1.2 and
later. Prior to Java 1.2, use -mx.

file:///C|/orielly/jnut/ch08_01.htm (17 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

-Xnoclassgc

Do not garbage-collect classes. Java 1.2 and later. In Java 1.1, use -noclassgc.

-Xprof

Prints profiling output to standard output. Java 1.3 and later. In Java 1.2, or when using the -classic option, use -
Xrunhprof. Prior to Java 1.2, use -prof.

-Xrs

Requests that the interpreter use fewer operating system signals. This option may improve performance on some
systems. Java 1.2 and later.

-Xrunhprof:suboptions

Turns on CPU, heap, or monitor profiling. suboptions is a comma-separated list of name=value pairs. Use -
Xrunhprof:help for a list of supported options and values. Java 1.2 and later. Prior to Java 1.2, rudimentary
profiling support is available with the -prof option. In Java 1.3, this option is supported if -classic is used, but
is not supported by the new Hotspot VM. See -Xprof.

Loading Classes

The Java interpreter knows where to find the system classes that comprise the Java platform. In Java 1.2 and later, it also
knows where to find the class files for all extensions installed in the system extensions directory. However, the interpreter
must be told where to find the nonsystem classes that comprise the application to be run.

Class files are stored in directories that correspond to their package name. For example, the class
com.davidflanagan.utils.Util is stored in a file com/davidflanagan/utils/Util.class. By default, the interpreter
uses the current working directory as the root and looks for all classes in and beneath this directory.

The interpreter can also search for classes within ZIP and JAR files. To tell the interpreter where to look for classes, you
specify a classpath•: a list of directories and ZIP and JAR archives. When looking for a class, the interpreter searches each
of the specified locations in the order in which they are specified.

The easiest way to specify a classpath is to set the CLASSPATH environment variable, which works much like the PATH
variable used by a Unix shell or a Windows command-interpreter path. To specify a classpath in Unix, you might type a
command like this:

% setenv CLASSPATH .:~/myclasses:/usr/lib/javautils.jar:/usr/lib/javaapps

On a Windows system, you might use a command like the following:

C:\> set CLASSPATH=.;c:\myclasses;c:\javatools\classes.zip;d:\javaapps

Note that Unix and Windows use different characters to separate directory and path components.

file:///C|/orielly/jnut/ch08_01.htm (18 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

You can also specify a classpath with the -classpath or -cp options to the Java interpreter. A path specified with one
of these options overrides any path specified by the CLASSPATH environment variable. In Java 1.2 and later, the -
classpath option specifies only the search path for application and user classes. Prior to Java 1.2, or when using the
oldjava interpreter, this option specifies the search path for all classes, including system classes and extension classes.

See Also: javac, jdb

javac JDK 1.0 and later

The Java Compiler

Synopsis

javac [options] files
oldjavac [options] files

Description

javac is the Java compiler; it compiles Java source code (in .java files) into Java byte codes (in .class files). The Java
compiler is itself written in Java. The Java compiler has been completely rewritten in Java 1.3, and its performance has
been substantially improved. Although the new javac is substantially compatible with previous versions of the compiler,
the old version of the compiler is provided as oldjavac.

javac can be passed any number of Java source files, whose names must all end with the .java extension. javac produces a
separate .class class file for each class defined in the source files. Each source file can contain any number of classes,
although only one can be a public top-level class. The name of the source file (minus the .java extension) must match the
name of the public class it contains.

In Java 1.2 and later, if a filename specified on the command line begins with the character @, that file is taken not as a Java
source file, but as a list of Java source files. Thus, if you keep a list of Java source files for a particular project in a file
named project.list, you can compile all those files at once with the command:

% javac @project.list

To compile a source file, javac must be able to find definitions of all classes used in the source file. It looks for definitions
in both source-file and class-file form, automatically compiling any source files that have no corresponding class files or
that have been modified since they were most recently compiled.

Options

-bootclasspath path

Specifies the search pathjavac uses to look up system classes. This option is handy when you are using javac as a
cross-compiler to compile classes against different versions of the Java API. For example, you might use the Java
1.3 compiler to compile classes against the Java 1.2 runtime environment. This option does not specify the system

file:///C|/orielly/jnut/ch08_01.htm (19 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

classes used to run the compiler itself, only the system classes read by the compiler. See also -extdirs and -
target. Java 1.2 and later.

-classpath path

Specifies the path javac uses to look up classes referenced in the specified source code. This option overrides any
path specified by the CLASSPATH environment variable. The path specified is an ordered list of directories, ZIP
files, and JAR archives, separated by colons on Unix systems or semicolons on Windows systems. If the -
sourcepath option is not set, this option also specifies the search path for source files.

Prior to Java 1.2, this option specifies the path to system and extension classes, as well as user and application
classes, and must be used carefully. In Java 1.2 and later, it specifies only the search path for application classes. See
the discussion of "Loading Classes" in the documentation for the java command for further information.

-d directory

Specifies the directory in which (or beneath which) class files should be stored. By default, javac stores the .class
files it generates in the same directory as the .java files those classes were defined in. If the -d option is specified,
however, the specified directory is treated as the root of the class hierarchy, and .class files are placed in this
directory or the appropriate subdirectory below it, depending on the package name of the class. Thus, the following
command:

% javac -d /java/classes Checkers.java

places the file Checkers.class in the directory /java/classes if the Checkers.java file has no package statement. On the
other hand, if the source file specifies that it is in a package:

package com.davidflanagan.games;

the .class file is stored in /java/classes/com/davidflanagan/games. When the -d option is specified, javac automatically
creates any directories it needs to store its class files in the appropriate place.

-depend

Tells javac to recursively search for out-of-date class files in need of recompilation. This option forces a thorough
compilation, but can slow the process down significantly. In Java 1.2 and later, this option has been renamed -
Xdepend.

-deprecation

Tells javac to issue a warning for every use of a deprecated API. By default, javac issues only a single warning for
each source file that uses deprecated APIs. Java 1.1 and later.

-extdirs path

Specifies a list of directories to search for extension JAR files. It is used along with -bootclasspath when
doing cross-compilation for different versions of the Java runtime environment. Java 1.2 and later.

-g

file:///C|/orielly/jnut/ch08_01.htm (20 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

Tells javac to add line number, source file, and local variable information to the output class files, for use by
debuggers. By default, javac generates only the line numbers.

-g:none

Tells javac to include no debugging information in the output class files. Java 1.2 and later.

-g:keyword-list

Tells javac to output the types of debugging information specified by the comma-separated keyword-list. The valid
keywords are: source, which specifies source-file information; lines, which specifies line number information;
and vars, which specifies local variable debugging information. Java 1.2 and later.

-Jjavaoption

Passes the argument javaoption directly through to the Java interpreter. For example: -J-Xmx32m. javaoption
should not contain spaces; if multiple arguments must be passed to the interpreter, use multiple -J options. Java 1.1
and later.

-nowarn

Tells javac not to print warning messages. Errors are still reported as usual.

-nowrite

Tells javac not to create any class files. Source files are parsed as usual, but no output is written. This option is
useful when you want to check that a file will compile without actually compiling it. Java 1.0 and Java 1.1 only; this
option is not available in Java 1.2 and later.

-O

Enables optimization of class files to improve their execution speed. Using this option can result in larger class files
that are difficult to debug and cause longer compilation times. Prior to Java 1.2, this option is incompatible with -g;
turning on -O implicitly turns off -g and turns on -depend.

-sourcepath path

Specifies the list of directories, ZIP files, and JAR archives that javac searches when looking for source files. The
files found in this source path are compiled if no corresponding class files are found or if the source files are newer
than the class files. By default, source files are searched for in the same places class files are searched for. Java 1.2
and later.

-target version

Specifies the class-file-format version to use for the generated class files. The default version is 1.1, which generates
class files that can be read and executed by Java 1.0 and later virtual machines. If you specify version as 1.2, javac
increments the class file version number, producing a class file that does not run with a Java 1.0 or Java 1.1

file:///C|/orielly/jnut/ch08_01.htm (21 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

interpreter. There have not been any actual changes to the Java class-file format; the new version number is simply a
convenient way to prevent classes that depend on the many new features of Java 1.2 from being run on out-of-date
interpreters.

-verbose

Tells the compiler to display messages about what it is doing. In particular, it causes javac to list all the source files
it compiles, including files that did not appear on the command line.

-X

Tells the javac compiler (and, in Java 1.3, the oldjavac compiler) to display usage information for its nonstandard
options (all of which begin with -X). Java 1.2 and oldjavac only.

-Xdepend

Tells javac to recursively search for source files that need recompilation. This causes a very thorough but time-
consuming compilation process. Java 1.2 and oldjavac only.

-Xstdout

Tells javac to send warning and error messages to the standard output stream instead of the standard error stream.
Java 1.2 and oldjavac only.

-Xverbosepath

Displays verbose output explaining where various class files and source files were found. Java 1.2 and oldjavac
only.

Environment

CLASSPATH

Specifies an ordered list (colon-separated on Unix, semicolon-separated on Windows systems) of directories, ZIP
files, and JAR archives in which javac should look for user class files and source files. This variable is overridden
by the -classpath option.

See Also: java, jdb

javadoc
JDK 1.0

and later

The Java Documentation
Generator

file:///C|/orielly/jnut/ch08_01.htm (22 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

Synopsis

javadoc [options] package... sourcefiles... @lists...

Description

javadoc generates API documentation, in HTML format (by default), for any number of packages and classes you specify.
The javadoc command line can list any number of package names and any number of Java source files. For convenience,
when working with a large number of packages or source files, you can list them all in an auxiliary file and specify the
name of that file on the command line, preceded by an @ character.

javadoc uses the javac compiler to process all the specified Java source files and all the Java source files in all the specified
packages. It uses the information it gleans from this processing to generate detailed API documentation. Most importantly,
the generated documentation includes the contents of all documentation comments included in the source files. See Chapter
7, "Java Programming and Documentation Conventions", for information about writing doc comments in your own Java
code.

When you specify a Java source file for javadoc to process, you must specify the name of the file that contains the source,
including a complete path to the file. It is more common, however, to use javadoc to create documentation for entire
packages of classes. When you specify a package for javadoc to process, you specify the package name, not the directory
that contains the source code for the package. In this case, you may need to specify the -sourcepath option so that
javadoc can find your package source code correctly if it is not stored in a location already listed in your default classpath.

javadoc creates HTML documentation by default, but you can customize its behavior by defining a doclet class that
generates documentation in whatever format you desire. You can write your own doclets using the doclet API defined by
the com.sun.javadoc package. Documentation for this package is included in the standard documentation bundle for
Java 1.2 and later.

javadoc has significant new functionality as of Java 1.2. This reference page documents the Java 1.2 and later versions of
the program, but makes no attempt to distinguish new features of the Java 1.2 version from the features that existed in
previous versions.

Options

javadoc defines a large number of options. Some are standard options that are always recognized by javadoc. Other options
are defined by the doclet that produces the documentation. The options for the standard HTML doclet are included in the
following list:

-1.1

Simulates the output style and directory structure of the Java 1.1 version of javadoc.

-author

Includes authorship information specified with @author in the generated documentation. Default doclet only.

-bootclasspath

file:///C|/orielly/jnut/ch08_01.htm (23 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

Specifies the location of an alternate set of system classes. This can be useful when cross-compiling. See javac for
more information on this option.

-bottom text

Displays text at the bottom of each generated HTML file. text can contain HTML tags. See also -footer. Default
doclet only.

-charset encoding

Specifies the character encoding for the output. This depends on the encoding used in the documentation comments
of your source code, of course. The encoding value is used in a <META> tag in the HTML output. Default doclet
only.

-classpath path

Specifies a path javadoc uses to look up both class files and, if you do not specify the -sourcepath option,
source files. Because javadoc uses the javac compiler, it needs to be able to locate class files for all classes
referenced by the packages being documented. See java and javac for more information about this option and the
default value provided by the CLASSPATH environment variable.

-d directory

Specifies the directory in and beneath which javadoc should store the HTML files it generates. If this option is
omitted, the current directory is used. Default doclet only.

-docencoding encoding

Specifies the encoding to be used for output HTML documents. The name of the encoding specified here may not
exactly match the name of the charset specified with the -charset option. Default doclet only.

-doclet classname

Specifies the name of the doclet class to use to generate the documentation. If this option is not specified, javadoc
generates documentation using the default HTML doclet.

-docletpath classpath

If the class specified by the -doclet tag is not available from the default classpath, this option specifies a path
from which it can be loaded.

-doctitle text

Provides a title to display at the top of the documentation overview file. This file is often the first thing readers see
when they browse the generated documentation. The title can contain HTML tags. Default doclet only.

-encoding encoding-name

file:///C|/orielly/jnut/ch08_01.htm (24 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

Specifies the character encoding of the input source files and the documentation comments they contain. This can be
different from the desired output encoding specified by -docencoding. The default is the platform default
encoding.

-extdirs dirlist

Specifies a list of directories to search for standard extensions. Only necessary when cross-compiling with -
bootclasspath. See javac for details.

-footer text

Specifies text to be displayed near the bottom of each file, to the right of the navigation bar. text can contain HTML
tags. See also -bottom and -header. Default doclet only.

-group title packagelist

javadoc generates a top-level overview page that lists all packages in the generated document. By default, these
packages are listed in alphabetical order in a single table. You can break them into groups of related packages with
this option, however. The title specifies the title of the package group, such as "Core Packages." The packagelist is a
colon-separated list of package names, each of which can include a trailing * character as a wildcard. The javadoc
command line can contain any number of -group options. For example:

javadoc -group "AWT Packages" java.awt*
 -group "Swing Packages" javax.accessibility:javax.swing*

-header text

Specifies text to be displayed near the top of each file, to the right of the upper navigation bar. text can contain
HTML tags. See also -footer, -doctitle, and -windowtitle. Default doclet only.

-help

Displays a usage message for javadoc.

-helpfile file

Specifies the name of an HTML file that contains help for using the generated documentation. javadoc includes
links to this help file in all files it generates. If this option is not specified, javadoc creates a default help file. Default
doclet only.

-Jjavaoption

Passes the argument javaoption directly through to the Java interpreter. When processing a large number of
packages, you may need to use this option to increase the amount of memory javadoc is allowed to use. For
example:

% javadoc -J-Xmx64m

file:///C|/orielly/jnut/ch08_01.htm (25 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

-link url

Specifies an absolute or relative URL of the top-level directory of another javadoc-generated document. javadoc
uses this URL as the base URL for links from the current document to packages, classes, methods, and fields that are
not documented in the current document. For example, when using javadoc to produce documentation for your own
packages, you can use this option to link your documentation to the javadoc documentation for the core Java APIs.
Default doclet only.

The directory specified by url must contain a file named package-list, and javadoc must be able to read this file at
runtime. This file is automatically generated by a previous run of javadoc•; it contains a list of all packages
documented at the url.

More than one -link option can be specified, although this does not work properly in early releases of Java 1.2. If
no -link option is specified, references in the generated documentation to classes and members that are external to
the documentation are not hyperlinked.

-linkoffline url packagelist

This option is like the -link option, except that the packagelist file is explicitly specified on the command line.
This is useful when the directory specified by url does not have a package-list file or when that file is not available
when javadoc is run. Default doclet only.

-locale language_country_variant

Specifies the locale to use for generated documentation. This is used to look up a resource file that contains
localized messages and text for the output files.

-nodeprecated

Tells javadoc to omit documentation for deprecated features. This option implies -nodeprecatedlist. Default
doclet only.

-nodeprecatedlist

Tells javadoc not to generate the deprecated-list.html file and not to output a link to it on the navigation bar. Default
doclet only.

-nohelp

Tells javadoc not to generate a help file or a link to it in the navigation bar. Default doclet only.

-noindex

Tells javadoc not to generate index files. Default doclet only.

-nonavbar

Tells javadoc to omit the navigation bars from the top and bottom of every file. Also omits the text specified by -

file:///C|/orielly/jnut/ch08_01.htm (26 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

header and -footer. This is useful when generating documentation to be printed. Default doclet only.

-notree

Tells javadoc not to generate the tree.html class hierarchy diagram or a link to it in the navigation bar. Default doclet
only.

-overview filename

Reads an overview doc comment from filename and uses that comment in the overview page. This file does not
contain Java source code, so the doc comment should not actually appear between /** and */ delimiters.

-package

Includes package-visible classes and members in the output, as well as public and protected classes and
members.

-private

Includes all classes and members, including private and package-visible classes and members, in the generated
documentation.

-protected

Includes public and protected classes and members in the generated output. This is the default.

-public

Includes only public classes and members in the generated output. Omits protected, private, and package-
visible classes and members.

-serialwarn

Issues warnings about serializable classes that do not adequately document their serialization format with @serial
and related doc-comment tags. Default doclet only.

-sourcepath path

Specifies a search path for source files, typically set to a single root directory. javadoc uses this path when looking
for the Java source files that implement a specified package.

-splitindex

Generates multiple index files, one for each letter of the alphabet. Use this option when documenting large amounts
of code. Otherwise, the single index file generated by javadoc will be too large to be useful. Default doclet only.

-stylesheetfile file

file:///C|/orielly/jnut/ch08_01.htm (27 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

Specifies a file to use as a CSS stylesheet for the generated HTML. javadoc inserts appropriate links to this file in
the generated documentation. Default doclet only.

-use

Generates and inserts links to an additional file for each class and package that lists the uses of the class or package.

-verbose

Displays additional messages while processing source files.

-version

Includes information from @version tags in the generated output. This option does not tell javadoc to print its
own version number. Default doclet only.

-windowtitle text

Specifies text to be output in the <TITLE> tag of each generated file. This title typically appears in the web-
browser titlebar and its history and bookmarks lists. text should not contain HTML tags. See also -doctitle and -
header. Default doclet only.

Environment

CLASSPATH

This environment variable specifies the default classpath javadoc uses to find the class files and source files. It is
overridden by the -classpath and -sourcepath options. See java and javac for further discussion of the
classpath.

See Also: java, javac

javah
JDK 1.0 and

later

Native Method C Stub
Generator

Synopsis

javah [options] classnames

Description

file:///C|/orielly/jnut/ch08_01.htm (28 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

javah generates C header and source files (.h and .c files) that are used when implementing Java native methods in C. The
preferred native method interface has changed between Java 1.0 and Java 1.1. In Java 1.1 and earlier, javah generates files
for old-style native methods. In Java 1.1, the -jni option specifies that javah should generate new-style files. In Java 1.2
and later, this option becomes the default.

This reference page describes only how to use javah. A full description of how to implement Java native methods in C is
beyond the scope of this book.

Options

-bootclasspath

Specifies the path to search for system classes. See javac for further discussion. Java 1.2 and later.

-classpath path

The path javah uses to look up the classes named on the command line. This option overrides any path specified by
the CLASSPATH environment variable. Prior to Java 1.2, this option can specify the location of the system classes
and extensions. In Java 1.2 and later, it specifies only the location of application classes. See -bootclasspath.
See also java for further discussion of the classpath.

-d directory

Specifies the directory into which javah stores the files it generates. By default, it stores them in the current
directory. This option cannot be used with -o.

-force

Always write output files, even if they contain no useful content.

-help

Causes javah to display a simple usage message and exit.

-jni

Specifies that javah should output header files for use with the new Java Native Interface (JNI), rather than using the
old JDK 1.0 native interface. This option is the default in Java 1.2 and later. See also -old. Java 1.1 and later.

-o outputfile

Combines all output into a single file, outputfile, instead of creating separate files for each specified class.

-old

Outputs files for Java 1.0-style native methods. Prior to Java 1.2, this was the default. See also -jni. Java 1.2 and
later.

file:///C|/orielly/jnut/ch08_01.htm (29 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

-stubs

Generates .c stub files for the class or classes, instead of header files. This option is only for the Java 1.0 native
methods interface. See -old.

-td directory

Specifies the directory where javah should store temporary files. On Unix systems, the default is /tmp.

-trace

Specifies that javah should include tracing output commands in the stub files it generates. In Java 1.2 and later, this
option is obsolete and has been removed. In its place, you can use the -verbose:jni option of the Java
interpreter.

-v, -verbose

Verbose mode. Causes javah to print messages about what it is doing. In Java 1.2 and later, -verbose is a
synonym.

-version

Causes javah to display its version number.

Environment

CLASSPATH

Specifies the default classpath javah searches to find the specified classes. See java for a further discussion of the
classpath.

See Also: java, javac

javakey
JDK 1.1; Superseded

in Java 2 SDK 1.2

Key Management and
Digital Signatures

Synopsis

javakey options

file:///C|/orielly/jnut/ch08_01.htm (30 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

Description

javakey provides a command-line interface to a number of complex key and certificate generation and management tasks,
including the generation of digital signatures. In Java 1.2 and later, javakey has been superseded by two new tools, keytool
for managing keys and certificates and jarsigner for digitally signing code. Due to bugs in Java 1.1, digital signatures
generated by javakey are not recognized in Java 1.2. Likewise, signatures generated by the new jarsigner tool are not
recognized by Java 1.1.

javakey manages a system database of entities. Each entity can have public and private keys and/or certificates associated
with it. In addition, each entity can be declared to be trusted or not. Any entity in the database can be an identity or a signer.
Identities have only a public key associated with them, while signers have both a public and private key and thus can sign
files.

Options

javakey defines a large number of options that perform a number of distinct operations:

-c identity-name [true|false]

Creates and adds a new identity entity to the database, using the specified name. If identity-name is followed by
true, it declares the identity to be trusted. Otherwise, it is untrusted.

-cs signer-name [true|false]

Creates and adds a new signer entity to the database, using the specified name. If signer-name is followed by true,
declares the signer to be trusted. Otherwise, it is untrusted.

-t entity-name true|false

Specifies whether the named entity is trusted (true) or not (false).

-l

Lists the names of all entities in the security database.

-ld

Lists the names and other details about all entities in the security database.

-li entity-name

Lists detailed information about the named entity from the security database.

-r entity-name

Removes the named entity from the security database.

-ik identity-name keyfile

file:///C|/orielly/jnut/ch08_01.htm (31 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

Imports a key by reading a public key from the specified file and associating it with the named identity. The key
must be in X.509 format.

-ikp signer-name pubkeyfile privkeyfile

Imports a key pair by reading the specified public-key and private-key files and associating them with the named
signer entity. The keys must be in X.509 format.

-ic entity-name certificate-file

Imports a certificate by reading a certificate from the named certificate file and associating it with the named entity.
If the entity already has a public key, compares it to the key in the certificate and issues a warning if they don't
match. If the entity has no public key assigned, uses the public key from the certificate.

-ii entity-name

Imports information, allowing you to enter arbitrary textual information about an entity into the database.

-gk signer algorithm size [pubfile [privfile]]

Generates a public and private key and associates them with the named signer. Uses the specified algorithm.
Currently, the only supported algorithm is "DSA". Generates keys of the specified number of bits, which must be
between 512 and 1024. If pubfile is specified, writes the public key to the specified file. If privfile is specified,
writes the private key to the specified file.

-g signer algorithm size [pubfile [privfile]]

A synonym for the -gk command.

-gc directivefile

Generates a certificate according to the parameters specified in the directive file. The directive file is a
Properties file that must provide values for the following named properties:

issuer.name

The name of the entity issuing the certificate

issuer.cert

The issuer's certificate number to be used to sign the generated certificate (unless the certificate is self-
signed)

subject.name

The database name of the entity to which the certificate is being issued

file:///C|/orielly/jnut/ch08_01.htm (32 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

subject.real.name

The real name of the entity to which the certificate is being issued

subject.country

The country the subject entity is in

subject.org

The organization with which the subject entity is affiliated

subject.org.unit

A division within the subject's organization

start.date

The starting date (and time) of the certificate

end.date

The ending date (and time) of the certificate

serial.number

A serial number for the certificate; this number must be unique among all certificates generated by the issuer

out.file

An optional filename that specifies the file to which the certificate should be written

-dc certfile

Displays the contents of the certificate stored in certfile.

-ec entity certificate-number file

Exports the numbered certificate of the specified entity into the specified file. Use the -li command to inspect the
certificate numbers for a given entity.

-ek entity pubfile [privfile]

Exports the public key of the specified entity into the specified file. If the entity is a signer and the privfile is
specified, additionally exports the private key of the entity to that file.

-gs directivefile jarfile

file:///C|/orielly/jnut/ch08_01.htm (33 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

Generates, or applies, a digital signature to the specified JAR file, using the directives in the specified directive file.
The directive file is a Properties file that must provide values for the following named properties:

signer

The entity name of the signer

cert

The certificate number to use for the signature

chain

The length of a chain of certificates to include (not currently supported; specify 0)

signature.file

The basename of the signature file and signature block to be inserted into the JAR file; must be eight
characters or less and should not conflict with any other digital signatures that may be inserted into the JAR
file

out.file

This optional property specifies the name that should be used for the signed JAR file that is generated.

See Also: jar, jarsigner, keytool

javap JDK 1.0 and later

The Java Class Disassembler

Synopsis

javap [options] classnames

Description

javap reads the class files specified by the class names on the command line and prints a human-readable version of the
API defined by those classes. javap can also disassemble the specified classes, displaying the Java VM byte codes for the
methods they contain.

Options

-b

file:///C|/orielly/jnut/ch08_01.htm (34 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

Enables backward compatibility with the output of the Java 1.1 version of javap. This option exists for program that
depends on the precise output format of javap. Java 1.2 and later.

-bootclasspath path

Specifies the search path for the system classes. See javac for information about this rarely used option. Java 1.2 and
later.

-c

Displays the code (i.e., Java VM byte codes) for each method of each specified class. This option always
disassembles all methods, regardless of their visibility level.

-classpath path

Specifies the path javap uses to look up the classes named on the command line. This option overrides the path
specified by the CLASSPATH environment variable. Prior to Java 1.2, this argument specifies the path for all system
classes, extensions, and application classes. In Java 1.2 and later, it specifies only the application classpath. See also -
bootclasspath and -extdirs. See java and javac for more information on the classpath.

-extdirs dirs

Specifies one or more directories that should be searched for extension classes. See javac for information about this
rarely used option. Java 1.2 and later.

-l

Displays tables of line numbers and local variables, if available in the class files. This option is typically useful only
when used with -c. The javac compiler does not include local variable information in its class files by default. See
the -g and related options to javac.

-help

Prints a usage message and exits.

-Jjavaoption

Passes the specified javaoption directly to the Java interpreter.

-package

Displays package-visible, protected, and public class members, but not private members. This is the
default.

-private

Displays all class members, including private members.

file:///C|/orielly/jnut/ch08_01.htm (35 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

-protected

Displays only protected and public members.

-public

Displays only public members of the specified classes.

-s

Outputs the class member declarations using the internal VM type and method signature format, instead of the more
readable source-code format.

-verbose

Verbose mode. Outputs additional information (in the form of Java comments) about each member of each specified
class.

-verify

Causes javap to perform partial class verification on the specified class or classes and display the results. Java 1.0
and 1.1. only; this option has been removed in Java 1.2 and later because it does not perform a sufficiently thorough
verification.

-version

Causes javap to display its version number.

Environment

CLASSPATH

Specifies the default search path for application classes. The -classpath option overrides this environment
variable. See java for a discussion of the classpath.

See Also: java, javac

jdb JDK 1.0 and later

The Java Debugger

Synopsis

jdb [options] class [program options]
jdb connect options

file:///C|/orielly/jnut/ch08_01.htm (36 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

Description

jdb is a debugger for Java classes. It is text-based, command-line-oriented, and has a command syntax like that of the Unix
dbx or gdb debuggers used with C and C++ programs.

jdb is written in Java, so it runs within a Java interpreter. When jdb is invoked with the name of a Java class, it starts
another copy of the java interpreter, using any interpreter options specified on the command line. The new interpreter is
started with special options that enable it to communicate with jdb. The new interpreter loads the specified class file and
then stops and waits for debugging commands before executing the first byte code.

jdb can also debug a program that is already running in another Java interpreter. Doing so requires special options be
passed to both the java interpreter and to jdb. The Java debugging architecture has changed dramatically with the
introduction of Java 1.3, and so have the java and jdb options used to allow jdb to connect to a running interpreter.

jdb Expression Syntax

jdb debugging commands such as print, dump, and suspendx allow you to refer to classes, objects, methods, fields,
and threads in the program being debugged. You can refer to classes by name, with or without their package names. You
can also refer to static class members by name. You can refer to individual objects by object ID, which is an eight-digit
hexadecimal integer. Or, when the classes you are debugging contain local variable information, you can often use local
variable names to refer to objects. You can use normal Java syntax to refer to the fields of an object and the elements of an
array; you can also use this syntax to write quite complex expressions. In Java 1.3, jdb even supports method invocation
using standard Java syntax.

A number of jdb commands require you to specify a thread. Each thread is given an integer identifier and is named using
the syntax t@n, where n is the thread ID.

Options

When invoking jdb with a specified class file, any of the java interpreter options can be specified. See the java reference
page for an explanation of these options. In addition, jdb supports the following options:

-attach [host:]port

Specifies that jdb should connect to the Java "Client VM" that is already running on the specified host (or the local
host, if unspecified) and listening for debugging connections on the specified port. Java 1.3 and later.

In order to use jdb to connect to a running VM in this way, the VM must have been started with a command line
something like this:

% java -Xdebug -Xrunjdwp:transport=dt_socket,address=8000,server=y,suspend=n

The Java 1.3 jdb architecture allows a complex set of interpreter-to-debugger connection options, and java and jdb provide
a complex set of options and suboptions to enable it. A detailed description of those options is beyond the scope of this
book.

-help

file:///C|/orielly/jnut/ch08_01.htm (37 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

Displays a usage message listing supported options.

-host hostname

In Java 1.2 and earlier, this option is used to connect to an already running interpreter. It specifies the name of the
host upon which the desired interpreter session is running. If omitted, the default is the local host. This option must
be used with -password. In Java 1.3, this option has been replaced by the -attach option.

-launch

Starts the specified application when jdb starts. This avoids the need to explicitly use the run command to start it.
Java 1.3 and later.

-password password

In Java 1.2 and earlier, this option specifies a password that uniquely identifies a Java VM on a particular host.
When used in conjunction with -hostname, this option enables jdb to connect to a running interpreter. The
interpreter must have been started with the -debug or -Xdebug option, which causes it to display an appropriate
password for use with this option. In Java 1.3, this option has been replaced by the -attach option.

-sourcepath path

Specifies the locations jdb searches when attempting to find source files that correspond to the class files being
debugged. If unspecified, jdb uses the classpath by default. Java 1.3 and later.

-tclassic

Tells jdb to invoke the "Classic VM" instead of the "Client VM" (Hotspot), which is the default VM in Java 1.3.
Java 1.3 and later.

-version

Displays the jdb version number and exits.

Commands

jdb understands the following debugging commands:

? or help

Lists all supported commands, with a short explanation of each.

!!

A shorthand command that is replaced with the text of the last command entered. It can be followed with additional
text that is appended to that previous command.

file:///C|/orielly/jnut/ch08_01.htm (38 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

catch [exception-class]

Causes a breakpoint whenever the specified exception is thrown. If no exception is specified, the command lists the
exceptions currently being caught. Use ignore to stop these breakpoints from occurring.

classes

Lists all classes that have been loaded.

clear

Lists all currently set breakpoints.

clear class.method [(param-type...)]

Clears the breakpoint set in the specified method of the specified class.

clear [class:line]

Removes the breakpoint set at the specified line of the specified class.

cont

Resumes execution. This command should be used when the current thread is stopped at a breakpoint.

down [n]

Moves down n frames in the call stack of the current thread. If n is not specified, moves down one frame.

dump id...

Prints the value of all fields of the specified object or objects. If you specify the name of a class, dump displays all
class (static) methods and variables of the class, and also displays the superclass and list of implemented interfaces.
Objects and classes can be specified by name or by their eight-digit hexadecimal ID numbers. Threads can also be
specified with the shorthand t@thread-number.

exit or quit

Quits jdb.

gc

Runs the garbage collector to force unused objects to be reclaimed.

ignore exception-class

Does not treat the specified exception as a breakpoint. This command turns off a catch command. This command
does not cause the Java interpreter to ignore exceptions; it merely tells jdb to ignore them.

file:///C|/orielly/jnut/ch08_01.htm (39 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

list [line-number]

Lists the specified line of source code as well as several lines that appear before and after it. If no line number is
specified, uses the line number of the current stack frame of the current thread. The lines listed are from the source
file of the current stack frame of the current thread. Use the use command to tell jdb where to find source files.

list method

Displays the source code of the specified method.

load classname

Loads the specified class into jdb.

locals

Displays a list of local variables for the current stack frame. Java code must be compiled with the -g option in order
to contain local variable information.

memory

Displays a summary of memory usage for the Java program being debugged.

methods class

Lists all methods of the specified class. Use dump to list the instance variables of an object or the class (static)
variables of a class.

print id...

Prints the value of the specified item or items. Each item can be a class, object, field, or local variable, and can be
specified by name or by eight-digit hexadecimal ID number. You can also refer to threads with the special syntax
t@thread-number. The print command displays an object's value by invoking its toString() method.

next

Executes the current line of source code, including any method calls it makes. See also step.

resume [thread-id...]

Resumes execution of the specified thread or threads. If no threads are specified, all suspended threads are resumed.
See also suspend.

run [class] [args]

Runs the main() method of the specified class, passing the specified arguments to it. If no class or arguments are
specified, uses the class and arguments specified on the jdb command line.

file:///C|/orielly/jnut/ch08_01.htm (40 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

step

Runs the current line of the current thread and stops again. If the line invokes a method, steps into that method and
stops. See also next.

stepi

Executes a single Java VM instruction.

step up

Runs until the current method returns to its caller and stops again.

stop

Lists current breakpoints.

stop at class:line

Sets a breakpoint at the specified line of the specified class. Program execution stops when it reaches this line. Use
clear to remove a breakpoint.

stop in class.method [(param-type...)]

Sets a breakpoint at the beginning of the specified method of the specified class. Program execution stops when it
enters the method. Use clear to remove a breakpoint.

suspend [thread-id...]

Suspends the specified thread or threads. If no threads are specified, suspends all running threads. Use resume to
restart them.

thread thread-id

Sets the current thread to the specified thread. This thread is used implicitly by a number of other jdb commands.
The thread can be specified by name or number.

threadgroup name

Sets the current thread group.

threadgroups

Lists all thread groups running in the Java interpreter session being debugged.

threads [threadgroup]

file:///C|/orielly/jnut/ch08_01.htm (41 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

Lists all threads in the named thread group. If no thread group is specified, lists all threads in the current thread
group (specified by threadgroup).

up [n]

Moves up n frames in the call stack of the current thread. If n is not specified, moves up one frame.

use [source-file-path]

Sets the path used by jdb to look up source files for the classes being debugged. If no path is specified, displays the
current source path.

where [thread-id] [all]

Displays a stack trace for the specified thread. If no thread is specified, displays a stack trace for the current thread.
If all is specified, displays a stack trace for all threads.

wherei [thread-id x]

Displays a stack trace for the specified or current thread, including detailed program counter information.

Environment

CLASSPATH

Specifies an ordered list (colon-separated on Unix, semicolon-separated on Windows systems) of directories, ZIP
files, and JAR archives in which jdb should look for class definitions. When a path is specified with this
environment variable, jdb always implicitly appends the location of the system classes to the end of the path. If this
environment variable is not specified, the default path is the current directory and the system classes. This variable is
overridden by the -classpath option.

See Also: java

keytool
Java 2 SDK

1.2 and later

Key and Certificate Management
Tool

Synopsis

keytool command options

file:///C|/orielly/jnut/ch08_01.htm (42 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

Description

keytool manages and manipulates a keystore : a repository for public and private keys and public-key certificates. keytool
defines various commands for generating keys, importing data into the keystore, and exporting and displaying keystore
data. Keys and certificates are stored in a keystore using a case-insensitive name, or alias. keytool uses this alias to refer to
a key or certificate.

The first option to keytool always specifies the basic command to be performed. Subsequent options provide details about
how the command is to be performed. Only the command must be specified. If a command requires an option that does not
have a default value, keytool prompts you interactively for the value.

Commands

-certreq

Generates a certificate signing request in PKCS#10 format for the specified alias. The request is written to the
specified file or to the standard output stream. The request should be sent to a certificate authority (CA), which
authenticates the requestor and sends back a signed certificate authenticating the requestor's public key. This signed
certificate can then be imported into the keystore with the -import command. This command uses the following
options: -alias, -file, -keypass, -keystore, -sigalg, -storepass, -storetype, and -v.

-delete

Deletes a specified alias from a specified keystore. This command uses the following options: -alias, -
keystore, -storepass, -storetype, and -v.

-export

Writes the certificate associated with the specified alias to the specified file or to standard output. This command
uses the following options: -alias, -file, -keystore, -rfc, -storepass, -storetype, and -v.

-genkey

Generates a public/private key pair and a self-signed X.509 certificate for the public key. Self-signed certificates are
not often useful by themselves, so this command is often followed by -certreq. This command uses the
following options: -alias, -dname, -keyalg, -keypass, -keysize, -keystore, -sigalg, -
storepass, -storetype, -v, and -validity.

-help

Lists all available keytool commands and their options. This command is not used with any other options.

-identitydb

Reads keys and certificates from a Java 1.1 identity database managed with javakey and stores them into a keystore
so they can be manipulated by keytool. The identity database is read from the specified file or from standard input if
no file is specified. The keys and certificates are written into the specified keystore file, which is automatically
created if it does not exist yet. This command uses the following options: -file, -keystore, -storepass, -

file:///C|/orielly/jnut/ch08_01.htm (43 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

storetype, and -v.

-import

Reads a certificate or PKCS#7-formatted certificate chain from a specified file or from standard input and stores it
as a trusted certificate in the keystore with the specified alias. This command uses the following options: -alias, -
file, -keypass, -keystore, -noprompt, -storepass, -storetype, -trustcacerts, and -v.

-keyclone

Duplicates the keystore entry of a specified alias and stores it in the keystore under a new alias. This command uses
the following options: -alias, -dest, -keypass, -keystore, -new, -storepass, -storetype, and -
v.

-keypasswd

Changes the password that encrypts the private key associated with a specified alias. This command uses the
following options: -alias, -keypass, -new, -storetype, and -v.

-list

Displays (on standard output) the fingerprint of the certificate associated with the specified alias. With the -v
option, prints certificate details in human-readable format. With -rfc, prints certificate contents in a machine-
readable, printable-encoding format. This command uses the following options: -alias, -keystore, -rfc, -
storepass, -storetype, and -v.

-printcert

Displays the contents of a certificate read from the specified file or from standard input. Unlike most keytool
commands, this one does not use a keystore. This command uses the following options: -file and -v.

-selfcert

Creates a self-signed certificate for the public key associated with the specified alias and uses it to replace any
certificate or certificate chain already associated with that alias. This command uses the following options: -alias,
-dname, -keypass, -keystore, -sigalg, -storepass, -storetype, -v, and -validity.

-storepasswd

Changes the password that protects the integrity of the keystore as a whole. The new password must be at least six
characters long. This command uses the following options: -keystore, -new, -storepass, -storetype,
and -v.

Options

The various keytool commands can be passed various options from the following list. Many of these options have
reasonable default values. keytool interactively prompts for any unspecified options that do not have defaults:

file:///C|/orielly/jnut/ch08_01.htm (44 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

-alias name

Specifies the alias to be manipulated in the keystore. The default is "mykey".

-dest newalias

Specifies the new alias name (the destination alias) for the -keyclone command. If not specified, keytool prompts
for a value.

-dname X.500-distinguished-name

Specifies the X.500 distinguished name to appear on the certificate generated by -selfcert or -genkey. A
distinguished name is a highly qualified name intended to be globally unique. For example:

CN=David Flanagan, OU=Editorial, O=OReilly, L=Cambridge, S=Massachusetts, C=US

The -genkey command of keytool prompts for a distinguished name if none is specified. The -selfcert command
uses the distinguished name of the current certificate if no replacement name is specified.

-file file

Specifies the input or output file for many of the keytool commands. If left unspecified, keytool reads from the
standard input or writes to the standard output.

-keyalg algorithm-name

Used with -genkey to specify what type of cryptographic keys to generate. In the default Java implementation
shipped from Sun, the only supported algorithm is "DSA"; this is the default if this option is omitted.

-keypass password

Specifies the password that encrypts a private key in the keystore. If this option is unspecified, keytool first tries the -
storepass password. If that does not work, it prompts for the appropriate password.

-keysize size

Used with the -genkey command to specify the length in bits of the generated keys. If unspecified, the default is
1024.

-keystore filename

Specifies the location of the keystore file. If unspecified, a file named .keystore in the user's home directory is used.

-new new-password-or-alias

Used with the -keyclone command to specify the new alias name and with -keypasswd and -storepasswd
to specify the new password. If unspecified, keytool prompts for the value of this option.

file:///C|/orielly/jnut/ch08_01.htm (45 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

-noprompt

Used with the -import command to disable interactive prompting of the user when a chain of trust cannot be
established for an imported certificate. If this option is not specified, the -import command prompts the user.

-rfc

Used with the -list and -export commands to specify that certificate output should be in the printable
encoding format specified by RFC-1421. If this option is not specified, -export outputs the certificate in binary
format, and -list lists only the certificate fingerprint. This option cannot be combined with -v in the -list
command.

-sigalg algorithm-name

Specifies a digital signature algorithm that signs a certificate. If omitted, the default for this option depends on the
type of underlying public key. If it is a DSA key, the default algorithm is "SHA1withDSA". If the key is an RSA
key, the default signature algorithm is "MD5withRSA".

-storepass password

Specifies a password that protects the integrity of the entire keystore file. This password also serves as a default
password for any private keys that do not have their own -keypass specified. If -storepass is not specified,
keytool prompts for it. The password must be at least six characters long.

-storetype type

Specifies the type of the keystore to be used. If this option is not specified, the default is taken from the system
security properties file. Often, the default is Sun's "JKS" Java Keystore type.

-trustcacerts

Used with the -import command to specify that the self-signed certificate authority certificates contained in the
keystore in the jre/lib/security/cacerts file should be considered trusted. If this option is omitted, keytool ignores that
file.

-v

This option specifies verbose mode, if present, and makes many keytool commands produce additional output.

-validity time

Used with the -genkey and -selfcert commands to specify the period of validity (in days) of the generated
certificate. If unspecified, the default is 90 days.

See Also: jarsigner, javakey, policytool

file:///C|/orielly/jnut/ch08_01.htm (46 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

native2ascii
JDK 1.1 and

later

Converts Java Source Code to
ASCII

Synopsis

native2ascii [options] [inputfile [outputfile]]

Description

javac can only process files encoded in the eight-bit Latin-1 encoding, with any other characters encoded using the \uxxxx
Unicode notation. native2ascii is a simple program that reads a Java source file encoded using a local encoding and
converts it to the Latin-1-plus-ASCII-encoded-Unicode form required by javac.

The inputfile and outputfile are optional. If unspecified, standard input and standard output are used, making native2ascii
suitable for use in pipes.

OPtions

-encoding encoding-name

Specifies the encoding used by source files. If this option is not specified, the encoding is taken from the
file.encoding system property.

-reverse

Specifies that the conversion should be done in reverse--from encoded \uxxxx characters to characters in the native
encoding.

See Also: java.io.InputStreamReader, java.io.OutputStreamWriter

policytool
Java 2 SDK

1.2 and later

Policy File Creation and
Management Tool

file:///C|/orielly/jnut/ch08_01.htm (47 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

Synopsis

policytool

Description

policytool displays a Swing user interface that makes it easy to edit security policy configuration files. The Java security
architecture is based on policy files, which specify sets of permissions to be granted to code from various sources. By
default, the Java security policy is defined by a system policy file stored in the jre/lib/security/java.policy file and a user
policy file stored in the .java.policy file in the user's home directory. System administrators and users can edit these files
with a text editor, but the syntax of the file is somewhat complex, so it is usually easier to use policytool to define and edit
security policies.

Selecting the Policy File to Edit

When policytool starts up, it opens the .java.policy file in the user's home directory by default. Use the New, Open, and
Save commands in the File menu to create a new policy file, open an existing file, and save an edited file, respectively.

Editing the Policy File

The main policytool window displays a list of the entries contained in the policy file. Each entry specifies a code source and
the permissions that are to be granted to code from that source. The window also contains buttons that allow you to add a
new entry, edit an existing entry, or delete an entry from the policy file. If you add or edit an entry, policytool opens a new
window that displays the details of that policy entry.

Editing the Policy File

Every policy file has an associated keystore, from which it obtains the certificates it needs when verifying the digital
signatures of Java code. You can usually rely on the default keystore, but if you need to specify the keystore explicitly for a
policy file, use the Change Keystore command in the Edit menu of the main policytool window.

Adding or Editing a Policy Entry:

The policy entry editor window displays the code source for the policy entry and a list of permissions associated with that
code source. It also contains buttons that allow you to add a new permission, delete a permission, or edit an existing
permission.

Adding or Editing a Policy Entry: When defining a new policy entry, the first step is to specify the code source. A code
source is defined by a URL from which the code is downloaded and/or a list of digital signatures that must appear on the
code. Specify one or both of these values by typing in a URL and/or a comma-separated list of aliases. These aliases
identify trusted certificates in the keystore associated with the policy file.

After you have defined the code source for a policy entry, you must define the permissions to be granted to code from that
source. Use the Add Permission and Edit Permission buttons to add and edit permissions. These buttons bring up yet
another policytool window.

Defining a Permission

file:///C|/orielly/jnut/ch08_01.htm (48 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

To define a permission in the permission editor window, first select the desired permission type from the Permission drop-
down menu. Then, select an appropriate target value from the Target Name menu. The choices in this menu are
customized depending on the permission type you selected. For some types of permission, such as FilePermission,
there is not a fixed set of possible targets, and you usually have to type in the specific target you want. For example, you
might type "/tmp" to specify the directory /tmp, "/tmp/*" to specify all the files in that directory, or "/tmp/-" to specify all
the files in the directory, and, recursively, any subdirectories. See the documentation of the individual Permission
classes for a description of the targets they support.

Depending on the type of permission you select, you may also have to select one or more action values from the Actions
menu. When you have selected a permission and appropriate target and action values, click the Okay button to dismiss the
window.

See Also: jarsigner, keytool

serialver
JDK 1.1 and

later

Class Version Number
Generator

Synopsis

serialver [-show] classname...

Description:

serialver displays the version number of a class or classes. This version number is used for the purposes of serialization: the
version number must change each time the serialization format of the class changes.

If the specified class declares a longserialVersionUID constant, the value of that field is displayed. Otherwise, a
unique version number is computed by applying the Secure Hash Algorithm (SHA) to the API defined by the class. This
program is primarily useful for computing an initial unique version number for a class, which is then declared as a constant
in the class. The output of serialver is a line of legal Java code, suitable for pasting into a class definition.

Options

-show

When the -show option is specified, serialver displays a simple graphical interface that allows the user to type in a
single classname at a time and obtain its serialization UID. When using -show, no class names can be specified on
the command-line.

Environment

file:///C|/orielly/jnut/ch08_01.htm (49 of 50) [2/5/2003 7:49:33 PM]

Java Development Tools (Java in a Nutshell)

CLASSPATH

serialver is written in Java, so it is sensitive to the CLASSPATH environment variable in the same way the java
interpreter is. The specified classes are looked up relative to this classpath.

See Also: java.io.ObjectStreamClass

7.3. Java Documentation
Comments

Part 2. API Quick Reference

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch08_01.htm (50 of 50) [2/5/2003 7:49:33 PM]

file:///C|/orielly/jnut/index/
file:///C|/orielly/jnut/copyrght.htm

API Quick Reference (Java in a Nutshell)

Java™ in a Nutshell: A

Deskop Quick Reference

Part 2. API Quick Reference
Part II is the real heart of this book: quick-reference material for the essential APIs of the Java platform.
Please read the following section, "How To Use This Quick Reference", to learn how to get the most out
of this material.

8. Java Development Tools How To Use This Quick
Reference

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/part2.htm [2/5/2003 7:49:39 PM]

file:///C|/orielly/jnut/copyrght.htm

How To Use This Quick Reference (Java in a Nutshell)

Part 2: API Quick Reference

How To Use This Quick Reference
Contents:

Finding a Quick-Reference Entry
Reading a Quick-Reference Entry

The quick-reference section that follows packs a lot of information into a small space. This introduction
explains how to get the most out of that information. It describes how the quick reference is organized
and how to read the individual quick-ref entries.

1. Finding a Quick-Reference Entry

The quick reference is organized into chapters, one per package. Each chapter begins with an overview
of the package and includes a hierarchy diagram for the classes and interfaces in the package. Following
this overview are quick-reference entries for all of the classes and interfaces in the package.

Entries are organized alphabetically by class and package name, so that related classes are grouped near
each other. Thus, in order to look up a quick reference entry for a particular class, you must also know
the name of the package that contains that class. Usually, the package name is obvious from the context,
and you should have no trouble looking up the quick-reference entry you want. Use the tabs on the
outside edge of the book and the dictionary-style headers on the upper outside corner of each page to
help you find the package and class you are looking for.

Occasionally, you may need to look up a class for which you do not already know the package. In this
case, refer to Chapter 29, "Class, Method, and Field Index". This index allows you to look up a class by
class name and find out what package it is part of.

Part 2. API Quick Reference 2. Reading a Quick-
Reference Entry

file:///C|/orielly/jnut/howto_01.htm (1 of 2) [2/5/2003 7:49:41 PM]

How To Use This Quick Reference (Java in a Nutshell)

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/howto_01.htm (2 of 2) [2/5/2003 7:49:41 PM]

file:///C|/orielly/jnut/copyrght.htm

Reading a Quick-Reference Entry (Java in a Nutshell)

How To Use This Quick

Reference

2. Reading a Quick-Reference Entry

Each quick-reference entry contains quite a bit of information. The sections that follow describe the structure of a
quick-reference entry, explaining what information is available, where it is found, and what it means. While reading
the descriptions that follow, you will find it helpful to flip through the reference section itself to find examples of
the features being described.

2.1. Class Name, Package Name, Availability, and Flags

Each quick-reference entry begins with a four-part title that specifies the name, package, and availability of the
class, and may also specify various additional flags that describe the class. The class name appears in bold at the
upper left of the title. The package name appears, in smaller print, in the lower left, below the class name.

The upper-right portion of the title indicates the availability of the class; it specifies the earliest release that
contained the class. If a class was introduced in Java 1.1, for example, this portion of the title reads "Java 1.1". If a
class was introduced in Version 1.2 of the Java 2 platform, the availability reads "Java 1.2"x for simplicity's sake.
The availability section of the title is also used to indicate whether a class has been deprecated, and, if so, in what
release. For example, it might read "Java 1.1; Deprecated in Java 1.2".

In the lower-right corner of the title you may find a list of flags that describe the class. The possible flags and their
meanings are as follows:

checked

The class is a checked exception, which means that it extends java.lang.Exception, but not
java.lang.RuntimeException. In other words, it must be declared in the throws clause of any
method that may throw it.

cloneable

The class, or a superclass, implements java.lang.Cloneable.

collection

The class, or a superclass, implements java.util.Collection or java.util.Map.

comparable

file:///C|/orielly/jnut/howto_02.htm (1 of 9) [2/5/2003 7:49:46 PM]

Reading a Quick-Reference Entry (Java in a Nutshell)

The class, or a superclass, implements java.lang.Comparable.

error

The class extends java.lang.Error.

event

The class extends java.util.EventObject.

event adapter

The class, or a superclass, implements java.util.EventListener, and the class name ends with
"Adapter".

event listener

The class, or a superclass, implements java.util.EventListener.

PJ1.1

The class or interface is part of the Personal Java 1.1 platform.

PJ1.1(mod)

The class or interface is supported, in modified form, by the Personal Java 1.1 platform.

PJ1.1(opt)

The class or interface is an optional part of the Personal Java 1.1 platform. Support for the class is
implementation-dependent.

runnable

The class, or a superclass, implements java.lang.Runnable.

serializable

The class, or a superclass, implements java.io.Serializable and may be serialized.

unchecked

The class is an unchecked exception, which means it extends java.lang.RuntimeException and
therefore does not need to be declared in the throws clause of a method that may throw it.

file:///C|/orielly/jnut/howto_02.htm (2 of 9) [2/5/2003 7:49:46 PM]

Reading a Quick-Reference Entry (Java in a Nutshell)

2.2. Description

The title of each quick-reference entry is followed by a short description of the most important features of the class
or interface. This description may be anywhere from a couple of sentences to several paragraphs long.

2.3. Synopsis

The most important part of every quick-reference entry is the class synopsis, which follows the title and description.
The synopsis for a class looks a lot like the source code for the class, except that the method bodies are omitted and
some additional annotations are added. If you know Java syntax, you know how to read the class synopsis.

The first line of the synopsis contains information about the class itself. It begins with a list of class modifiers, such
as public, abstract, and final. These modifiers are followed by the class or interface keyword and
then by the name of the class. The class name may be followed by an extends clause that specifies the superclass
and an implements clause that specifies any interfaces the class implements.

The class definition line is followed by a list of the fields and methods that the class defines. Once again, if you
understand basic Java syntax, you should have no trouble making sense of these lines. The listing for each member
includes the modifiers, type, and name of the member. For methods, the synopsis also includes the type and name of
each method parameter and an optional throws clause that lists the exceptions the method can throw. The member
names are in boldface, so it is easy to scan the list of members looking for the one you want. The names of method
parameters are in italics to indicate that they are not to be used literally. The member listings are printed on
alternating gray and white backgrounds to keep them visually separate.

2.3.1. Member availability and flags

Each member listing is a single line that defines the API for that member. These listings use Java syntax, so their
meaning is immediately clear to any Java programmer. There is some auxiliary information associated with each
member synopsis, however, that requires explanation.

Recall that each quick-reference entry begins with a title section that includes the release in which the class was first
defined. When a member is introduced into a class after the initial release of the class, the version in which the
member was introduced appears, in small print, to the left of the member synopsis. For example, if a class was first
introduced in Java 1.1, but had a new method added in Version 1.2 of Java 2, the title contains the string "Java 1.1",
and the listing for the new member is preceded by the number "1.2". Furthermore, if a member has been deprecated,
that fact is indicated with a hash mark (#) to the left of the member synopsis.

The area to the right of the member synopsis is used to display a variety of flags that provide additional information
about the member. Some of these flags indicate additional specification details that do not appear in the member
API itself. Other flags contain implementation-specific information. This information can be quite useful in
understanding the class and in debugging your code, but be aware that it may differ between implementations. The
implementation-specific flags displayed in this book are based on Sun's implementation of Java for Microsoft
Windows.

The following flags may be displayed to the right of a member synopsis:

file:///C|/orielly/jnut/howto_02.htm (3 of 9) [2/5/2003 7:49:46 PM]

Reading a Quick-Reference Entry (Java in a Nutshell)

native

An implementation-specific flag that indicates that a method is implemented in native code. Although
native is a Java keyword and can appear in method signatures, it is part of the method implementation, not
part of its specification. Therefore, this information is included with the member flags, rather than as part of
the member listing. This flag is useful as a hint about the expected performance of a method.

synchronized

An implementation-specific flag that indicates that a method implementation is declared synchronized,
meaning that it obtains a lock on the object or class before executing. Like the native keyword, the
synchronized keyword is part of the method implementation, not part of the specification, so it appears
as a flag, not in the method synopsis itself. This flag is a useful hint that the method is probably implemented
in a thread-safe manner.

Whether or not a method is thread-safe is part of the method specification, and this information should
appear (although it often does not) in the method documentation. There are a number of different ways to
make a method thread-safe, however, and declaring the method with the synchronized keyword is only
one possible implementation. In other words, a method that does not bear the synchronized flag can still
be thread-safe.

Overrides:

Indicates that a method overrides a method in one of its superclasses. The flag is followed by the name of the
superclass that the method overrides. This is a specification detail, not an implementation detail. As we'll see
in the next section, overriding methods are usually grouped together in their own section of the class
synopsis. The Overrides: flag is only used when an overriding method is not grouped in that way.

Implements:

Indicates that a method implements a method in an interface. The flag is followed by the name of the
interface that is implemented. This is a specification detail, not an implementation detail. As we'll see in the
next section, methods that implement an interface are usually grouped into a special section of the class
synopsis. The Implements: flag is only used for methods that are not grouped in this way.

empty

Indicates that the implementation of the method has an empty body. This can be a hint to the programmer
that the method may need to be overridden in a subclass.

constant

An implementation flag that indicates that a method has a trivial implementation. Only methods with a void
return type can be truly empty. Any method declared to return a value must have at least a return
statement. The "constant" flag indicates that the method implementation is empty except for a return
statement that returns a constant value. Such a method might have a body like return null; or return

file:///C|/orielly/jnut/howto_02.htm (4 of 9) [2/5/2003 7:49:46 PM]

Reading a Quick-Reference Entry (Java in a Nutshell)

false;. Like the "empty" flag, this flag indicates that a method may need to be overridden.

default:

This flag is used with property accessor methods that read the value of a property (i.e., methods whose
names begins with "get" and take no arguments). The flag is followed by the default value of the property.
Strictly speaking, default property values are a specification detail. In practice, however, these defaults are
not always documented, and care should be taken, because the default values may change between
implementations.

Not all property accessors have a "default:" flag. A default value is determined by dynamically loading the
class in question, instantiating it using a no-argument constructor, and then calling the method to find out
what it returns. This technique can be used only on classes that can be dynamically loaded and instantiated
and that have no-argument constructors, so default values are shown for those classes only. Furthermore,
note that when a class is instantiated using a different constructor, the default values for its properties may be
different.

=

For static final fields, this flag is followed by the constant value of the field. Only constants of
primitive and String types and constants with the value null are displayed. Some constant values are
specification details, while others are implementation details. The reason that symbolic constants are defined,
however, is so you can write code that does not rely directly upon the constant value. Use this flag to help
you understand the class, but do not rely upon the constant values in your own programs.

2.3.2. Functional grouping of members

Within a class synopsis, the members are not listed in strict alphabetical order. Instead, they are broken down into
functional groups and listed alphabetically within each group. Constructors, methods, fields, and inner classes are
all listed separately. Instance methods are kept separate from static (class) methods. Constants are separated from
non-constant fields. Public members are listed separately from protected members. Grouping members by category
breaks a class down into smaller, more comprehensible segments, making the class easier to understand. This
grouping also makes it easier for you to find a desired member.

Functional groups are separated from each other in a class synopsis with Java comments, such as "// Public
Constructors", "// Inner Classes", and "// Methods Implementing Servlet". The various functional categories are as
follows (in the order in which they appear in a class synopsis):

Constructors

Displays the constructors for the class. Public constructors and protected constructors are displayed
separately in subgroupings. If a class defines no constructor at all, the Java compiler adds a default no-
argument constructor that is displayed here. If a class defines only private constructors, it cannot be
instantiated, so a special, empty grouping entitled "No Constructor" indicates this fact. Constructors are
listed first because the first thing you do with most classes is instantiate them by calling a constructor.

file:///C|/orielly/jnut/howto_02.htm (5 of 9) [2/5/2003 7:49:46 PM]

Reading a Quick-Reference Entry (Java in a Nutshell)

Constants

Displays all of the constants (i.e., fields that are declared static and final) defined by the class. Public
and protected constants are displayed in separate subgroups. Constants are listed here, near the top of the
class synopsis, because constant values are often used throughout the class as legal values for method
parameters and return values.

Inner Classes

Groups all of the inner classes and interfaces defined by the class or interface. For each inner class, there is a
single-line synopsis. Each inner class also has its own quick-reference entry that includes a full class
synopsis for the inner class. Like constants, inner classes are listed near the top of the class synopsis because
they are often used by a number of other members of the class.

Static Methods

Lists the static methods (class methods) of the class, broken down into subgroups for public static methods
and protected static methods.

Event Listener Registration Methods

Lists the public instance methods that register and deregister event listener objects with the class. The names
of these methods begin with the words "add" and "remove" and end in "Listener". These methods are always
passed a java.util.EventListener object. The methods are typically defined in pairs, so the pairs
are listed together. The methods are listed alphabetically by event name rather than by method name.

Property Accessor Methods

Lists the public instance methods that set or query the value of a property or attribute of the class. The names
of these methods begin with the words "set", "get", and "is", and their signatures follow the patterns set out
in the JavaBeans specification. Although the naming conventions and method signature patterns are defined
for JavaBeans, classes and interfaces throughout the Java platform define property accessor methods that
follow these conventions and patterns. Looking at a class in terms of the properties it defines can be a
powerful tool for understanding the class, so property methods are grouped together in this section. Property
accessor methods are listed alphabetically by property name, not by method name. This means that the "set",
"get", and "is" methods for a property all appear together.

Public Instance Methods

Contains all of the public instance methods that are not grouped elsewhere.

Implementing Methods

Groups the methods that implement the same interface. There is one subgroup for each interface
implemented by the class. Methods that are defined by the same interface are almost always related to each
other, so this is a useful functional grouping of methods.

file:///C|/orielly/jnut/howto_02.htm (6 of 9) [2/5/2003 7:49:46 PM]

Reading a Quick-Reference Entry (Java in a Nutshell)

Note that if an interface method is also an event registration method or a property accessor method, it is
listed both in this group and in the event or property group. This situation does not arise often, but when it
does, all of the functional groupings are important and useful enough to warrant the duplicate listing. When
an interface method is listed in the event or property group, it displays an "Implements:" flag that specifies
the name of the interface of which it is part.

Overriding Methods

Groups the methods that override methods of a superclass broken down into subgroups by superclass. This is
typically a useful grouping, because it helps to make it clear how a class modifies the default behavior of its
superclasses. In practice, it is also often true that methods that override the same superclass are functionally
related to each other.

Sometimes a method that overrides a superclass is also a property accessor method or (more rarely) an event
registration method. When this happens, the method is grouped with the property or event methods and
displays a flag that indicates which superclass it overrides. The method is not listed with other overriding
methods, however. Note that this is different from interface methods, which, because they are more strongly
functionally related, may have duplicate listings in both groups.

Protected Instance Methods

Contains all of the protected instance methods that are not grouped elsewhere.

Fields

Lists all the non-constant fields of the class, breaking them down into subgroups for public and protected
static fields and public and protected instance fields. Many classes do not define any publicly accessible
fields. For those that do, many object-oriented programmers prefer not to use those fields directly, but
instead to use accessor methods when such methods are available.

Deprecated Members

Deprecated methods and deprecated fields are grouped at the very bottom of the class synopsis. Use of these
members is strongly discouraged.

2.4. Class Hierarchy

For any class or interface that has a non-trivial class hierarchy, the class synopsis is followed by a "Hierarchy"
section. This section lists all of the superclasses of the class, as well as any interfaces implemented by those
superclasses. It may also list any interfaces extended by an interface. In the hierarchy listing, arrows indicate
superclass to subclass relationships, while the interfaces implemented by a class follow the class name in
parentheses. For example, the following hierarchy indicates that java.io.DataOutputStream implements
DataOutput and extends FilterOutputStream, which itself extends OutputStream, which extends
Object:

file:///C|/orielly/jnut/howto_02.htm (7 of 9) [2/5/2003 7:49:46 PM]

Reading a Quick-Reference Entry (Java in a Nutshell)

Object-->OutputStream-->FilterOutputStream-->DataOutputStream(DataOutput)

If a class has subclasses, the "Hierarchy" section is followed by a "Subclasses" section that lists those subclasses. If
an interface has implementations, the "Hierarchy" section is followed by an "Implementations" section that lists
those implementations. While the "Hierarchy" section shows ancestors of the class, the "Subclasses" or
"Implementations" section shows descendants.

2.5. Cross References

The class hierarchy section of a quick-reference entry is followed by a number of optional "cross reference" sections
that indicate other, related classes and methods that may be of interest. These sections are the following:

Passed To

This section lists all of the methods and constructors that are passed an object of this type as an argument.
This is useful when you have an object of a given type and want to figure out what you can do with it.

Returned By

This section lists all of the methods (but not constructors) that return an object of this type. This is useful
when you know that you want to work with an object of this type, but don't know how to obtain one.

Thrown By

For checked exception classes, this section lists all of the methods and constructors that throw exceptions of
this type. This material helps you figure out when a given exception or error may be thrown. Note, however,
that this section is based on the exception types listed in the throws clauses of methods and constructors.
Subclasses of RuntimeException and Error do not have to be listed in throws clauses, so it is not
possible to generate a complete cross reference of methods that throw these types of unchecked exceptions.

Type Of

This section lists all of the fields and constants that are of this type, which can help you figure out how to
obtain an object of this type.

2.6. A Note About Class Names

Throughout the quick reference, you'll notice that classes are sometimes referred to by class name alone and at other
times referred to by class name and package name. If package names were always used, the class synopses would
become long and hard to read. On the other hand, if package names were never used, it would sometimes be
difficult to know what class was being referred to. The rules for including or omitting the package name are
complex. They can be summarized approximately as follows, however:

● If the class name alone is ambiguous, the package name is always used.

file:///C|/orielly/jnut/howto_02.htm (8 of 9) [2/5/2003 7:49:46 PM]

Reading a Quick-Reference Entry (Java in a Nutshell)

● If the class is part of the java.lang package or is a very commonly used class like
java.io.Serializable, the package name is omitted.

● If the class being referred to is part of the current package (and has a quick-reference entry in the current
chapter), the package name is omitted. The package name is also omitted if the class being referred to is part
of a package that contains the current package.

1. Finding a Quick-Reference
Entry

9. The java.beans Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/howto_02.htm (9 of 9) [2/5/2003 7:49:46 PM]

file:///C|/orielly/jnut/copyrght.htm

The java.beans Package (Java in a Nutshell)

Part 2: API Quick Reference

Chapter 9. The java.beans Package
The java.beans package contains classes and interfaces related to JavaBeans components. Most of the classes and
interfaces are used by tools that manipulate beans, rather than by the beans themselves. They are also used or
implemented by auxiliary classes provided by bean implementors for the benefit of bean-manipulation tools. Figure 9-
1 shows the class hierarchy for this package.

Figure 9-1. The java.beans package

The Beans class defines several generally useful static methods. Its instantiate() method is particularly

file:///C|/orielly/jnut/ch09_01.htm (1 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Java in a Nutshell)

important. The Introspector class is used to obtain information about a bean and the properties, events, and
methods it exports. Most of this information is returned using the FeatureDescriptor class and its various
subclasses. The java.beans package also defines the PropertyChangeEvent class and the
PropertyChangeListener interface that are widely used by AWT and Swing to provide notification when a
bound property of a GUI component changes.

See Chapter 6, "JavaBeans", for a complete introduction to the JavaBeans component model.

AppletInitializer Java 1.2

java.beans

This interface defines general methods to initialize a newly instantiated Applet object. An AppletInitializer
can be passed to the Beans.instantiate() method so that when a bean that is also an applet is created, it can be
properly initialized. The initialize() method should associate the applet object with an appropriate
AppletContext and AppletStub, place it within an appropriate Container, and call its init() method.
The activate() method should make the applet active by calling its start() method. This interface is typically
used by bean context implementors. Applications writers may need to use AppletInitializer objects, but
should not usually have to invoke or implement the methods directly.

public interface AppletInitializer {

// Public Instance Methods

public abstract void activate (java.applet.Applet newApplet);

public abstract void initialize (java.applet.Applet newAppletBean, java.beans.beancontext.BeanContext bCtxt);

}

Passed To: Beans.instantiate()

BeanDescriptor Java 1.1

java.beans PJ1.1

A BeanDescriptor object is a type of FeatureDescriptor that describes a JavaBeans component. The
BeanInfo class for a bean optionally creates and initializes a BeanDescriptor object to describe the bean.
Typically, only application builders and similar tools use the BeanDescriptor. To create a BeanDescriptor,
you must specify the class of the bean and, optionally, the class of a Customizer for the bean. You can use the
methods of FeatureDescriptor to provide additional information about the bean.

public class BeanDescriptor extends FeatureDescriptor {

// Public Constructors

file:///C|/orielly/jnut/ch09_01.htm (2 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Java in a Nutshell)

public BeanDescriptor (Class beanClass);

public BeanDescriptor (Class beanClass, Class customizerClass);

// Public Instance Methods

public Class getBeanClass ();

public Class getCustomizerClass ();

}

Hierarchy: Object-->FeatureDescriptor-->BeanDescriptor

Returned By: BeanInfo.getBeanDescriptor(), SimpleBeanInfo.getBeanDescriptor()

BeanInfo Java 1.1

java.beans PJ1.1

The BeanInfo interface defines the methods a class must implement in order to export information about a
JavaBeans component. The Introspector class knows how to obtain all the basic information required about a
bean. A bean that wants to be more programmer-friendly can provide a class that implements this interface, and
provide additional information about itself (such as an icon and description strings for each of its properties, events,
and methods). Note that a bean developer defines a class that implements the methods of this interface. Typically,
only builder applications and similar tools actually invoke the methods defined here.

The getBeanDescriptor(), getEventSetDescriptors(), getPropertyDescriptors(), and
getMethodDescriptors() methods should return appropriate descriptor objects for the bean or null if the
bean does not provide explicit bean, event set, property, or method descriptor objects. The
getDefaultEventIndex() and getDefaultPropertyIndex() methods return values that specify the
default event and property (i.e., those most likely to be of interest to a programmer using the bean). These methods
should return -1 if there are no defaults. The getIcon() method should return an image object suitable for
representing the bean in a palette or menu of available beans. The argument passed to this method is one of the four
constants defined by the class; it specifies the type and size of icon requested. If the requested icon cannot be
provided, getIcon() should return null.

A BeanInfo class is allowed to return null or -1 if it cannot provide the requested information. In this case, the
Introspector class provides basic values for the omitted information from its own introspection of the bean. See
SimpleBeanInfo for a trivial implementation of this interface suitable for convenient subclassing.

public interface BeanInfo {

// Public Constants

public static final int ICON_COLOR_16x16 ; =1

public static final int ICON_COLOR_32x32 ; =2

public static final int ICON_MONO_16x16 ; =3

public static final int ICON_MONO_32x32 ; =4

file:///C|/orielly/jnut/ch09_01.htm (3 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Java in a Nutshell)

// Property Accessor Methods (by property name)

public abstract BeanInfo[] getAdditionalBeanInfo ();

public abstract BeanDescriptor getBeanDescriptor ();

public abstract int getDefaultEventIndex ();

public abstract int getDefaultPropertyIndex ();

public abstract EventSetDescriptor[] getEventSetDescriptors ();

public abstract MethodDescriptor[] getMethodDescriptors ();

public abstract PropertyDescriptor[] getPropertyDescriptors ();

// Public Instance Methods

public abstract java.awt.Image getIcon (int iconKind);

}

Implementations: SimpleBeanInfo,
java.beans.beancontext.BeanContextServiceProviderBeanInfo

Returned By: BeanInfo.getAdditionalBeanInfo(), Introspector.getBeanInfo(),
SimpleBeanInfo.getAdditionalBeanInfo(),
java.beans.beancontext.BeanContextServiceProviderBeanInfo.getServicesBeanInfo()

Beans Java 1.1

java.beans PJ1.1

The Beans class is not meant to be instantiated; its static methods provide miscellaneous JavaBeans features. The
instantiate() method creates an instance of a bean. The specified bean name represents either a serialized bean
file or a bean class file; it is interpreted relative to the specified ClassLoader object.

The setDesignTime() and isDesignTime() methods can set and query a flag that indicates whether beans
are being used in a application builder environment. Similarly, setGuiAvailable() and isGuiAvailable()
set and query a flag that indicates whether the Java Virtual Machine is running in an environment in which a GUI is
available. (Note that untrusted applet code cannot call setDesignTime() or setGuiAvailable().)

The isInstanceOf() method is a replacement for the Java instanceof operator to use with beans. Currently,
it behaves like instanceof, but in the future it may work with beans that consist of a set of Java objects, each of
which provides a different view of a bean. Similarly, the getInstanceOf() method is a replacement for the Java
cast operator. This method converts a bean to a superclass or interface type, and currently, it behaves like a cast, but
in the future, it will be compatible with multiclass beans.

public class Beans {

// Public Constructors

public Beans ();

file:///C|/orielly/jnut/ch09_01.htm (4 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Java in a Nutshell)

// Public Class Methods

public static Object getInstanceOf (Object bean, Class targetType);

public static Object instantiate (ClassLoader cls, String beanName) throws
java.io.IOExceptionClassNotFoundException;

1.2
public static Object instantiate (ClassLoader cls, String beanName, java.beans.beancontext.BeanContext
beanContext) throws java.io.IOExceptionClassNotFoundException;

1.2
public static Object instantiate (ClassLoader cls, String beanName, java.beans.beancontext.BeanContext
beanContext, AppletInitializer initializer) throws java.io.IOExceptionClassNotFoundException;

public static boolean isDesignTime ();

public static boolean isGuiAvailable ();

public static boolean isInstanceOf (Object bean, Class targetType);

public static void setDesignTime (boolean isDesignTime) throws SecurityException;

public static void setGuiAvailable (boolean isGuiAvailable) throws SecurityException;

}

Customizer Java 1.1

java.beans PJ1.1

The Customizer interface specifies the methods that must be defined by any class designed to customize a
JavaBeans component. In addition to implementing this interface, a customizer class must be a subclass of
java.awt.Component and have a constructor that takes no arguments so it can be instantiated by an application
builder.

Customizer classes are typically used by a complex bean to allow the user to easily configure the bean and provide an
alternative to a simple list of properties and their values. If a customizer class is defined for a bean, it must be
associated with the bean through a BeanDescriptor object returned by a BeanInfo class for the bean. Note that
while a Customizer class is created by the author of a bean, that class is instantiated and used only by application
builders and similar tools.

After a Customizer class is instantiated, its setObject() method is invoked once to specify the bean object to
customize. The addPropertyChangeListener() and removePropertyChangeListener() methods
can be called to register and deregister PropertyChangeListener objects. The Customizer should send a
PropertyChangeEvent to all registered listeners any time it changes a property of the bean it is customizing.

public interface Customizer {

// Event Registration Methods (by event name)

public abstract void addPropertyChangeListener (PropertyChangeListener listener);

public abstract void removePropertyChangeListener (PropertyChangeListener listener);

// Public Instance Methods

public abstract void setObject (Object bean);

}

file:///C|/orielly/jnut/ch09_01.htm (5 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Java in a Nutshell)

DesignMode Java 1.2

java.beans

This interface defines a single boolean designTime property that specifies whether a bean is running within an
interactive design tool or a standalone application or applet. This interface is typically implemented by a bean
container or bean context, so that children beans can query the designTime property.

public interface DesignMode {

// Public Constants

public static final String PROPERTYNAME ; ="designTime"

// Public Instance Methods

public abstract boolean isDesignTime ();

public abstract void setDesignTime (boolean designTime);

}

Implementations: java.beans.beancontext.BeanContext

EventSetDescriptor Java 1.1

java.beans PJ1.1

An EventSetDescriptor object is a type of FeatureDescriptor that describes a single set of events
supported by a JavaBeans component. A set of events corresponds to one or more methods supported by a single
EventListener interface. The BeanInfo class for a bean optionally creates EventSetDescriptor objects
to describe the event sets the bean supports. Typically, only application builders and similar tools use the get and is
methods of EventSetDescriptor objects to obtain the event-set description information.

To create an EventSetDescriptor object, you must specify the class of the bean that supports the event set, the
base name of the event set, the class of the EventListener interface that corresponds to the event set, and the
methods within this interface that are invoked when particular events within the set occur. Optionally, you can also
specify the methods of the bean class that add and remove EventListener objects. The various constructors allow
you to specify methods by name, as java.lang.reflect.Method objects, or as MethodDescriptor
objects.

Once you have created an EventSetDescriptor, use setUnicast() to specify whether it represents a unicast
event and setInDefaultEventSet() to specify whether the event set should be treated as the default event set
by builder applications. The methods of the FeatureDescriptor superclass allow additional information about
the property to be specified.

public class EventSetDescriptor extends FeatureDescriptor {

file:///C|/orielly/jnut/ch09_01.htm (6 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Java in a Nutshell)

// Public Constructors

public EventSetDescriptor (Class sourceClass, String eventSetName, Class listenerType, String
listenerMethodName) throws IntrospectionException;

public EventSetDescriptor (String eventSetName, Class listenerType, MethodDescriptor[]
listenerMethodDescriptors, java.lang.reflect.Method addListenerMethod, java.lang.reflect.Method
removeListenerMethod) throws IntrospectionException;

public EventSetDescriptor (String eventSetName, Class listenerType, java.lang.reflect.Method[]
listenerMethods, java.lang.reflect.Method addListenerMethod, java.lang.reflect.Method removeListenerMethod)
throws IntrospectionException;

public EventSetDescriptor (Class sourceClass, String eventSetName, Class listenerType, String[]
listenerMethodNames, String addListenerMethodName, String removeListenerMethodName) throws
IntrospectionException;

// Property Accessor Methods (by property name)

public java.lang.reflect.Method getAddListenerMethod ();

public boolean isInDefaultEventSet ();

public void setInDefaultEventSet (boolean inDefaultEventSet);

public MethodDescriptor[] getListenerMethodDescriptors ();

public java.lang.reflect.Method[] getListenerMethods ();

public Class getListenerType ();

public java.lang.reflect.Method getRemoveListenerMethod ();

public boolean isUnicast ();

public void setUnicast (boolean unicast);

}

Hierarchy: Object-->FeatureDescriptor-->EventSetDescriptor

Returned By: BeanInfo.getEventSetDescriptors(),
SimpleBeanInfo.getEventSetDescriptors()

FeatureDescriptor Java 1.1

java.beans PJ1.1

The FeatureDescriptor class is the base class for MethodDescriptor and PropertyDescriptor, as
well as other classes used by the JavaBeans introspection mechanism. It provides basic information about a feature
(e.g., method, property, or event) of a bean. Typically, the methods that begin with get and is are used by
application builders or other tools to query the features of a bean. The set methods, on the other hand, may be used
by bean authors to define information about the bean.

setName() specifies the locale-independent, programmatic name of the feature; setDisplayName() specifies a
localized, human-readable name; and setShortDescription() specifies a short localized string (about 40
characters) that describes the feature. Both the short description and the localized name default to the value of the

file:///C|/orielly/jnut/ch09_01.htm (7 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Java in a Nutshell)

programmatic name. setExpert() and setHidden() allow you to indicate that the feature is for use only by
experts or by the builder tool and should be hidden from users of the builder. Finally, the setValue() method
allows you to associate an arbitrary named value with the feature.

public class FeatureDescriptor {

// Public Constructors

public FeatureDescriptor ();

// Property Accessor Methods (by property name)

public String getDisplayName (); default:null

public void setDisplayName (String displayName);

public boolean isExpert (); default:false

public void setExpert (boolean expert);

public boolean isHidden (); default:false

public void setHidden (boolean hidden);

public String getName (); default:null

public void setName (String name);

1.2 public boolean isPreferred (); default:false

1.2 public void setPreferred (boolean preferred);

public String getShortDescription (); default:null

public void setShortDescription (String text);

// Public Instance Methods

public java.util.Enumeration attributeNames ();

public Object getValue (String attributeName);

public void setValue (String attributeName, Object value);

}

Subclasses: BeanDescriptor, EventSetDescriptor, MethodDescriptor,
ParameterDescriptor, PropertyDescriptor

IndexedPropertyDescriptor Java 1.1

java.beans PJ1.1

An IndexedPropertyDescriptor object is a type of PropertyDescriptor that describes a bean property
that is (or behaves like) an array. The BeanInfo class for a bean optionally creates and initializes
IndexedPropertyDescriptor objects to describe the indexed properties the bean supports. Typically, only
application builders and similar tools use the descriptor objects to obtain indexed property description information.

You create an IndexedPropertyDescriptor by specifying the name of the indexed property and the Class
object for the bean. If you have not followed the standard design patterns for accessor method naming, you can also

file:///C|/orielly/jnut/ch09_01.htm (8 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Java in a Nutshell)

specify the accessor methods for the property, either as method names or as java.lang.reflect.Method
objects. Once you have created an IndexedPropertyDescriptor object, you can use the methods of
PropertyDescriptor and FeatureDescriptor to provide additional information about the indexed
property.

public class IndexedPropertyDescriptor extends PropertyDescriptor {

// Public Constructors

public IndexedPropertyDescriptor (String propertyName, Class beanClass) throws IntrospectionException;

public IndexedPropertyDescriptor (String propertyName, java.lang.reflect.Method getter,
java.lang.reflect.Method setter, java.lang.reflect.Method indexedGetter, java.lang.reflect.Method indexedSetter)
throws IntrospectionException;

public IndexedPropertyDescriptor (String propertyName, Class beanClass, String getterName, String
setterName, String indexedGetterName, String indexedSetterName) throws IntrospectionException;

// Public Instance Methods

public Class getIndexedPropertyType ();

public java.lang.reflect.Method getIndexedReadMethod ();

public java.lang.reflect.Method getIndexedWriteMethod ();

1.2 public void setIndexedReadMethod (java.lang.reflect.Method getter) throws IntrospectionException;

1.2 public void setIndexedWriteMethod (java.lang.reflect.Method setter) throws IntrospectionException;

}

Hierarchy: Object-->FeatureDescriptor-->PropertyDescriptor--
>IndexedPropertyDescriptor

IntrospectionException Java 1.1

java.beans serializable checked PJ1.1

Signals that introspection on a JavaBeans component cannot be completed. Typically, this indicates a bug in the way
the bean or its associated BeanInfo class is defined.

public class IntrospectionException extends Exception {

// Public Constructors

public IntrospectionException (String mess);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->IntrospectionException

Thrown By: Too many methods to list.

file:///C|/orielly/jnut/ch09_01.htm (9 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Java in a Nutshell)

Introspector Java 1.1

java.beans PJ1.1

The Introspector is a class that is never instantiated. Its static getBeanInfo() methods provide a way to
obtain information about a JavaBeans component and are typically only invoked by application builders or similar
tools. getBeanInfo() first looks for a BeanInfo class for the specified bean class. For a class named x, it looks
for a BeanInfo class named xBeanInfo, first in the current package and then in each of the packages in the
BeanInfo search path.

If no BeanInfo class is found, or if the BeanInfo class found does not provide complete information about the
bean properties, events, and methods, getBeanInfo() introspects on the bean class by using the
java.lang.reflect package to fill in the missing information. When explicit information is provided by a
BeanInfo class, getBeanInfo() treats it as definitive. When determining information through introspection,
however, it examines each of the bean's superclasses in turn, looking for a BeanInfo class at that level or using
introspection. When calling getBeanInfo(), you may optionally specify a second class argument that specifies a
superclass for which, and above which, getBeanInfo() does not introspect.

public class Introspector {

// No Constructor

// Public Constants

1.2 public static final int IGNORE_ALL_BEANINFO ; =3

1.2 public static final int IGNORE_IMMEDIATE_BEANINFO ; =2

1.2 public static final int USE_ALL_BEANINFO ; =1

// Public Class Methods

public static String decapitalize (String name);

1.2 public static void flushCaches ();

1.2 public static void flushFromCaches (Class clz);

public static BeanInfo getBeanInfo (Class beanClass) throws IntrospectionException;

1.2 public static BeanInfo getBeanInfo (Class beanClass, int flags) throws IntrospectionException;

public static BeanInfo getBeanInfo (Class beanClass, Class stopClass) throws
IntrospectionException;

public static String[] getBeanInfoSearchPath (); synchronized

public static void setBeanInfoSearchPath (String[] path); synchronized

}

MethodDescriptor Java 1.1

java.beans PJ1.1

file:///C|/orielly/jnut/ch09_01.htm (10 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Java in a Nutshell)

A MethodDescriptor object is a type of FeatureDescriptor that describes a method supported by a
JavaBeans component. The BeanInfo class for a bean optionally creates MethodDescriptor objects that
describe the methods the bean exports. While a BeanInfo class creates and initializes MethodDescriptor
objects, it is typically only application builders and similar tools that use these objects to obtain information about the
methods supported by a bean.

To create a MethodDescriptor, you must specify the java.lang.reflect.Method object for the method
and, optionally, an array of ParameterDescriptor objects that describe the parameters of the method. Once you
have created a MethodDescriptor object, you can use FeatureDescriptor methods to provide additional
information about each method.

public class MethodDescriptor extends FeatureDescriptor {

// Public Constructors

public MethodDescriptor (java.lang.reflect.Method method);

public MethodDescriptor (java.lang.reflect.Method method, ParameterDescriptor[] parameterDescriptors);

// Public Instance Methods

public java.lang.reflect.Method getMethod ();

public ParameterDescriptor[] getParameterDescriptors ();

}

Hierarchy: Object-->FeatureDescriptor-->MethodDescriptor

Passed To: EventSetDescriptor.EventSetDescriptor()

Returned By: BeanInfo.getMethodDescriptors(),
EventSetDescriptor.getListenerMethodDescriptors(),
SimpleBeanInfo.getMethodDescriptors()

ParameterDescriptor Java 1.1

java.beans PJ1.1

A ParameterDescriptor object is a type of FeatureDescriptor that describes an argument or parameter
to a method of a JavaBeans component. The BeanInfo class for a JavaBeans component optionally creates
ParameterDescriptor objects that describe the parameters of the methods the bean exports. While the
BeanInfo class creates and initializes ParameterDescriptor objects, it is typically only application builders
and similar tools that use these objects to obtain information about method parameters supported by the bean.

The ParameterDescriptor class is a trivial subclass of FeatureDescriptor and does not provide any new
methods. Thus, you should use the methods of FeatureDescriptor to provide information about method
parameters.

file:///C|/orielly/jnut/ch09_01.htm (11 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Java in a Nutshell)

public class ParameterDescriptor extends FeatureDescriptor {

// Public Constructors

public ParameterDescriptor ();

}

Hierarchy: Object-->FeatureDescriptor-->ParameterDescriptor

Passed To: MethodDescriptor.MethodDescriptor()

Returned By: MethodDescriptor.getParameterDescriptors()

PropertyChangeEvent Java 1.1

java.beans serializable event PJ1.1

PropertyChangeEvent is a subclass of java.util.EventObject. An event of this type is sent to interested
PropertyChangeListener objects whenever a JavaBeans component changes a bound property or whenever a
PropertyEditor or Customizer changes a property value. A PropertyChangeEvent is also sent to
registered VetoableChangeListener objects when a bean attempts to change the value of a constrained
property.

When creating a PropertyChangeEvent, you normally specify the bean that generated the event, the
programmatic (locale-independent) name of the property that changed, and the old and new values of the property. If
the values cannot be determined, null should be passed instead. If the event is a notification that more than one
property value changed, the name should also be null. While JavaBeans must generate and send
PropertyChangeEvent objects, it is typically only application builders and similar tools that are interested in
receiving them.

public class PropertyChangeEvent extends java.util.EventObject {

// Public Constructors

public PropertyChangeEvent (Object source, String propertyName, Object oldValue, Object newValue);

// Public Instance Methods

public Object getNewValue ();

public Object getOldValue ();

public Object getPropagationId ();

public String getPropertyName ();

public void setPropagationId (Object propagationId);

}

Hierarchy: Object-->java.util.EventObject(Serializable)-->PropertyChangeEvent

file:///C|/orielly/jnut/ch09_01.htm (12 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Java in a Nutshell)

Passed To: PropertyChangeListener.propertyChange(),
PropertyChangeSupport.firePropertyChange(),
PropertyVetoException.PropertyVetoException(),
VetoableChangeListener.vetoableChange(),
VetoableChangeSupport.fireVetoableChange(),
java.beans.beancontext.BeanContextSupport.{propertyChange(), vetoableChange()},
javax.swing.JList.AccessibleJList.propertyChange(),
javax.swing.JTable.AccessibleJTable.propertyChange(),
javax.swing.event.SwingPropertyChangeSupport.firePropertyChange(),
javax.swing.table.DefaultTableColumnModel.propertyChange()

Returned By: PropertyVetoException.getPropertyChangeEvent()

PropertyChangeListener Java 1.1

java.beans event listener PJ1.1

This interface is an extension of java.util.EventListener; it defines the method a class must implement in
order to be notified when property changes occur. A PropertyChangeEvent is sent to all registered
PropertyChangeListener objects when a bean changes one of its bound properties or when a
PropertyEditor or Customizer changes the value of a property.

public interface PropertyChangeListener extends java.util.EventListener {

// Public Instance Methods

public abstract void propertyChange (PropertyChangeEvent evt);

}

Hierarchy: (PropertyChangeListener(java.util.EventListener))

Implementations: java.beans.beancontext.BeanContextSupport,
javax.swing.JList.AccessibleJList, javax.swing.JTable.AccessibleJTable,
javax.swing.table.DefaultTableColumnModel

Passed To: Too many methods to list.

Returned By:
java.beans.beancontext.BeanContextSupport.getChildPropertyChangeListener(),
javax.swing.AbstractButton.createActionPropertyChangeListener(),
javax.swing.JCheckBox.createActionPropertyChangeListener(),
javax.swing.JComboBox.createActionPropertyChangeListener(),
javax.swing.JMenu.createActionChangeListener(),
javax.swing.JMenuItem.createActionPropertyChangeListener(),
javax.swing.JPopupMenu.createActionChangeListener(),
javax.swing.JRadioButton.createActionPropertyChangeListener(),

file:///C|/orielly/jnut/ch09_01.htm (13 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Java in a Nutshell)

javax.swing.JTextField.createActionPropertyChangeListener(),
javax.swing.JToolBar.createActionChangeListener()

PropertyChangeSupport Java 1.1

java.beans serializable PJ1.1

The PropertyChangeSupport class is a convenience class that maintains a list of registered
PropertyChangeListener objects and provides the firePropertyChange() method for sending a
PropertyChangeEvent object to all registered listeners. Because there are some tricky thread-synchronization
issues involved in doing this correctly, it is recommended that all JavaBeans that support bound properties either
extend this class or, more commonly, create an instance of this class to which they can delegate the task of
maintaining the list of listeners.

public class PropertyChangeSupport implements Serializable {

// Public Constructors

public PropertyChangeSupport (Object sourceBean);

// Event Registration Methods (by event name)

public void addPropertyChangeListener (PropertyChangeListener listener); synchronized

public void removePropertyChangeListener (PropertyChangeListener listener); synchronized

// Public Instance Methods

1.2
public void addPropertyChangeListener (String propertyName, PropertyChangeListener
listener);

synchronized

1.2 public void firePropertyChange (PropertyChangeEvent evt);

1.2 public void firePropertyChange (String propertyName, int oldValue, int newValue);

1.2 public void firePropertyChange (String propertyName, boolean oldValue, boolean newValue);

public void firePropertyChange (String propertyName, Object oldValue, Object newValue);

1.2 public boolean hasListeners (String propertyName); synchronized

1.2
public void removePropertyChangeListener (String propertyName, PropertyChangeListener
listener);

synchronized

}

Hierarchy: Object-->PropertyChangeSupport(Serializable)

Subclasses: javax.swing.event.SwingPropertyChangeSupport

Type Of: java.awt.Toolkit.desktopPropsSupport,
java.beans.beancontext.BeanContextChildSupport.pcSupport

PropertyDescriptor Java 1.1

file:///C|/orielly/jnut/ch09_01.htm (14 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Java in a Nutshell)

java.beans PJ1.1

A PropertyDescriptor object is a type of FeatureDescriptor that describes a single property of a
JavaBeans component. The BeanInfo class for a bean optionally creates and initializes PropertyDescriptor
objects to describe the properties the bean supports. Typically, only application builders and similar tools use the get
and is methods to obtain this property description information.

You create a PropertyDescriptor by specifying the name of the property and the Class object for the bean. If
you have not followed the standard design patterns for accessor-method naming, you can also specify the accessor
methods for the property. Once a PropertyDescriptor is created, the setBound() and
setConstrained() methods allow you to specify whether the property is bound and/or constrained.
setPropertyEditorClass() allows you to specify a specific property editor that should edit the value of this
property (this is useful, for example, when the property is an enumerated type with a specific list of supported values).
The methods of the FeatureDescriptor superclass allow additional information about the property to be
specified.

public class PropertyDescriptor extends FeatureDescriptor {

// Public Constructors

public PropertyDescriptor (String propertyName, Class beanClass) throws IntrospectionException;

public PropertyDescriptor (String propertyName, java.lang.reflect.Method getter, java.lang.reflect.Method
setter) throws IntrospectionException;

public PropertyDescriptor (String propertyName, Class beanClass, String getterName, String setterName)
throws IntrospectionException;

// Property Accessor Methods (by property name)

public boolean isBound ();

public void setBound (boolean bound);

public boolean isConstrained ();

public void setConstrained (boolean constrained);

public Class getPropertyEditorClass ();

public void setPropertyEditorClass (Class propertyEditorClass);

public Class getPropertyType ();

public java.lang.reflect.Method getReadMethod ();

1.2 public void setReadMethod (java.lang.reflect.Method getter) throws IntrospectionException;

public java.lang.reflect.Method getWriteMethod ();

1.2 public void setWriteMethod (java.lang.reflect.Method setter) throws IntrospectionException;

}

Hierarchy: Object-->FeatureDescriptor-->PropertyDescriptor

Subclasses: IndexedPropertyDescriptor

file:///C|/orielly/jnut/ch09_01.htm (15 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Java in a Nutshell)

Returned By: BeanInfo.getPropertyDescriptors(),
SimpleBeanInfo.getPropertyDescriptors()

PropertyEditor Java 1.1

java.beans PJ1.1

The PropertyEditor interface defines the methods that must be implemented by a JavaBeans property editor
intended for use within an application builder or similar tool. PropertyEditor is a complex interface because it
defines methods to support different ways of displaying property values to the user. It also defines methods to support
different ways of allowing the user to edit the property value.

For a property of type x, the author of a bean typically implements a property editor of class xEditor. While the
editor is implemented by the bean author, it is usually instantiated or used only by application builders or similar tools
(or by a Customizer class for a bean). In addition to implementing the PropertyEditor interface, a property
editor must have a constructor that expects no arguments, so that it can be easily be instantiated by an application
builder. Also, it must accept registration and deregistration of PropertyChangeListener objects and send a
PropertyChangeEvent to all registered listeners when it changes the value of the property being edited. The
PropertyEditorSupport class is a trivial implementation of PropertyEditor, suitable for subclassing or
for supporting a list of PropertyChangeListener objects.

public interface PropertyEditor {

// Event Registration Methods (by event name)

public abstract void addPropertyChangeListener (PropertyChangeListener listener);

public abstract void removePropertyChangeListener (PropertyChangeListener listener);

// Property Accessor Methods (by property name)

public abstract String getAsText ();

public abstract void setAsText (String text) throws IllegalArgumentException;

public abstract java.awt.Component getCustomEditor ();

public abstract String getJavaInitializationString ();

public abstract boolean isPaintable ();

public abstract String[] getTags ();

public abstract Object getValue ();

public abstract void setValue (Object value);

// Public Instance Methods

public abstract void paintValue (java.awt.Graphics gfx, java.awt.Rectangle box);

public abstract boolean supportsCustomEditor ();

}

Implementations: PropertyEditorSupport

file:///C|/orielly/jnut/ch09_01.htm (16 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Java in a Nutshell)

Returned By: PropertyEditorManager.findEditor()

PropertyEditorManager Java 1.1

java.beans PJ1.1

The PropertyEditorManager class is not meant to be instantiated; it defines static methods for registering and
looking up PropertyEditor classes for a specified property type. A bean can specify a particular
PropertyEditor class for a given property by specifying it in a PropertyDescriptor object for the
property. If it does not do this, the PropertyEditorManager is used to register and look up editors. A bean or an
application builder tool can call the registerEditor() method to register a PropertyEditor for properties
of a specified type. Application builders and bean Customizer classes can call the findEditor() method to
obtain a PropertyEditor for a given property type. If no editor has been registered for a given type, the
PropertyEditorManager attempts to locate one. For a type x, it looks for a class xEditor first in the same
package as x, and then in each package listed in the property editor search path.

public class PropertyEditorManager {

// Public Constructors

public PropertyEditorManager ();

// Public Class Methods

public static PropertyEditor findEditor (Class targetType); synchronized

public static String[] getEditorSearchPath (); synchronized

public static void registerEditor (Class targetType, Class editorClass);

public static void setEditorSearchPath (String[] path); synchronized

}

PropertyEditorSupport Java 1.1

java.beans PJ1.1

The PropertyEditorSupport class is a trivial implementation of the PropertyEditor interface. It provides
no-op default implementations of most methods, so you can define simple PropertyEditor subclasses that
override only a few required methods. In addition, PropertyEditorSupport defines working versions of
addPropertyChangeListener() and removePropertyChangeListener(), along with a
firePropertyChange() method that sends a PropertyChangeEvent to all registered listeners.
PropertyEditor classes may choose to instantiate a PropertyEditorSupport object simply to handle the
job of managing the list of listeners. When used in this way, the PropertyEditorSupport object should be
instantiated with a source object specified, so that the source object can be used in the PropertyChangeEvent
objects that are sent.

public class PropertyEditorSupport implements PropertyEditor {

file:///C|/orielly/jnut/ch09_01.htm (17 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Java in a Nutshell)

// Protected Constructors

protected PropertyEditorSupport ();

protected PropertyEditorSupport (Object source);

// Event Registration Methods (by event name)

public void addPropertyChangeListener (PropertyChangeListener
listener);

Implements:PropertyEditor synchronized

public void removePropertyChangeListener (PropertyChangeListener
listener);

Implements:PropertyEditor synchronized

// Public Instance Methods

public void firePropertyChange ();

// Methods Implementing PropertyEditor

public void addPropertyChangeListener (PropertyChangeListener
listener);

synchronized

public String getAsText ();

public java.awt.Component getCustomEditor (); constant

public String getJavaInitializationString ();

public String[] getTags (); constant

public Object getValue ();

public boolean isPaintable (); constant

public void paintValue (java.awt.Graphics gfx, java.awt.Rectangle
box);

empty

public void removePropertyChangeListener (PropertyChangeListener
listener);

synchronized

public void setAsText (String text) throws IllegalArgumentException;

public void setValue (Object value);

public boolean supportsCustomEditor (); constant

}

Hierarchy: Object-->PropertyEditorSupport(PropertyEditor)

PropertyVetoException Java 1.1

java.beans serializable checked PJ1.1

Signals that a VetoableChangeListener that received a PropertyChangeEvent for a constrained property
of a bean has vetoed that proposed change. When this exception is received, the property in question should revert to
its original value, and any VetoableChangeListener objects that have already been notified of the property
change must be renotified to indicate that the property has reverted to its old value. The
VetoableChangeSupport class handles this renotification automatically and rethrows the
PropertyVetoException to notify its caller that the change was rejected.

file:///C|/orielly/jnut/ch09_01.htm (18 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Java in a Nutshell)

public class PropertyVetoException extends Exception {

// Public Constructors

public PropertyVetoException (String mess, PropertyChangeEvent evt);

// Public Instance Methods

public PropertyChangeEvent getPropertyChangeEvent ();

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->PropertyVetoException

Thrown By: VetoableChangeListener.vetoableChange(),
VetoableChangeSupport.fireVetoableChange(),
java.beans.beancontext.BeanContextChild.setBeanContext(),
java.beans.beancontext.BeanContextChildSupport.{fireVetoableChange(),
setBeanContext()}, java.beans.beancontext.BeanContextSupport.{setLocale(),
vetoableChange()}, javax.swing.JComponent.fireVetoableChange(),
javax.swing.JInternalFrame.{setClosed(), setIcon(), setMaximum(),
setSelected()}

SimpleBeanInfo Java 1.1

java.beans PJ1.1

The SimpleBeanInfo class is a trivial implementation of the BeanInfo interface. The methods of this class all
return null or -1, indicating that no bean information is available. To use this class, you need to override only the
method or methods that return the particular type of bean information you want to provide. In addition,
SimpleBeanInfo provides a convenience method, loadImage(), that takes a resource name as an argument
and returns an Image object. This method is useful when defining the getIcon() method.

public class SimpleBeanInfo implements BeanInfo {

// Public Constructors

public SimpleBeanInfo ();

// Public Instance Methods

public java.awt.Image loadImage (String resourceName);

// Methods Implementing BeanInfo

public BeanInfo[] getAdditionalBeanInfo (); constant default:null

public BeanDescriptor getBeanDescriptor (); constant default:null

public int getDefaultEventIndex (); constant default:-1

public int getDefaultPropertyIndex (); constant default:-1

public EventSetDescriptor[] getEventSetDescriptors (); constant default:null

public java.awt.Image getIcon (int iconKind); constant

file:///C|/orielly/jnut/ch09_01.htm (19 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Java in a Nutshell)

public MethodDescriptor[] getMethodDescriptors (); constant default:null

public PropertyDescriptor[] getPropertyDescriptors (); constant default:null

}

Hierarchy: Object-->SimpleBeanInfo(BeanInfo)

VetoableChangeListener Java 1.1

java.beans event listener PJ1.1

This interface is an extension of java.util.EventListener. It defines the method a class must implement in
order to be notified when a Java bean makes a change to a constrained property. A PropertyChangeEvent is
passed to the VetoableChange() method when such a change occurs. If the VetoableChangeListener
wants to prevent the change from occurring, this method should throw a PropertyVetoException.

public interface VetoableChangeListener extends java.util.EventListener {

// Public Instance Methods

public abstract void vetoableChange (PropertyChangeEvent evt) throws PropertyVetoException;

}

Hierarchy: (VetoableChangeListener(java.util.EventListener))

Implementations: java.beans.beancontext.BeanContextSupport

Passed To: VetoableChangeSupport.{addVetoableChangeListener(),
removeVetoableChangeListener()},
java.beans.beancontext.BeanContextChild.{addVetoableChangeListener(),
removeVetoableChangeListener()},
java.beans.beancontext.BeanContextChildSupport.{addVetoableChangeListener(),
removeVetoableChangeListener()},
javax.swing.JComponent.{addVetoableChangeListener(),
removeVetoableChangeListener()}

Returned By:
java.beans.beancontext.BeanContextSupport.getChildVetoableChangeListener()

VetoableChangeSupport Java 1.1

java.beans serializable PJ1.1

VetoableChangeSupport is a convenience class that maintains a list of registered

file:///C|/orielly/jnut/ch09_01.htm (20 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Java in a Nutshell)

VetoableChangeListener objects and provides a fireVetoableChange() method for sending a
PropertyChangeEvent to all registered listeners. If any of the registered listeners veto the proposed change,
fireVetoableChange() sends out another PropertyChangeEvent notifying previously notified listeners
that the property has reverted to its original value. Because of the extra complexity of correctly handling veto-able
changes and because of some tricky thread-synchronization issues involved in maintaining the list of listeners, it is
recommended that all Java beans that support constrained events create a VetoableChangeSupport object to
which they can delegate the tasks of maintaining the list of listeners and of firing events.

public class VetoableChangeSupport implements Serializable {

// Public Constructors

public VetoableChangeSupport (Object sourceBean);

// Event Registration Methods (by event name)

public void addVetoableChangeListener (VetoableChangeListener listener); synchronized

public void removeVetoableChangeListener (VetoableChangeListener listener); synchronized

// Public Instance Methods

1.2
public void addVetoableChangeListener (String propertyName, VetoableChangeListener
listener);

synchronized

1.2 public void fireVetoableChange (PropertyChangeEvent evt) throws PropertyVetoException;

1.2
public void fireVetoableChange (String propertyName, int oldValue, int newValue) throws
PropertyVetoException;

1.2
public void fireVetoableChange (String propertyName, boolean oldValue, boolean newValue)
throws PropertyVetoException;

public void fireVetoableChange (String propertyName, Object oldValue, Object newValue)
throws PropertyVetoException;

1.2 public boolean hasListeners (String propertyName); synchronized

1.2
public void removeVetoableChangeListener (String propertyName, VetoableChangeListener
listener);

synchronized

}

Hierarchy: Object-->VetoableChangeSupport(Serializable)

Type Of: java.beans.beancontext.BeanContextChildSupport.vcSupport

Visibility Java 1.1

java.beans PJ1.1

This interface is intended to be implemented by advanced beans that can run both with and without a GUI present.
The methods it defines allow a bean to specify whether it requires a GUI and allow the environment to notify the bean
whether a GUI is available. If a bean absolutely requires a GUI, it should return true from needsGui(). If a bean
is running without a GUI, it should return true from avoidingGui(). If no GUI is available, the bean can be
notified through a call to dontUseGui(), and if a GUI is available, the bean can be notified through a call to

file:///C|/orielly/jnut/ch09_01.htm (21 of 22) [2/5/2003 7:49:52 PM]

The java.beans Package (Java in a Nutshell)

okToUseGui().

public interface Visibility {

// Public Instance Methods

public abstract boolean avoidingGui ();

public abstract void dontUseGui ();

public abstract boolean needsGui ();

public abstract void okToUseGui ();

}

Implementations: java.beans.beancontext.BeanContext

Returned By: java.beans.beancontext.BeanContextSupport.getChildVisibility()

Reading a Quick-Reference
Entry

10. The
java.beans.beancontext

Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch09_01.htm (22 of 22) [2/5/2003 7:49:52 PM]

file:///C|/orielly/jnut/copyrght.htm

The java.beans.beancontext Package (Java in a Nutshell)

Part 2: API Quick Reference

Chapter 10. The java.beans.beancontext Package
The java.beans.beancontext package extends the JavaBeans component model to add the notion of a containment hierarchy. It also supports bean containers that provide an execution context for the beans they contain and that may also provide a set of services to those beans. This package is typically used by advanced bean developers and developers of bean-
manipulation tools. Application programmers who are simply using beans do not typically use this package. Figure 10-1 shows the class hierarchy.

Figure 10-1. The java.beans.beancontext package

BeanContext is the central interface of this package. It is a container for beans and also defines several methods that specify context information for beans. BeanContextServices extends BeanContext to define methods that allow a contained bean to query and request available services. A bean that wishes to be told about its containing BeanContext
implements the BeanContextChild interface. BeanContext is itself a BeanContextChild, which means that contexts can be nested within other contexts.

See Chapter 6, "JavaBeans", for more information on beans and bean contexts.

BeanContext Java 1.2

java.beans.beancontext collection

This interface defines the methods that must be implemented by any class that wants to act as a logical container for JavaBeans components. Every BeanContext is also a BeanContextChild and can therefore be nested within a higher-level bean context. BeanContext is extended by BeanContextServices; any bean context that wants to provide
services to the beans it contains must implement this more specialized interface.

The BeanContext interface extends the java.util.Collection interface; the children it contains are accessed using the methods of that interface. In addition, BeanContext defines several important methods of its own. instantiateChild() instantiates a new bean, in the same manner as the standard Beans.instantiate() method, and then
makes that new bean a child of the context. Calling this method is typically the same as calling the three-argument version of Beans.instantiate(). getResource() and getResourceAsStream() are the BeanContext versions of the java.lang.Class and java.lang.ClassLoader methods of the same name. Some bean-context
implementations may provide special behavior for these methods; others may simply delegate to the Class or ClassLoader of the bean. The remaining two methods allow the registration and deregistration of event listeners that the BeanContext notifies when bean children are added or removed from the context.

Implementing a BeanContext is a more specialized task than developing a JavaBeans component. Many bean developers will never have to implement a bean context themselves. If you do implement a bean context, you'll probably find it easier to use BeanContextSupport, either by extending it or using an instance as a proxy.

public interface BeanContext extends BeanContextChild, java.util.Collection, java.beans.DesignMode, java.beans.Visibility {

// Public Constants

public static final Object globalHierarchyLock ;

// Event Registration Methods (by event name)

public abstract void addBeanContextMembershipListener (BeanContextMembershipListener bcml);

public abstract void removeBeanContextMembershipListener (BeanContextMembershipListener bcml);

// Public Instance Methods

public abstract java.net.URL getResource (String name, BeanContextChild bcc) throws IllegalArgumentException;

public abstract java.io.InputStream getResourceAsStream (String name, BeanContextChild bcc) throws IllegalArgumentException;

public abstract Object instantiateChild (String beanName) throws java.io.IOExceptionClassNotFoundException;

}

Hierarchy: (BeanContext(BeanContextChild,java.util.Collection,java.beans.DesignMode,java.beans.Visibility))

Implementations: BeanContextServices, BeanContextSupport

Passed To: java.beans.AppletInitializer.initialize(), java.beans.Beans.instantiate(), BeanContextChild.setBeanContext(), BeanContextChildSupport.{setBeanContext(), validatePendingSetBeanContext()}, BeanContextEvent.{BeanContextEvent(),
setPropagatedFrom()}, BeanContextMembershipEvent.BeanContextMembershipEvent(), BeanContextSupport.BeanContextSupport()

Returned By: BeanContextChild.getBeanContext(), BeanContextChildSupport.getBeanContext(), BeanContextEvent.{getBeanContext(), getPropagatedFrom()}, BeanContextSupport.getBeanContextPeer()

Type Of: BeanContextChildSupport.beanContext, BeanContextEvent.propagatedFrom

file:///C|/orielly/jnut/ch10_01.htm (1 of 10) [2/5/2003 7:50:01 PM]

The java.beans.beancontext Package (Java in a Nutshell)

BeanContextChild Java 1.2

java.beans.beancontext

JavaBeans components that are designed to be nested within a bean context and need to be aware of that context must implement this interface. BeanContextChild implements a single beanContext property that identifies the BeanContext within which the bean is contained. The beanContext property is bound and constrained, which means that it must
fire PropertyChangeEvent events when setBeanContext() is called, and any call to setBeanContext() may result in a PropertyVetoException if one of the VetoableChangeListener objects vetoes the change. The setBeanContext() method is not intended for use by beans or by applications. When a bean is instantiated or
deserialized, its containing bean context calls this method to introduce itself to the bean. The bean must store a reference to its BeanContext in a transient field so that the context is not serialized along with the bean itself.

Implementing a BeanContextChild from scratch can be somewhat tricky because you must correctly handle the VetoableChangeListener protocol and correctly implement important conventions, such as storing the BeanContext reference in a transient field. Therefore, most bean developers do not implement the interface directly, but instead use
BeanContextSupport, either by subclassing it or by using an instance as a delegate.

public interface BeanContextChild {

// Public Instance Methods

public abstract void addPropertyChangeListener (String name, java.beans.PropertyChangeListener pcl);

public abstract void addVetoableChangeListener (String name, java.beans.VetoableChangeListener vcl);

public abstract BeanContext getBeanContext ();

public abstract void removePropertyChangeListener (String name, java.beans.PropertyChangeListener pcl);

public abstract void removeVetoableChangeListener (String name, java.beans.VetoableChangeListener vcl);

public abstract void setBeanContext (BeanContext bc) throws java.beans.PropertyVetoException;

}

Implementations: BeanContext, BeanContextChildSupport

Passed To: BeanContext.{getResource(), getResourceAsStream()}, BeanContextChildSupport.BeanContextChildSupport(), BeanContextServices.{getService(), releaseService()}, BeanContextServicesSupport.{getService(), releaseService()},
BeanContextSupport.{getResource(), getResourceAsStream()}

Returned By: BeanContextChildSupport.getBeanContextChildPeer(), BeanContextProxy.getBeanContextProxy(), BeanContextSupport.getChildBeanContextChild()

Type Of: BeanContextChildSupport.beanContextChildPeer

BeanContextChildComponentProxy Java 1.2

java.beans.beancontext

If a BeanContextChild is not a Component subclass but has an associated Component object to display its visual representation, it implements this interface to allow access to that component.

public interface BeanContextChildComponentProxy {

// Public Instance Methods

public abstract java.awt.Component getComponent ();

}

BeanContextChildSupport Java 1.2

java.beans.beancontext serializable

This class provides support for implementing the BeanContextChild interface in a way that correctly conforms to the details of the bean context specification. A subclass should implement initializeBeanContextResources() and releaseBeanContextResources() to obtain and release whatever resources the bean context child requires, such
as service objects obtained from the containing BeanContext. These methods are called when the containing bean context introduces itself by calling setBeanContext(). Any resources obtained with these methods should be stored in transient fields so that they are not serialized along with the bean. A bean that wants a chance to approve any call to
setBeanContext() before that call succeeds can implement validatePendingSetBeanContext(). If this method returns false, the setBeanContext() call that triggered it fails with a PropertyVetoException.

Many beans are AWT or Swing components and cannot subclass both Component and BeanContextChildSupport. Therefore, many bean developers find it useful to delegate to an internal instance of BeanContextChildSupport. One way to do this is to have your bean implement the BeanContextProxy interface and simply return an instance of
BeanContextChildSupport from the getBeanContextProxy() method. Another technique is to actually implement the BeanContextChild interface in your bean, but provide dummy methods that call the corresponding methods of BeanContextChildSupport. If you do this, you should pass an instance of your bean to the
BeanContextChildSupport() constructor. This makes the delegation transparent so events appear to come directly from your bean. In either case, you can instantiate BeanContextChildSupport directly. Often, however, you want to create a custom subclass (perhaps as an inner class) to implement methods such as
initializeBeanContextResources().

public class BeanContextChildSupport implements BeanContextChildBeanContextServicesListenerSerializable {

// Public Constructors

public BeanContextChildSupport ();

public BeanContextChildSupport (BeanContextChild bcc);

// Public Instance Methods

public void firePropertyChange (String name, Object oldValue, Object newValue);

public void fireVetoableChange (String name, Object oldValue, Object newValue) throws java.beans.PropertyVetoException;

public BeanContextChild getBeanContextChildPeer (); default:BeanContextChildSupport

public boolean isDelegated (); default:false

public boolean validatePendingSetBeanContext (BeanContext newValue); constant

// Methods Implementing BeanContextChild

public void addPropertyChangeListener (String name, java.beans.PropertyChangeListener pcl);

public void addVetoableChangeListener (String name, java.beans.VetoableChangeListener vcl);

public BeanContext getBeanContext (); synchronized default:null

public void removePropertyChangeListener (String name, java.beans.PropertyChangeListener pcl);

public void removeVetoableChangeListener (String name, java.beans.VetoableChangeListener vcl);

public void setBeanContext (BeanContext bc) throws java.beans.PropertyVetoException; synchronized

// Methods Implementing BeanContextServiceRevokedListener

public void serviceRevoked (BeanContextServiceRevokedEvent bcsre); empty

// Methods Implementing BeanContextServicesListener

public void serviceAvailable (BeanContextServiceAvailableEvent bcsae); empty

file:///C|/orielly/jnut/ch10_01.htm (2 of 10) [2/5/2003 7:50:01 PM]

The java.beans.beancontext Package (Java in a Nutshell)
// Protected Instance Methods

protected void initializeBeanContextResources (); empty

protected void releaseBeanContextResources (); empty

// Public Instance Fields

public BeanContextChild beanContextChildPeer ;

// Protected Instance Fields

protected transient BeanContext beanContext ;

protected java.beans.PropertyChangeSupport pcSupport ;

protected transient boolean rejectedSetBCOnce ;

protected java.beans.VetoableChangeSupport vcSupport ;

}

Hierarchy: Object-->BeanContextChildSupport(BeanContextChild,BeanContextServicesListener(BeanContextServiceRevokedListener(java.util.EventListener)),Serializable)

Subclasses: BeanContextSupport

BeanContextContainerProxy Java 1.2

java.beans.beancontext

This interface is implemented by a BeanContext that has a java.awt.Container associated with it. The getContainer() method allows any interested parties to obtain a reference to the container associated with the bean context. It is a common practice for bean contexts to be associated with containers. Unfortunately, BeanContext implements
java.util.Collection, which has method-name conflicts with java.awt.Container, so no Container subclass can implement the BeanContext interface. See also BeanContextProxy, which reverses the direction of the proxy relationship.

public interface BeanContextContainerProxy {

// Public Instance Methods

public abstract java.awt.Container getContainer ();

}

BeanContextEvent Java 1.2

java.beans.beancontext serializable event

This is the abstract superclass of all bean context-related events. getBeanContext() returns the source of the event. If isPropagated() returns true, the event has been propagated through a hierarchy of bean contexts, and getPropagatedFrom() returns the most recent bean context to propagate the event.

public abstract class BeanContextEvent extends java.util.EventObject {

// Protected Constructors

protected BeanContextEvent (BeanContext bc);

// Public Instance Methods

public BeanContext getBeanContext ();

public BeanContext getPropagatedFrom (); synchronized

public boolean isPropagated (); synchronized

public void setPropagatedFrom (BeanContext bc); synchronized

// Protected Instance Fields

protected BeanContext propagatedFrom ;

}

Hierarchy: Object-->java.util.EventObject(Serializable)-->BeanContextEvent

Subclasses: BeanContextMembershipEvent, BeanContextServiceAvailableEvent, BeanContextServiceRevokedEvent

BeanContextMembershipEvent Java 1.2

java.beans.beancontext serializable event

An event of this type is generated by a BeanContext when beans are added to it or removed from it. The event object contains the list of children that were added or removed and allows access to that list in several ways. The size() method returns the number of affected children. The contains() method checks whether a specified object was one of the
affected children. toArray() returns the list of affected children as an array, and iterator() returns the list in the form of a java.util.Iterator.

public class BeanContextMembershipEvent extends BeanContextEvent {

// Public Constructors

public BeanContextMembershipEvent (BeanContext bc, Object[] changes);

public BeanContextMembershipEvent (BeanContext bc, java.util.Collection changes);

// Public Instance Methods

public boolean contains (Object child);

public java.util.Iterator iterator ();

public int size ();

public Object[] toArray ();

// Protected Instance Fields

protected java.util.Collection children ;

}

Hierarchy: Object-->java.util.EventObject(Serializable)-->BeanContextEvent-->BeanContextMembershipEvent

Passed To: BeanContextMembershipListener.{childrenAdded(), childrenRemoved()}, BeanContextSupport.{fireChildrenAdded(), fireChildrenRemoved()}

file:///C|/orielly/jnut/ch10_01.htm (3 of 10) [2/5/2003 7:50:01 PM]

The java.beans.beancontext Package (Java in a Nutshell)

BeanContextMembershipListener Java 1.2

java.beans.beancontext event listener

This interface should be implemented by any object that wants to be notified when children are added to or removed from a BeanContext.

public interface BeanContextMembershipListener extends java.util.EventListener {

// Public Instance Methods

public abstract void childrenAdded (BeanContextMembershipEvent bcme);

public abstract void childrenRemoved (BeanContextMembershipEvent bcme);

}

Hierarchy: (BeanContextMembershipListener(java.util.EventListener))

Passed To: BeanContext.{addBeanContextMembershipListener(), removeBeanContextMembershipListener()}, BeanContextSupport.{addBeanContextMembershipListener(), removeBeanContextMembershipListener()}

Returned By: BeanContextSupport.getChildBeanContextMembershipListener()

BeanContextProxy Java 1.2

java.beans.beancontext

This interface is implemented by a JavaBeans component (often, but not always, an AWT Component or Container object) that is not itself a BeanContext or BeanContextChild, but has a BeanContext or BeanContextChild object associated with it. The getBeanContextProxy() method returns the associated object. The return type of this
method is BeanContextChild. Depending on the context in which you call this method, however, the returned object may actually be a BeanContext or BeanContextServices object. You should test for this using the instanceof operator before casting the object to these more specific types.

public interface BeanContextProxy {

// Public Instance Methods

public abstract BeanContextChild getBeanContextProxy ();

}

BeanContextServiceAvailableEvent Java 1.2

java.beans.beancontext serializable event

An event of this type is generated to notify interested BeanContextServicesListener objects that a new class of service is available from a BeanContextServices object. getServiceClass() returns the class of the service, and getCurrentServiceSelectors() may return a set of additional arguments that can parameterize the service.

public class BeanContextServiceAvailableEvent extends BeanContextEvent {

// Public Constructors

public BeanContextServiceAvailableEvent (BeanContextServices bcs, Class sc);

// Public Instance Methods

public java.util.Iterator getCurrentServiceSelectors ();

public Class getServiceClass ();

public BeanContextServices getSourceAsBeanContextServices ();

// Protected Instance Fields

protected Class serviceClass ;

}

Hierarchy: Object-->java.util.EventObject(Serializable)-->BeanContextEvent-->BeanContextServiceAvailableEvent

Passed To: BeanContextChildSupport.serviceAvailable(), BeanContextServicesListener.serviceAvailable(), BeanContextServicesSupport.{fireServiceAdded(), serviceAvailable()}

BeanContextServiceProvider Java 1.2

java.beans.beancontext

This interface defines the methods that must be implemented by a factory class that wants to provide service objects to beans. To provide its service, a BeanContextServiceProvider is passed to the addService() method of a BeanContextServices object. This creates a mapping in the BeanContextServices object between a class of service
(such as java.awt.print.PrinterJob) and a BeanContextServiceProvider that can return a suitable instance of that class to provide the service.

When a BeanContextChild requests a service of a particular class from its BeanContextServices container, the BeanContextServices object finds the appropriate BeanContextServiceProvider object and forwards the request to its getService() method. When the bean relinquishes the service, releaseService() is called. A
getService() request may include an arbitrary object as an additional parameter or service selector. Service providers that use the service selector argument and that support a finite set of legal service selector values should implement the getCurrentServiceSelectors() method to allow the list of legal selector values to be queried.

Bean developers typically do not have to use or implement this interface. From the point of view of a bean context child, service objects are obtained from a BeanContextServices object. Developers creating BeanContextServices implementations, however, must implement appropriate BeanContextServiceProvider objects to provide the services.

public interface BeanContextServiceProvider {

// Public Instance Methods

public abstract java.util.Iterator getCurrentServiceSelectors (BeanContextServices bcs, Class serviceClass);

public abstract Object getService (BeanContextServices bcs, Object requestor, Class serviceClass, Object serviceSelector);

public abstract void releaseService (BeanContextServices bcs, Object requestor, Object service);

}

Implementations: BeanContextServicesSupport.BCSSProxyServiceProvider

Passed To: BeanContextServices.{addService(), revokeService()}, BeanContextServicesSupport.{addService(), createBCSSServiceProvider(), revokeService()}

Returned By: BeanContextServicesSupport.BCSSServiceProvider.getServiceProvider()

file:///C|/orielly/jnut/ch10_01.htm (4 of 10) [2/5/2003 7:50:01 PM]

The java.beans.beancontext Package (Java in a Nutshell)

Type Of: BeanContextServicesSupport.BCSSServiceProvider.serviceProvider

BeanContextServiceProviderBeanInfo Java 1.2

java.beans.beancontext

A BeanContextServiceProvider that wishes to provide information to a GUI builder tool about the service or services it offers should implement this BeanInfo subinterface. Following the standard BeanInfo naming conventions, the implementing class should have the same name as the service provider class, with "BeanInfo" appended. This enables a
design tool to look for and dynamically load the bean info class when necessary.

getServicesBeanInfo() should return an array of BeanInfo objects, one for each class of service offered by the BeanContextServiceProvider. These BeanInfo objects enable a design tool to allow the user to visually configure the service object. This can be quite useful, since service objects may be instances of existing classes that were not
designed with the standard JavaBeans naming conventions in mind.

public interface BeanContextServiceProviderBeanInfo extends java.beans.BeanInfo {

// Public Instance Methods

public abstract java.beans.BeanInfo[] getServicesBeanInfo ();

}

Hierarchy: (BeanContextServiceProviderBeanInfo(java.beans.BeanInfo))

BeanContextServiceRevokedEvent Java 1.2

java.beans.beancontext serializable event

This event class provides details about a service revocation initiated by a BeanContextServices object. getServiceClass() specifies the class of service being revoked. isCurrentServiceInvalidNow() specifies whether the currently owned service object has become invalid. If this method returns true, the bean that receives this event must stop
using the service object immediately. If the method returns false, the bean can continue to use the service object, but future requests for services of this class will fail.

public class BeanContextServiceRevokedEvent extends BeanContextEvent {

// Public Constructors

public BeanContextServiceRevokedEvent (BeanContextServices bcs, Class sc, boolean invalidate);

// Public Instance Methods

public Class getServiceClass ();

public BeanContextServices getSourceAsBeanContextServices ();

public boolean isCurrentServiceInvalidNow ();

public boolean isServiceClass (Class service);

// Protected Instance Fields

protected Class serviceClass ;

}

Hierarchy: Object-->java.util.EventObject(Serializable)-->BeanContextEvent-->BeanContextServiceRevokedEvent

Passed To: BeanContextChildSupport.serviceRevoked(), BeanContextServiceRevokedListener.serviceRevoked(), BeanContextServicesSupport.{fireServiceRevoked(), serviceRevoked()}, BeanContextServicesSupport.BCSSProxyServiceProvider.serviceRevoked()

BeanContextServiceRevokedListener Java 1.2

java.beans.beancontext event listener

This interface defines a method that is invoked when a service object returned by a BeanContextServices object is forcibly revoked. Unlike other types of event listeners, the BeanContextServiceRevokedListener is not registered and deregistered with a pair of add and remove methods. Instead, an implementation of this interface must be passed to
every getService() call on a BeanContextServices object. If the returned service is ever revoked by the granting BeanContextServiceProvider object before the bean has relinquished the service, the serviceRevoked() method of this interface is called.

When a service is revoked, it means that future requests for the service will not succeed. But it may also mean that current service objects have become invalid and must not be used anymore. The serviceRevoked() method should call the isCurrentServiceInvalidNow() method of the supplied event object to determine if this is the case. If so, it must
immediately stop using the service object.

public interface BeanContextServiceRevokedListener extends java.util.EventListener {

// Public Instance Methods

public abstract void serviceRevoked (BeanContextServiceRevokedEvent bcsre);

}

Hierarchy: (BeanContextServiceRevokedListener(java.util.EventListener))

Implementations: BeanContextServicesListener, BeanContextServicesSupport.BCSSProxyServiceProvider

Passed To: BeanContextServices.getService(), BeanContextServicesSupport.getService()

BeanContextServices Java 1.2

java.beans.beancontext collection event listener

This interface defines additional methods a bean context class must implement if it wants to provide services to the beans it contains. A bean calls hasService() to determine if a service of a particular type is available from its bean context. It calls getService() to request an instance of the specified service class and then calls releaseService() when it
no longer needs the service object. A bean that wants to find the complete list of available services can call getCurrentServiceClasses(). Some services allow (or require) a service selector object to be passed to the getService() method to provide additional information about the service object. If a service defines a fixed set of legal service selectors,
getCurrentServiceSelectors() allows a bean to iterate through the set of selector objects. Beans that want to know when new services become available or when existing services are revoked should register a BeanContextServicesListener object with addBeanContextServicesListener().

If a BeanContextServices object does not provide a requested service, but is nested within another BeanContext, it should check whether any of its ancestor bean contexts can provide the service. The BeanContextServices interface extends BeanContextServicesListener. This means that every BeanContextServices object can be
listening to the set of services available from its container.

The previous methods are the ones beans call to obtain services. BeanContextServices defines a different set of methods service providers use to deliver services. addService() defines a BeanContextServiceProvider for a specified Class of service. revokeService() removes this mapping between service class and service provider, and

file:///C|/orielly/jnut/ch10_01.htm (5 of 10) [2/5/2003 7:50:01 PM]

The java.beans.beancontext Package (Java in a Nutshell)
indicates that the specified service is no longer available. When a service is revoked, the BeanContextServices object must notify any beans that have been granted service objects (and have not released them yet) that the service has been revoked. It does this by notifying the BeanContextServiceRevokedListener objects passed to the
getService() method.

Bean context developers may find it easier to use the BeanContextServicesSupport class, either by subclassing or by delegation, instead of implementing BeanContextServices from scratch.

public interface BeanContextServices extends BeanContext, BeanContextServicesListener {

// Event Registration Methods (by event name)

public abstract void addBeanContextServicesListener (BeanContextServicesListener bcsl);

public abstract void removeBeanContextServicesListener (BeanContextServicesListener bcsl);

// Public Instance Methods

public abstract boolean addService (Class serviceClass, BeanContextServiceProvider serviceProvider);

public abstract java.util.Iterator getCurrentServiceClasses ();

public abstract java.util.Iterator getCurrentServiceSelectors (Class serviceClass);

public abstract Object getService (BeanContextChild child, Object requestor, Class serviceClass, Object serviceSelector, BeanContextServiceRevokedListener bcsrl) throws java.util.TooManyListenersException;

public abstract boolean hasService (Class serviceClass);

public abstract void releaseService (BeanContextChild child, Object requestor, Object service);

public abstract void revokeService (Class serviceClass, BeanContextServiceProvider serviceProvider, boolean revokeCurrentServicesNow);

}

Hierarchy: (BeanContextServices(BeanContext(BeanContextChild,java.util.Collection,java.beans.DesignMode,java.beans.Visibility),BeanContextServicesListener(BeanContextServiceRevokedListener(java.util.EventListener))))

Implementations: BeanContextServicesSupport

Passed To: BeanContextServiceAvailableEvent.BeanContextServiceAvailableEvent(), BeanContextServiceProvider.{getCurrentServiceSelectors(), getService(), releaseService()}, BeanContextServiceRevokedEvent.BeanContextServiceRevokedEvent(),
BeanContextServicesSupport.BeanContextServicesSupport(), BeanContextServicesSupport.BCSSProxyServiceProvider.{getCurrentServiceSelectors(), getService(), releaseService()}

Returned By: BeanContextServiceAvailableEvent.getSourceAsBeanContextServices(), BeanContextServiceRevokedEvent.getSourceAsBeanContextServices(), BeanContextServicesSupport.getBeanContextServicesPeer()

BeanContextServicesListener Java 1.2

java.beans.beancontext event listener

This interface adds a serviceAvailable() method to the serviceRevoked() method of BeanContextServiceRevokedListener. Listeners of this type can be registered with a BeanContextServices object and are notified when a new class of service becomes available or when an existing class of service is revoked.

public interface BeanContextServicesListener extends BeanContextServiceRevokedListener {

// Public Instance Methods

public abstract void serviceAvailable (BeanContextServiceAvailableEvent bcsae);

}

Hierarchy: (BeanContextServicesListener(BeanContextServiceRevokedListener(java.util.EventListener)))

Implementations: BeanContextChildSupport, BeanContextServices

Passed To: BeanContextServices.{addBeanContextServicesListener(), removeBeanContextServicesListener()}, BeanContextServicesSupport.{addBeanContextServicesListener(), removeBeanContextServicesListener()}

Returned By: BeanContextServicesSupport.getChildBeanContextServicesListener()

BeanContextServicesSupport Java 1.2

java.beans.beancontext serializable collection

This class is a useful implementation of the BeanContextServices interface that correctly conforms to the bean context specifications and conventions. Most bean context implementors find it easier to subclass this class or delegate to an instance of this class rather than implement BeanContextServices from scratch. The most common technique is to
implement the BeanContextProxy interface and return an instance of BeanContextServicesSupport from the getBeanContextProxy() method.

public class BeanContextServicesSupport extends BeanContextSupport implements BeanContextServices {

// Public Constructors

public BeanContextServicesSupport ();

public BeanContextServicesSupport (BeanContextServices peer);

public BeanContextServicesSupport (BeanContextServices peer, java.util.Locale lcle);

public BeanContextServicesSupport (BeanContextServices peer, java.util.Locale lcle, boolean dtime);

public BeanContextServicesSupport (BeanContextServices peer, java.util.Locale lcle, boolean dTime, boolean visible);

// Inner Classes

;

;

;

// Protected Class Methods

protected static final BeanContextServicesListener getChildBeanContextServicesListener (Object child);

// Event Registration Methods (by event name)

public void addBeanContextServicesListener (BeanContextServicesListener bcsl); Implements:BeanContextServices

public void removeBeanContextServicesListener (BeanContextServicesListener bcsl); Implements:BeanContextServices

// Public Instance Methods

public BeanContextServices getBeanContextServicesPeer (); default:BeanContextServicesSupport

// Methods Implementing BeanContextServiceRevokedListener

public void serviceRevoked (BeanContextServiceRevokedEvent bcssre);

// Methods Implementing BeanContextServices

public void addBeanContextServicesListener (BeanContextServicesListener bcsl);

file:///C|/orielly/jnut/ch10_01.htm (6 of 10) [2/5/2003 7:50:01 PM]

The java.beans.beancontext Package (Java in a Nutshell)
public boolean addService (Class serviceClass, BeanContextServiceProvider bcsp);

public java.util.Iterator getCurrentServiceClasses (); default:BeanContextSupport.BCSIterator

public java.util.Iterator getCurrentServiceSelectors (Class serviceClass);

public Object getService (BeanContextChild child, Object requestor, Class serviceClass, Object serviceSelector, BeanContextServiceRevokedListener bcsrl) throws java.util.TooManyListenersException;

public boolean hasService (Class serviceClass); synchronized

public void releaseService (BeanContextChild child, Object requestor, Object service);

public void removeBeanContextServicesListener (BeanContextServicesListener bcsl);

public void revokeService (Class serviceClass, BeanContextServiceProvider bcsp, boolean revokeCurrentServicesNow);

// Methods Implementing BeanContextServicesListener

public void serviceAvailable (BeanContextServiceAvailableEvent bcssae);

// Public Methods Overriding BeanContextSupport

public void initialize ();

// Protected Methods Overriding BeanContextSupport

protected void bcsPreDeserializationHook (java.io.ObjectInputStream ois) throws java.io.IOExceptionClassNotFoundException; synchronized

protected void bcsPreSerializationHook (java.io.ObjectOutputStream oos) throws java.io.IOException; synchronized

protected void childJustRemovedHook (Object child, BeanContextSupport.BCSChild bcsc);

protected BeanContextSupport.BCSChild createBCSChild (Object targetChild, Object peer);

// Protected Methods Overriding BeanContextChildSupport

protected void initializeBeanContextResources (); synchronized

protected void releaseBeanContextResources (); synchronized

// Protected Instance Methods

protected boolean addService (Class serviceClass, BeanContextServiceProvider bcsp, boolean fireEvent);

protected BeanContextServicesSupport.BCSSServiceProvider createBCSSServiceProvider (Class sc, BeanContextServiceProvider bcsp);

protected final void fireServiceAdded (BeanContextServiceAvailableEvent bcssae);

protected final void fireServiceAdded (Class serviceClass);

protected final void fireServiceRevoked (BeanContextServiceRevokedEvent bcsre);

protected final void fireServiceRevoked (Class serviceClass, boolean revokeNow);

// Protected Instance Fields

protected transient java.util.ArrayList bcsListeners ;

protected transient BeanContextServicesSupport.BCSSProxyServiceProvider proxy ;

protected transient int serializable ;

protected transient java.util.HashMap services ;

}

Hierarchy: Object-->BeanContextChildSupport(BeanContextChild,BeanContextServicesListener(BeanContextServiceRevokedListener(java.util.EventListener)),Serializable)--
>BeanContextSupport(BeanContext(BeanContextChild,java.util.Collection,java.beans.DesignMode,java.beans.Visibility),java.beans.PropertyChangeListener(java.util.EventListener),Serializable,java.beans.VetoableChangeListener(java.util.EventListener))--
>BeanContextServicesSupport(BeanContextServices(BeanContext(BeanContextChild,java.util.Collection,java.beans.DesignMode,java.beans.Visibility),BeanContextServicesListener(BeanContextServiceRevokedListener(java.util.EventListener))))

BeanContextServicesSupport.BCSSChild Java 1.2

java.beans.beancontext serializable

This class is used internally by BeanContextServicesSupport to associate additional information with each child of the bean context. It has no public or protected method or fields, but may be customized by subclassing.

protected class BeanContextServicesSupport.BCSSChild extends BeanContextSupport.BCSChild {

// No Constructor

}

BeanContextServicesSupport.BCSSProxyServiceProvider
Java

1.2

java.beans.beancontext

This inner class is used internally by BeanContextServicesSupport to properly handle delegation to the services provided by containing bean contexts. It implements the BeanContextServiceProvider interface in terms of the methods of a containing BeanContextServices object.

protected class BeanContextServicesSupport.BCSSProxyServiceProvider implements BeanContextServiceProviderBeanContextServiceRevokedListener {

// No Constructor

// Methods Implementing BeanContextServiceProvider

public java.util.Iterator getCurrentServiceSelectors (BeanContextServices bcs, Class serviceClass);

public Object getService (BeanContextServices bcs, Object requestor, Class serviceClass, Object serviceSelector);

public void releaseService (BeanContextServices bcs, Object requestor, Object service);

// Methods Implementing BeanContextServiceRevokedListener

public void serviceRevoked (BeanContextServiceRevokedEvent bcsre);

}

Type Of: BeanContextServicesSupport.proxy

BeanContextServicesSupport.BCSSServiceProvider Java 1.2

java.beans.beancontext serializable

This inner class is a trivial wrapper around a BeanContextServiceProvider object. Subclasses that want to associate additional information with each service provider can subclass this class and override the createBCSSServiceProvider() method of BeanContextServicesSupport.

file:///C|/orielly/jnut/ch10_01.htm (7 of 10) [2/5/2003 7:50:01 PM]

The java.beans.beancontext Package (Java in a Nutshell)
protected static class BeanContextServicesSupport.BCSSServiceProvider implements Serializable {

// No Constructor

// Protected Instance Methods

protected BeanContextServiceProvider getServiceProvider ();

// Protected Instance Fields

protected BeanContextServiceProvider serviceProvider ;

}

Returned By: BeanContextServicesSupport.createBCSSServiceProvider()

BeanContextSupport Java 1.2

java.beans.beancontext serializable collection

This class provides a simple, easily customizable implementation of BeanContext. Most bean context implementors find it easier to subclass BeanContextSupport or create a BeanContextSupport delegate object rather than implement the BeanContext interface from scratch.

Bean contexts are often AWT or Swing containers and cannot (because of a method-naming conflict) implement BeanContext. Therefore, a context object implements the BeanContextProxy interface and returns a BeanContext object from its getBeanContextProxy() method. A BeanContextSupport object is a suitable object to return from this
method.

Some bean contexts require customized behavior, however, and BeanContextSupport is designed to be easily customized through subclassing. Protected methods such as childJustAddedHook() and validatePendingAdd() are particularly useful when subclassing.

public class BeanContextSupport extends BeanContextChildSupport implements BeanContext, java.beans.PropertyChangeListener, Serializable, java.beans.VetoableChangeListener {

// Public Constructors

public BeanContextSupport ();

public BeanContextSupport (BeanContext peer);

public BeanContextSupport (BeanContext peer, java.util.Locale lcle);

public BeanContextSupport (BeanContext peer, java.util.Locale lcle, boolean dtime);

public BeanContextSupport (BeanContext peer, java.util.Locale lcle, boolean dTime, boolean visible);

// Inner Classes

;

;

// Protected Class Methods

protected static final boolean classEquals (Class first, Class second);

protected static final BeanContextChild getChildBeanContextChild (Object child);

protected static final BeanContextMembershipListener getChildBeanContextMembershipListener (Object child);

protected static final java.beans.PropertyChangeListener getChildPropertyChangeListener (Object child);

protected static final Serializable getChildSerializable (Object child);

protected static final java.beans.VetoableChangeListener getChildVetoableChangeListener (Object child);

protected static final java.beans.Visibility getChildVisibility (Object child);

// Event Registration Methods (by event name)

public void addBeanContextMembershipListener (BeanContextMembershipListener bcml); Implements:BeanContext

public void removeBeanContextMembershipListener (BeanContextMembershipListener bcml); Implements:BeanContext

// Property Accessor Methods (by property name)

public BeanContext getBeanContextPeer (); default:BeanContextSupport

public boolean isDesignTime (); Implements:DesignMode synchronized default:false

public void setDesignTime (boolean dTime); Implements:DesignMode synchronized

public boolean isEmpty (); Implements:Collection default:true

public java.util.Locale getLocale (); synchronized

public void setLocale (java.util.Locale newLocale) throws java.beans.PropertyVetoException; synchronized

public boolean isSerializing (); default:false

// Public Instance Methods

public boolean containsKey (Object o);

public final void readChildren (java.io.ObjectInputStream ois) throws java.io.IOExceptionClassNotFoundException;

public final void writeChildren (java.io.ObjectOutputStream oos) throws java.io.IOException;

// Methods Implementing BeanContext

public void addBeanContextMembershipListener (BeanContextMembershipListener bcml);

public java.net.URL getResource (String name, BeanContextChild bcc);

public java.io.InputStream getResourceAsStream (String name, BeanContextChild bcc);

public Object instantiateChild (String beanName) throws java.io.IOExceptionClassNotFoundException;

public void removeBeanContextMembershipListener (BeanContextMembershipListener bcml);

// Methods Implementing Collection

public boolean add (Object targetChild);

public boolean addAll (java.util.Collection c);

public void clear ();

public boolean contains (Object o);

public boolean containsAll (java.util.Collection c);

public boolean isEmpty (); default:true

public java.util.Iterator iterator ();

public boolean remove (Object targetChild);

public boolean removeAll (java.util.Collection c);

public boolean retainAll (java.util.Collection c);

public int size ();

public Object[] toArray ();

public Object[] toArray (Object[] arry);

file:///C|/orielly/jnut/ch10_01.htm (8 of 10) [2/5/2003 7:50:01 PM]

The java.beans.beancontext Package (Java in a Nutshell)
// Methods Implementing DesignMode

public boolean isDesignTime (); synchronized default:false

public void setDesignTime (boolean dTime); synchronized

// Methods Implementing PropertyChangeListener

public void propertyChange (java.beans.PropertyChangeEvent pce);

// Methods Implementing VetoableChangeListener

public void vetoableChange (java.beans.PropertyChangeEvent pce) throws java.beans.PropertyVetoException;

// Methods Implementing Visibility

public boolean avoidingGui ();

public void dontUseGui (); synchronized

public boolean needsGui (); synchronized

public void okToUseGui (); synchronized

// Protected Instance Methods

protected java.util.Iterator bcsChildren ();

protected void bcsPreDeserializationHook (java.io.ObjectInputStream ois) throws java.io.IOExceptionClassNotFoundException; empty

protected void bcsPreSerializationHook (java.io.ObjectOutputStream oos) throws java.io.IOException; empty

protected void childDeserializedHook (Object child, BeanContextSupport.BCSChild bcsc);

protected void childJustAddedHook (Object child, BeanContextSupport.BCSChild bcsc); empty

protected void childJustRemovedHook (Object child, BeanContextSupport.BCSChild bcsc); empty

protected final Object[] copyChildren ();

protected BeanContextSupport.BCSChild createBCSChild (Object targetChild, Object peer);

protected final void deserialize (java.io.ObjectInputStream ois, java.util.Collection coll) throws java.io.IOExceptionClassNotFoundException;

protected final void fireChildrenAdded (BeanContextMembershipEvent bcme);

protected final void fireChildrenRemoved (BeanContextMembershipEvent bcme);

protected void initialize (); synchronized

protected boolean remove (Object targetChild, boolean callChildSetBC);

protected final void serialize (java.io.ObjectOutputStream oos, java.util.Collection coll) throws java.io.IOException;

protected boolean validatePendingAdd (Object targetChild); constant

protected boolean validatePendingRemove (Object targetChild); constant

// Protected Instance Fields

protected transient java.util.ArrayList bcmListeners ;

protected transient java.util.HashMap children ;

protected boolean designTime ;

protected java.util.Locale locale ;

protected boolean okToUseGui ;

}

Hierarchy: Object-->BeanContextChildSupport(BeanContextChild,BeanContextServicesListener(BeanContextServiceRevokedListener(java.util.EventListener)),Serializable)--
>BeanContextSupport(BeanContext(BeanContextChild,java.util.Collection,java.beans.DesignMode,java.beans.Visibility),java.beans.PropertyChangeListener(java.util.EventListener),Serializable,java.beans.VetoableChangeListener(java.util.EventListener))

Subclasses: BeanContextServicesSupport

BeanContextSupport.BCSChild Java 1.2

java.beans.beancontext serializable

This class is used internally by BeanContextSupport to keep track of additional information about its children. In particular, for children that implement the BeanContextProxy interface, it keeps track of the BeanContextChild object associated with the child. This class does not define any public or protected fields or methods.
BeanContextSupport subclasses that want to associate additional information with each child can subclass this class and override the createBCSChild() method to instantiate the new subclass.

protected class BeanContextSupport.BCSChild implements Serializable {

// No Constructor

}

Subclasses: BeanContextServicesSupport.BCSSChild

Passed To: BeanContextServicesSupport.childJustRemovedHook(), BeanContextSupport.{childDeserializedHook(), childJustAddedHook(), childJustRemovedHook()}

Returned By: BeanContextServicesSupport.createBCSChild(), BeanContextSupport.createBCSChild()

BeanContextSupport.BCSIterator Java 1.2

java.beans.beancontext

This class implements the java.util.Iterator interface. An instance of this class is returned by the iterator() method implemented by BeanContextSupport. The remove() method has an empty implementation and does not actually remove a child of the bean context.

protected static final class BeanContextSupport.BCSIterator implements
java.util.Iterator {

// No Constructor

// Methods Implementing Iterator

public boolean hasNext ();

public Object next ();

public void remove (); empty

}

file:///C|/orielly/jnut/ch10_01.htm (9 of 10) [2/5/2003 7:50:01 PM]

The java.beans.beancontext Package (Java in a Nutshell)

9.1. The java.beans Package 11. The java.io Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch10_01.htm (10 of 10) [2/5/2003 7:50:01 PM]

file:///C|/orielly/jnut/copyrght.htm

The java.io Package (Java in a Nutshell)

Part 2: API Quick Reference

Chapter 11. The java.io Package
The java.io package contains a relatively large number of classes, but, as you can see from Figure 11-1 and Figure
11-2, the classes form a fairly structured hierarchy. Most of the package consists of byte streams--subclasses of
InputStream or OutputStream and (in Java 1.1) character streams--subclasses of Reader or Writer. Each of
these stream types has a specific purpose, and, despite its size, java.io is a straightforward package to understand and
to use.

Before we consider the stream classes in the package, let's examine the important non-stream classes. File represents a
file or directory name in a system-independent way and provides methods for listing directories, querying file attributes,
and renaming and deleting files. FilenameFilter is an interface that defines a method that accepts or rejects
specified filenames. It is used by java.awt.FileDialog and File to specify what types of files should be
included in directory listings. RandomAccessFile allows you to read from or write to arbitrary locations of a file.
Often, though, you'll prefer sequential access to a file and should use one of the stream classes.

InputStream and OutputStream are abstract classes that define methods for reading and writing bytes. Their
subclasses allow bytes to be read from and written to a variety of sources and sinks. FileInputStream and
FileOutputStream read from and write to files. ByteArrayInputStream and ByteArrayOutputStream
read from and write to an array of bytes in memory. PipedInputStream reads bytes from a
PipedOutputStream, and PipedOutputStream writes bytes to a PipedInputStream. These classes work
together to implement a pipe for communication between threads.

FilterInputStream and FilterOutputStream are special; they filter input and output bytes. When you create
a FilterInputStream, you specify an InputStream for it to filter. When you call the read() method of a
FilterInputStream, it calls the read() method of its InputStream, processes the bytes it reads, and returns
the filtered bytes. Similarly, when you create a FilterOutputStream, you specify an OutputStream to be
filtered. Calling the write() method of a FilterOutputStream causes it to process your bytes in some way and
then pass those filtered bytes to the write() method of its OutputStream.

file:///C|/orielly/jnut/ch11_01.htm (1 of 66) [2/5/2003 7:50:17 PM]

The java.io Package (Java in a Nutshell)

Figure 11-1. The java.io package

file:///C|/orielly/jnut/ch11_01.htm (2 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

Figure 11-2. The exception classes of the java.io package

FilterInputStream and FilterOutputStream do not perform any filtering themselves; this is done by their
subclasses. BufferedInputStream and BufferedOutputStream provide input and output buffering and can
increase I/O efficiency. DataInputStream reads raw bytes from a stream and interprets them in various binary
formats. It has various methods to read primitive Java data types in their standard binary formats.
DataOutputStream allows you to write Java primitive data types in binary format.

In Java 1.1 and later, the byte streams I just described are complemented by an analogous set of character input and
output streams. Reader is the superclass of all character input streams, and Writer is the superclass of all character
output streams. These character streams supersede the byte streams for all textual I/O. They are more efficient than the
byte streams, and they correctly handle the conversion between local encodings and Unicode text, making them
invaluable for internationalized programs. Most of the Reader and Writer streams have obvious byte-stream
analogs. BufferedReader is a commonly used stream; it provides buffering for efficiency and also has a
readLine() method to read a line of text at a time. PrintWriter is another very common stream; its methods
allow output of a textual representation of any primitive Java type or of any object (via the object's toString()
method).

The ObjectInputStream and ObjectOutputStream classes are special. These byte-stream classes are new as
of Java 1.1 and are part of the Object Serialization API.

BufferedInputStream Java 1.0

java.io PJ1.1

This class is a FilterInputStream that provides input data buffering; efficiency is increased by reading in a large
amount of data and storing it in an internal buffer. When data is requested, it is usually available from the buffer. Thus,
most calls to read data do not actually have to read data from a disk, network, or other slow source. Create a
BufferedInputStream by specifying the InputStream that is to be buffered in the call to the constructor. See

file:///C|/orielly/jnut/ch11_01.htm (3 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

also BufferedReader.

public class BufferedInputStream extends FilterInputStream {

// Public Constructors

public BufferedInputStream (java.io.InputStream in);

public BufferedInputStream (java.io.InputStream in, int size);

// Public Methods Overriding FilterInputStream

public int available () throws IOException; synchronized

1.2 public void close () throws IOException;

public void mark (int readlimit); synchronized

public boolean markSupported (); constant

public int read () throws IOException; synchronized

public int read (byte[] b, int off, int len) throws IOException; synchronized

public void reset () throws IOException; synchronized

public long skip (long n) throws IOException; synchronized

// Protected Instance Fields

protected byte[] buf ;

protected int count ;

protected int marklimit ;

protected int markpos ;

protected int pos ;

}

Hierarchy: Object-->java.io.InputStream-->FilterInputStream-->BufferedInputStream

BufferedOutputStream Java 1.0

java.io PJ1.1

This class is a FilterOutputStream that provides output data buffering; output efficiency is increased by storing
values to be written in a buffer and actually writing them out only when the buffer fills up or when the flush()
method is called. Create a BufferedOutputStream by specifying the OutputStream that is to be buffered in the
call to the constructor. See also BufferedWriter.

public class BufferedOutputStream extends FilterOutputStream {

// Public Constructors

public BufferedOutputStream (java.io.OutputStream out);

public BufferedOutputStream (java.io.OutputStream out, int size);

// Public Methods Overriding FilterOutputStream

public void flush () throws IOException; synchronized

file:///C|/orielly/jnut/ch11_01.htm (4 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

public void write (int b) throws IOException; synchronized

public void write (byte[] b, int off, int len) throws IOException; synchronized

// Protected Instance Fields

protected byte[] buf ;

protected int count ;

}

Hierarchy: Object-->java.io.OutputStream-->FilterOutputStream-->BufferedOutputStream

BufferedReader Java 1.1

java.io PJ1.1

This class applies buffering to a character input stream, thereby improving the efficiency of character input. You create a
BufferedReader by specifying some other character input stream from which it is to buffer input. (You can also
specify a buffer size at this time, although the default size is usually fine.) Typically, you use this sort of buffering with a
FileReader or InputStreamReader. BufferedReader defines the standard set of Reader methods and
provides a readLine() method that reads a line of text (not including the line terminator) and returns it as a String.
BufferedReader is the character-stream analog of BufferedInputStream. It also provides a replacement for
the deprecated readLine() method of DataInputStream, which did not properly convert bytes into characters.

public class BufferedReader extends Reader {

// Public Constructors

public BufferedReader (Reader in);

public BufferedReader (Reader in, int sz);

// Public Instance Methods

public String readLine () throws IOException;

// Public Methods Overriding Reader

public void close () throws IOException;

public void mark (int readAheadLimit) throws IOException;

public boolean markSupported (); constant

public int read () throws IOException;

public int read (char[] cbuf, int off, int len) throws IOException;

public boolean ready () throws IOException;

public void reset () throws IOException;

public long skip (long n) throws IOException;

}

Hierarchy: Object-->Reader-->BufferedReader

Subclasses: LineNumberReader

file:///C|/orielly/jnut/ch11_01.htm (5 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

Returned By: javax.servlet.ServletRequest.getReader()

BufferedWriter Java 1.1

java.io PJ1.1

This class applies buffering to a character output stream, improving output efficiency by coalescing many small write
requests into a single larger request. You create a BufferedWriter by specifying some other character output stream
to which it sends its buffered and coalesced output. (You can also specify a buffer size at this time, although the default
size is usually satisfactory.) Typically, you use this sort of buffering with a FileWriter or
OutputStreamWriter. BufferedWriter defines the standard write(), flush(), and close() methods all
output streams define, but it adds a newLine() method that outputs the platform-dependent line separator (usually a
newline character, a carriage-return character, or both) to the stream. BufferedWriter is the character-stream analog
of BufferedOutputStream.

public class BufferedWriter extends Writer {

// Public Constructors

public BufferedWriter (Writer out);

public BufferedWriter (Writer out, int sz);

// Public Instance Methods

public void newLine () throws IOException;

// Public Methods Overriding Writer

public void close () throws IOException;

public void flush () throws IOException;

public void write (int c) throws IOException;

public void write (String s, int off, int len) throws IOException;

public void write (char[] cbuf, int off, int len) throws IOException;

}

Hierarchy: Object-->Writer-->BufferedWriter

ByteArrayInputStream Java 1.0

java.io PJ1.1

This class is a subclass of InputStream in which input data comes from a specified array of byte values. This is
useful when you want to read data in memory as if it were coming from a file, pipe, or socket. Note that the specified
array of bytes is not copied when a ByteArrayInputStream is created. See also CharArrayReader.

public class ByteArrayInputStream extends java.io.InputStream {

file:///C|/orielly/jnut/ch11_01.htm (6 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

// Public Constructors

public ByteArrayInputStream (byte[] buf);

public ByteArrayInputStream (byte[] buf, int offset, int length);

// Public Methods Overriding InputStream

public int available (); synchronized

1.2 public void close () throws IOException; synchronized

1.1 public void mark (int readAheadLimit);

1.1 public boolean markSupported (); constant

public int read (); synchronized

public int read (byte[] b, int off, int len); synchronized

public void reset (); synchronized

public long skip (long n); synchronized

// Protected Instance Fields

protected byte[] buf ;

protected int count ;

1.1 protected int mark ;

protected int pos ;

}

Hierarchy: Object-->java.io.InputStream-->ByteArrayInputStream

ByteArrayOutputStream Java 1.0

java.io PJ1.1

This class is a subclass of OutputStream in which output data is stored in an internal byte array. The internal array
grows as necessary and can be retrieved with toByteArray() or toString(). The reset() method discards any
data currently stored in the internal array and stores data from the beginning again. See also CharArrayWriter.

public class ByteArrayOutputStream extends java.io.OutputStream {

// Public Constructors

public ByteArrayOutputStream ();

public ByteArrayOutputStream (int size);

// Public Instance Methods

public void reset (); synchronized

public int size ();

public byte[] toByteArray (); synchronized

1.1 public String toString (String enc) throws UnsupportedEncodingException;

public void writeTo (java.io.OutputStream out) throws IOException; synchronized

file:///C|/orielly/jnut/ch11_01.htm (7 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

// Public Methods Overriding OutputStream

1.2 public void close () throws IOException; synchronized

public void write (int b); synchronized

public void write (byte[] b, int off, int len); synchronized

// Public Methods Overriding Object

public String toString ();

// Protected Instance Fields

protected byte[] buf ;

protected int count ;

// Deprecated Public Methods

public String toString (int hibyte);

}

Hierarchy: Object-->java.io.OutputStream-->ByteArrayOutputStream

CharArrayReader Java 1.1

java.io PJ1.1

This class is a character input stream that uses a character array as the source of the characters it returns. You create a
CharArrayReader by specifying the character array (or portion of an array) it is to read from. CharArrayReader
defines the usual Reader methods and supports the mark() and reset() methods. Note that the character array you
pass to the CharArrayReader() constructor is not copied. This means that changes you make to the elements of the
array after you create the input stream affect the values read from the array. CharArrayReader is the character-array
analog of ByteArrayInputStream and is similar to StringReader.

public class CharArrayReader extends Reader {

// Public Constructors

public CharArrayReader (char[] buf);

public CharArrayReader (char[] buf, int offset, int length);

// Public Methods Overriding Reader

public void close ();

public void mark (int readAheadLimit) throws IOException;

public boolean markSupported (); constant

public int read () throws IOException;

public int read (char[] b, int off, int len) throws IOException;

public boolean ready () throws IOException;

public void reset () throws IOException;

public long skip (long n) throws IOException;

// Protected Instance Fields

file:///C|/orielly/jnut/ch11_01.htm (8 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

protected char[] buf ;

protected int count ;

protected int markedPos ;

protected int pos ;

}

Hierarchy: Object-->Reader-->CharArrayReader

CharArrayWriter Java 1.1

java.io PJ1.1

This class is a character output stream that uses an internal character array as the destination of characters written to it.
When you create a CharArrayWriter, you may optionally specify an initial size for the character array, but you do
not specify the character array itself; this array is managed internally by the CharArrayWriter and grows as
necessary to accommodate all the characters written to it. The toString() and toCharArray() methods return a
copy of all characters written to the stream, as a string and an array of characters, respectively. CharArrayWriter
defines the standard write(), flush(), and close() methods all Writer subclasses define. It also defines a few
other useful methods. size() returns the number of characters that have been written to the stream. reset() resets
the stream to its initial state, with an empty character array; this is more efficient than creating a new
CharArrayWriter. Finally, writeTo() writes the contents of the internal character array to some other specified
character stream. CharArrayWriter is the character-stream analog of ByteArrayOutputStream and is quite
similar to StringWriter.

public class CharArrayWriter extends Writer {

// Public Constructors

public CharArrayWriter ();

public CharArrayWriter (int initialSize);

// Public Instance Methods

public void reset ();

public int size ();

public char[] toCharArray ();

public void writeTo (Writer out) throws IOException;

// Public Methods Overriding Writer

public void close (); empty

public void flush (); empty

public void write (int c);

public void write (char[] c, int off, int len);

public void write (String str, int off, int len);

// Public Methods Overriding Object

public String toString ();

file:///C|/orielly/jnut/ch11_01.htm (9 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

// Protected Instance Fields

protected char[] buf ;

protected int count ;

}

Hierarchy: Object-->Writer-->CharArrayWriter

CharConversionException Java 1.1

java.io serializable checked PJ1.1

Signals an error when converting bytes to characters or vice versa.

public class CharConversionException extends IOException {

// Public Constructors

public CharConversionException ();

public CharConversionException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->IOException--
>CharConversionException

DataInput Java 1.0

java.io PJ1.1

This interface defines the methods required for streams that can read Java primitive data types in a machine-independent
binary format. It is implemented by DataInputStream and RandomAccessFile. See DataInputStream for
more information on the methods.

public interface DataInput {

// Public Instance Methods

public abstract boolean readBoolean () throws IOException;

public abstract byte readByte () throws IOException;

public abstract char readChar () throws IOException;

public abstract double readDouble () throws IOException;

public abstract float readFloat () throws IOException;

public abstract void readFully (byte[] b) throws IOException;

public abstract void readFully (byte[] b, int off, int len) throws IOException;

file:///C|/orielly/jnut/ch11_01.htm (10 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

public abstract int readInt () throws IOException;

public abstract String readLine () throws IOException;

public abstract long readLong () throws IOException;

public abstract short readShort () throws IOException;

public abstract int readUnsignedByte () throws IOException;

public abstract int readUnsignedShort () throws IOException;

public abstract String readUTF () throws IOException;

public abstract int skipBytes (int n) throws IOException;

}

Implementations: java.io.DataInputStream, ObjectInput, RandomAccessFile

Passed To: java.io.DataInputStream.readUTF(), java.rmi.server.UID.read()

DataInputStream Java 1.0

java.io PJ1.1

This class is a type of FilterInputStream that allows you to read binary representations of Java primitive data
types in a portable way. Create a DataInputStream by specifying the InputStream that is to be filtered in the
call to the constructor. DataInputStream reads only primitive Java types; use ObjectInputStream to read
object values.

Many of the methods read and return a single Java primitive type, in binary format, from the stream.
readUnsignedByte() and readUnsignedShort() read unsigned values and return them as int values, since
unsigned byte and short types are not supported in Java. read() reads data into an array of bytes, blocking until at
least some data is available. By contrast, readFully() reads data into an array of bytes, but blocks until all requested
data becomes available. skipBytes() blocks until the specified number of bytes have been read and discarded.
readLine() reads characters from the stream until it encounters a newline, a carriage return, or a newline/carriage
return pair. The returned string is not terminated with a newline or carriage return. This method is deprecated as of Java
1.1; see BufferedReader for an alternative. readUTF() reads a string of Unicode text encoded in a slightly
modified version of the UTF-8 transformation format. UTF-8 is an ASCII-compatible encoding of Unicode characters
that is often used for the transmission and storage of Unicode text. This class uses a modified UTF-8 encoding that never
contains embedded null characters.

public class DataInputStream extends FilterInputStream implements DataInput {

// Public Constructors

public DataInputStream (java.io.InputStream in);

// Public Class Methods

public static final String readUTF (DataInput in) throws IOException;

// Methods Implementing DataInput

public final boolean readBoolean () throws IOException;

file:///C|/orielly/jnut/ch11_01.htm (11 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

public final byte readByte () throws IOException;

public final char readChar () throws IOException;

public final double readDouble () throws IOException;

public final float readFloat () throws IOException;

public final void readFully (byte[] b) throws IOException;

public final void readFully (byte[] b, int off, int len) throws IOException;

public final int readInt () throws IOException;

public final long readLong () throws IOException;

public final short readShort () throws IOException;

public final int readUnsignedByte () throws IOException;

public final int readUnsignedShort () throws IOException;

public final String readUTF () throws IOException;

public final int skipBytes (int n) throws IOException;

// Public Methods Overriding FilterInputStream

public final int read (byte[] b) throws IOException;

public final int read (byte[] b, int off, int len) throws IOException;

// Deprecated Public Methods

public final String readLine () throws IOException; Implements:DataInput

}

Hierarchy: Object-->java.io.InputStream-->FilterInputStream--
>java.io.DataInputStream(DataInput)

Passed To: javax.swing.text.html.parser.DTD.read()

DataOutput Java 1.0

java.io PJ1.1

This interface defines the methods required for streams that can write Java primitive data types in a machine-
independent binary format. It is implemented by DataOutputStream and RandomAccessFile. See
DataOutputStream for more information on the methods.

public interface DataOutput {

// Public Instance Methods

public abstract void write (byte[] b) throws IOException;

public abstract void write (int b) throws IOException;

public abstract void write (byte[] b, int off, int len) throws IOException;

public abstract void writeBoolean (boolean v) throws IOException;

public abstract void writeByte (int v) throws IOException;

file:///C|/orielly/jnut/ch11_01.htm (12 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

public abstract void writeBytes (String s) throws IOException;

public abstract void writeChar (int v) throws IOException;

public abstract void writeChars (String s) throws IOException;

public abstract void writeDouble (double v) throws IOException;

public abstract void writeFloat (float v) throws IOException;

public abstract void writeInt (int v) throws IOException;

public abstract void writeLong (long v) throws IOException;

public abstract void writeShort (int v) throws IOException;

public abstract void writeUTF (String str) throws IOException;

}

Implementations: java.io.DataOutputStream, ObjectOutput, RandomAccessFile

Passed To: java.rmi.server.UID.write()

DataOutputStream Java 1.0

java.io PJ1.1

This class is a subclass of FilterOutputStream that allows you to write Java primitive data types in a portable
binary format. Create a DataOutputStream by specifying the OutputStream that is to be filtered in the call to the
constructor. DataOutputStream has methods that output only primitive types; use ObjectOutputStream to
output object values.

Many of this class's methods write a single Java primitive type, in binary format, to the output stream. write() writes
a single byte, an array, or a subarray of bytes. flush() forces any buffered data to be output. size() returns the
number of bytes written so far. writeUTF() outputs a Java string of Unicode characters using a slightly modified
version of the UTF-8 transformation format. UTF-8 is an ASCII-compatible encoding of Unicode characters that is often
used for the transmission and storage of Unicode text. Except for the writeUTF() method, this class is used for binary
output of data. Textual output should be done with PrintWriter (or PrintStream in Java 1.0).

public class DataOutputStream extends FilterOutputStream implements DataOutput {

// Public Constructors

public DataOutputStream (java.io.OutputStream out);

// Public Instance Methods

public final int size ();

// Methods Implementing DataOutput

public void write (int b) throws IOException; synchronized

public void write (byte[] b, int off, int len) throws IOException; synchronized

public final void writeBoolean (boolean v) throws IOException;

public final void writeByte (int v) throws IOException;

file:///C|/orielly/jnut/ch11_01.htm (13 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

public final void writeBytes (String s) throws IOException;

public final void writeChar (int v) throws IOException;

public final void writeChars (String s) throws IOException;

public final void writeDouble (double v) throws IOException;

public final void writeFloat (float v) throws IOException;

public final void writeInt (int v) throws IOException;

public final void writeLong (long v) throws IOException;

public final void writeShort (int v) throws IOException;

public final void writeUTF (String str) throws IOException;

// Public Methods Overriding FilterOutputStream

public void flush () throws IOException;

// Protected Instance Fields

protected int written ;

}

Hierarchy: Object-->java.io.OutputStream-->FilterOutputStream--
>java.io.DataOutputStream(DataOutput)

EOFException Java 1.0

java.io serializable checked PJ1.1

An IOException that signals the end-of-file.

public class EOFException extends IOException {

// Public Constructors

public EOFException ();

public EOFException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->IOException-->EOFException

Externalizable Java 1.1

java.io serializable PJ1.1

This interface defines the methods that must be implemented by an object that wants complete control over the way it is
serialized. The writeExternal() and readExternal() methods should be implemented to write and read object
data in some arbitrary format, using the methods of the DataOutput and DataInput interfaces.

file:///C|/orielly/jnut/ch11_01.htm (14 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

Externalizable objects must serialize their own fields and are also responsible for serializing the fields of their
superclasses. Most objects do not need to define a custom output format and can use the Serializable interface
instead of Externalizable for serialization.

public interface Externalizable extends Serializable {

// Public Instance Methods

public abstract void readExternal (ObjectInput in) throws IOExceptionClassNotFoundException;

public abstract void writeExternal (ObjectOutput out) throws IOException;

}

Hierarchy: (Externalizable(Serializable))

Implementations: java.awt.datatransfer.DataFlavor, java.rmi.server.RemoteRef

File Java 1.0

java.io serializable comparable PJ1.1(opt)

This class supports a platform-independent definition of file and directory names. It also provides methods to list the
files in a directory; check the existence, readability, writeability, type, size, and modification time of files and
directories; make new directories; rename files and directories; delete files and directories; and create and delete
temporary and lock files. The constants defined by this class are the platform-dependent directory and path-separator
characters, available as a String and a char.

getName() returns the name of the File with any directory names omitted. getPath() returns the full name of the
file, including the directory name. getParent() and getParentFile() return the directory that contains the
File; the only difference between the two methods is that one returns a String, while the other returns a File.
isAbsolute() tests whether the File is an absolute specification. If not, getAbsolutePath() returns an
absolute filename created by appending the relative filename to the current working directory. getAbsoluteFile()
returns the equivalent absolute File object. getCanonicalPath() and getCanonicalFile() are similar
methods: they return an absolute filename or File object that has been converted to its system-dependent canonical
form. This can be useful when comparing two File objects to see if they refer to the same file or directory.

exists(), canWrite(), canRead(), isFile(), isDirectory(), and isHidden() perform the obvious
tests on the specified File. length() returns the length of the file. lastModified() returns the modification
time of the file (which should be used for comparison with other file times only and not interpreted as any particular
time format). setLastModified() allows the modification time to be set; setReadOnly() makes a file or
directory read-only.

list() returns the names of all entries in a directory that are not rejected by an optional FilenameFilter.
listFiles() returns an array of File objects that represent all entries in a directory not rejected by an optional
FilenameFilter or FileFilter. listRoots() returns an array of File objects representing all root
directories on the system. On Unix systems, for example, there is typically only one root, /. On Windows systems,
however, there is a different root for each drive letter: c:\, d:\, and e:\, for example.

file:///C|/orielly/jnut/ch11_01.htm (15 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

mkdir() creates a directory, and mkdirs() creates all the directories in a File specification. renameTo()
renames a file or directory; delete() deletes a file or directory. Prior to Java 1.2, the File class doesn't provide any
way to create a file; that task is accomplished typically with FileOutputStream. As of Java 1.2, however, two
special-purpose file creation methods have been added. The static createTempFile() method returns a File
object that refers to a newly created empty file with a unique name that begins with the specified prefix (which must be
at least three characters long) and ends with the specified suffix. One version of this method creates the file in a
specified directory, and the other creates it in the system temporary directory. Applications can use temporary files for
any purpose without worrying about overwriting files belonging to other applications. The other file-creation method of
Java 1.2 is createNewFile(). This instance method attempts to create a new, empty file with the name specified by
the File object. If it succeeds, it returns true. However, if the file already exists, it returns false.
createNewFile() works atomically, and is therefore useful for file locking and other mutual-exclusion schemes.
When working with createTempFile() or createNewFile(), consider using deleteOnExit() to request
that the files be deleted when the Java VM exits normally.

public class File implements ComparableSerializable {

// Public Constructors

public File (String pathname);

public File (String parent, String child);

public File (File parent, String child);

// Public Constants

public static final String pathSeparator ;

public static final char pathSeparatorChar ;

public static final String separator ;

public static final char separatorChar ;

// Public Class Methods

1.2 public static File createTempFile (String prefix, String suffix) throws IOException;

1.2 public static File createTempFile (String prefix, String suffix, File directory) throws IOException;

1.2 public static File[] listRoots ();

// Property Accessor Methods (by property name)

public boolean isAbsolute ();

1.2 public File getAbsoluteFile ();

public String getAbsolutePath ();

1.2 public File getCanonicalFile () throws IOException;

1.1 public String getCanonicalPath () throws IOException;

public boolean isDirectory ();

public boolean isFile ();

1.2 public boolean isHidden ();

public String getName ();

public String getParent ();

1.2 public File getParentFile ();

public String getPath ();

// Public Instance Methods

file:///C|/orielly/jnut/ch11_01.htm (16 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

public boolean canRead ();

public boolean canWrite ();

1.2 public int compareTo (File pathname);

1.2 public boolean createNewFile () throws IOException;

public boolean delete ();

1.2 public void deleteOnExit ();

public boolean exists ();

public long lastModified ();

public long length ();

public String[] list ();

public String[] list (FilenameFilter filter);

1.2 public File[] listFiles ();

1.2 public File[] listFiles (java.io.FileFilter filter);

1.2 public File[] listFiles (FilenameFilter filter);

public boolean mkdir ();

public boolean mkdirs ();

public boolean renameTo (File dest);

1.2 public boolean setLastModified (long time);

1.2 public boolean setReadOnly ();

1.2 public java.net.URL toURL () throws java.net.MalformedURLException;

// Methods Implementing Comparable

1.2 public int compareTo (Object o);

// Public Methods Overriding Object

public boolean equals (Object obj);

public int hashCode ();

public String toString ();

}

Hierarchy: Object-->File(Comparable,Serializable)

Passed To: Too many methods to list.

Returned By: Too many methods to list.

FileDescriptor Java 1.0

java.io PJ1.1

This class is a platform-independent representation of a low-level handle to an open file or socket. The static in, out,
and err variables are FileDescriptor objects that represent the standard input, output, and error streams,

file:///C|/orielly/jnut/ch11_01.htm (17 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

respectively. There is no public constructor method to create a FileDescriptor object. You can obtain one with the
getFD() method of FileInputStream, FileOutputStream, or RandomAccessFile.

public final class FileDescriptor {

// Public Constructors

public FileDescriptor ();

// Public Constants

public static final FileDescriptor err ;

public static final FileDescriptor in ;

public static final FileDescriptor out ;

// Public Instance Methods

1.1 public void sync () throws SyncFailedException; native

public boolean valid ();

}

Passed To: FileInputStream.FileInputStream(), FileOutputStream.FileOutputStream(),
FileReader.FileReader(), FileWriter.FileWriter(), SecurityManager.{checkRead(),
checkWrite()}

Returned By: FileInputStream.getFD(), FileOutputStream.getFD(),
RandomAccessFile.getFD(), java.net.DatagramSocketImpl.getFileDescriptor(),
java.net.SocketImpl.getFileDescriptor()

Type Of: FileDescriptor.{err, in, out}, java.net.DatagramSocketImpl.fd,
java.net.SocketImpl.fd

FileFilter Java 1.2

java.io

This interface defines an accept() method that filters a list of files. You can list the contents of a directory by calling
the listFiles() method of the File object that represents the desired directory. If you want a filtered listing, such
as a listing of files but not subdirectories or a listing of files whose names end in .class, you can pass a FileFilter
object to listFiles(). For each entry in the directory, a File object is passed to the accept() method. If
accept() returns true, that File is included in the return value of listFiles(). If accept() returns false,
that entry is not included in the listing. FileFilter is new in Java 1.2. Use FilenameFilter if compatibility with
previous releases of Java is required or if you prefer to filter filenames (i.e., String objects) rather than File objects.

public interface FileFilter {

// Public Instance Methods

public abstract boolean accept (File pathname);

}

file:///C|/orielly/jnut/ch11_01.htm (18 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

Passed To: File.listFiles()

FileInputStream Java 1.0

java.io PJ1.1(opt)

This class is a subclass of InputStream that reads bytes from a file specified by name or by a File or
FileDescriptor object. read() reads a byte or array of bytes from the file. It returns -1 when the end-of-file has
been reached. To read binary data, you typically use this class in conjunction with a BufferedInputStream and
DataInputStream. To read text, you typically use it with an InputStreamReader and BufferedReader.
Call close() to close the file when input is no longer needed.

public class FileInputStream extends java.io.InputStream {

// Public Constructors

public FileInputStream (String name) throws FileNotFoundException;

public FileInputStream (FileDescriptor fdObj);

public FileInputStream (File file) throws FileNotFoundException;

// Public Instance Methods

public final FileDescriptor getFD () throws IOException;

// Public Methods Overriding InputStream

public int available () throws IOException; native

public void close () throws IOException; native

public int read () throws IOException; native

public int read (byte[] b) throws IOException;

public int read (byte[] b, int off, int len) throws IOException;

public long skip (long n) throws IOException; native

// Protected Methods Overriding Object

protected void finalize () throws IOException;

}

Hierarchy: Object-->java.io.InputStream-->FileInputStream

FilenameFilter Java 1.0

java.io PJ1.1(opt)

This interface defines the accept() method that must be implemented by any object that filters filenames (i.e., selects
a subset of filenames from a list of filenames). There are no standard FilenameFilter classes implemented by Java,
but objects that implement this interface are used by the java.awt.FileDialog object and the File.list()
method. A typical FilenameFilter object might check that the specified File represents a file (not a directory), is

file:///C|/orielly/jnut/ch11_01.htm (19 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

readable (and possibly writable as well), and that its name ends with some desired extension.

public interface FilenameFilter {

// Public Instance Methods

public abstract boolean accept (File dir, String name);

}

Passed To: java.awt.FileDialog.setFilenameFilter(),
java.awt.peer.FileDialogPeer.setFilenameFilter(), File.{list(), listFiles()}

Returned By: java.awt.FileDialog.getFilenameFilter()

FileNotFoundException Java 1.0

java.io serializable checked PJ1.1(opt)

An IOException that signals that a specified file cannot be found.

public class FileNotFoundException extends IOException {

// Public Constructors

public FileNotFoundException ();

public FileNotFoundException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->IOException--
>FileNotFoundException

Thrown By: FileInputStream.FileInputStream(), FileOutputStream.FileOutputStream(),
FileReader.FileReader(), RandomAccessFile.RandomAccessFile()

FileOutputStream Java 1.0

java.io PJ1.1(opt)

This class is a subclass of OutputStream that writes data to a file specified by name or by a File or
FileDescriptor object. write() writes a byte or array of bytes to the file. To write binary data, you typically use
this class in conjunction with a BufferedOutputStream and a DataOutputStream. To write text, you typically
use it with a PrintWriter, BufferedWriter and an OutputStreamWriter. Use close() to close a
FileOutputStream when no further output will be written to it.

public class FileOutputStream extends java.io.OutputStream {

file:///C|/orielly/jnut/ch11_01.htm (20 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

// Public Constructors

public FileOutputStream (FileDescriptor fdObj);

public FileOutputStream (String name) throws FileNotFoundException;

public FileOutputStream (File file) throws FileNotFoundException;

1.1 public FileOutputStream (String name, boolean append) throws FileNotFoundException;

// Public Instance Methods

public final FileDescriptor getFD () throws IOException;

// Public Methods Overriding OutputStream

public void close () throws IOException; native

public void write (int b) throws IOException; native

public void write (byte[] b) throws IOException;

public void write (byte[] b, int off, int len) throws IOException;

// Protected Methods Overriding Object

protected void finalize () throws IOException;

}

Hierarchy: Object-->java.io.OutputStream-->FileOutputStream

FilePermission Java 1.2

java.io serializable permission

This class is a java.security.Permission that governs access to the local filesystem. A FilePermission
has a name, or target, which specifies what file or files it pertains to, and a comma-separated list of actions that may be
performed on the file or files. The supported actions are "read", "write", "delete", and "execute". Read and write
permission are required by any methods that read or write a file. Delete permission is required by File.delete(),
and execute permission is required by Runtime.exec().

The name of a FilePermission may be as simple as a file or directory name. FilePermission also supports the
use of certain wildcards, however, to specify a permission that applies to more than one file. If the name of the
FilePermission is a directory name followed by "/*" ("*" on Windows platforms), it specifies all files in the
named directory. If the name is a directory name followed by "/-" ("\-" on Windows), it specifies all files in the
directory, and, recursively, all files in all subdirectories. A "*" alone specifies all files in the current directory, and a "-"
alone specifies all files in or beneath the current directory. Finally, the special name "<<ALL FILES>>" matches all files
anywhere in the filesystem.

Applications do not need to use this class directly. Programmers writing system-level code and system administrators
configuring security policies may need to use it, however. Be very careful when granting any types of
FilePermission. Restricting access (especially write access) to files is one of the cornerstones of the Java security
model with regard to untrusted code.

public final class FilePermission extends java.security.Permission implements Serializable {

file:///C|/orielly/jnut/ch11_01.htm (21 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

// Public Constructors

public FilePermission (String path, String actions);

// Public Methods Overriding Permission

public boolean equals (Object obj);

public String getActions ();

public int hashCode ();

public boolean implies (java.security.Permission p);

public java.security.PermissionCollection newPermissionCollection ();

}

Hierarchy: Object-->java.security.Permission(java.security.Guard,Serializable)--
>FilePermission(Serializable)

FileReader Java 1.1

java.io PJ1.1(opt)

FileReader is a convenience subclass of InputStreamReader that is useful when you want to read text (as
opposed to binary data) from a file. You create a FileReader by specifying the file to be read in any of three possible
forms. The FileReader constructor internally creates a FileInputStream to read bytes from the specified file
and uses the functionality of its superclass, InputStreamReader, to convert those bytes from characters in the local
encoding to the Unicode characters used by Java. Because FileReader is a trivial subclass of
InputStreamReader, it does not define any read() methods or other methods of its own. Instead, it inherits all its
methods from its superclass. If you want to read Unicode characters from a file that uses some encoding other than the
default encoding for the locale, you must explicitly create your own InputStreamReader to perform the byte-to-
character conversion.

public class FileReader extends InputStreamReader {

// Public Constructors

public FileReader (FileDescriptor fd);

public FileReader (File file) throws FileNotFoundException;

public FileReader (String fileName) throws FileNotFoundException;

}

Hierarchy: Object-->Reader-->InputStreamReader-->FileReader

FileWriter Java 1.1

java.io PJ1.1(opt)

file:///C|/orielly/jnut/ch11_01.htm (22 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

FileWriter is a convenience subclass of OutputStreamWriter that is useful when you want to write text (as
opposed to binary data) to a file. You create a FileWriter by specifying the file to be written to and, optionally,
whether the data should be appended to the end of an existing file instead of overwriting that file. The FileWriter
class creates an internal FileOutputStream to write bytes to the specified file and uses the functionality of its
superclass, OutputStreamWriter, to convert the Unicode characters written to the stream into bytes using the
default encoding of the default locale. (If you want to use an encoding other than the default, you cannot use
FileWriter; in that case you must create your own OutputStreamWriter and FileOutputStream.) Because
FileWriter is a trivial subclass of OutputStreamWriter, it does not define any methods of its own, but simply
inherits them from its superclass.

public class FileWriter extends OutputStreamWriter {

// Public Constructors

public FileWriter (File file) throws IOException;

public FileWriter (FileDescriptor fd);

public FileWriter (String fileName) throws IOException;

public FileWriter (String fileName, boolean append) throws IOException;

}

Hierarchy: Object-->Writer-->OutputStreamWriter-->FileWriter

FilterInputStream Java 1.0

java.io PJ1.1

This class provides method definitions required to filter data obtained from the InputStream specified when the
FilterInputStream is created. It must be subclassed to perform some sort of filtering operation and cannot be
instantiated directly. See the subclasses BufferedInputStream, DataInputStream, and
PushbackInputStream.

public class FilterInputStream extends java.io.InputStream {

// Protected Constructors

protected FilterInputStream (java.io.InputStream in);

// Public Methods Overriding InputStream

public int available () throws IOException;

public void close () throws IOException;

public void mark (int readlimit); synchronized

public boolean markSupported ();

public int read () throws IOException;

public int read (byte[] b) throws IOException;

public int read (byte[] b, int off, int len) throws IOException;

public void reset () throws IOException; synchronized

file:///C|/orielly/jnut/ch11_01.htm (23 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

public long skip (long n) throws IOException;

// Protected Instance Fields

protected java.io.InputStream in ;

}

Hierarchy: Object-->java.io.InputStream-->FilterInputStream

Subclasses: BufferedInputStream, java.io.DataInputStream, LineNumberInputStream,
PushbackInputStream, java.security.DigestInputStream,
java.util.zip.CheckedInputStream, java.util.zip.InflaterInputStream,
javax.crypto.CipherInputStream, javax.swing.ProgressMonitorInputStream

FilterOutputStream Java 1.0

java.io PJ1.1

This class provides method definitions required to filter the data to be written to the OutputStream specified when
the FilterOutputStream is created. It must be subclassed to perform some sort of filtering operation and may not
be instantiated directly. See the subclasses BufferedOutputStream and DataOutputStream.

public class FilterOutputStream extends java.io.OutputStream {

// Public Constructors

public FilterOutputStream (java.io.OutputStream out);

// Public Methods Overriding OutputStream

public void close () throws IOException;

public void flush () throws IOException;

public void write (int b) throws IOException;

public void write (byte[] b) throws IOException;

public void write (byte[] b, int off, int len) throws IOException;

// Protected Instance Fields

protected java.io.OutputStream out ;

}

Hierarchy: Object-->java.io.OutputStream-->FilterOutputStream

Subclasses: BufferedOutputStream, java.io.DataOutputStream, PrintStream,
java.security.DigestOutputStream, java.util.zip.CheckedOutputStream,
java.util.zip.DeflaterOutputStream, javax.crypto.CipherOutputStream

FilterReader Java 1.1

file:///C|/orielly/jnut/ch11_01.htm (24 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

java.io PJ1.1

This abstract class is intended to act as a superclass for character input streams that read data from some other character
input stream, filter it in some way, and then return the filtered data when a read() method is called. FilterReader
is declared abstract so that it cannot be instantiated. But none of its methods are themselves abstract: they all simply
call the requested operation on the input stream passed to the FilterReader() constructor. If you were allowed to
instantiate a FilterReader, you'd find that it is a null filter (i.e., it simply reads characters from the specified input
stream and returns them without any kind of filtering).

Because FilterReader implements a null filter, it is an ideal superclass for classes that want to implement simple
filters but do not want to override all the methods of Reader. In order to create your own filtered character input
stream, you should subclass FilterReader and override both its read() methods to perform the desired filtering
operation. Note that you can implement one of the read() methods in terms of the other, and thus only implement the
filtration once. Recall that the other read() methods defined by Reader are implemented in terms of these methods,
so you do not need to override those. In some cases, you may need to override other methods of FilterReader and
provide methods or constructors that are specific to your subclass. FilterReader is the character-stream analog to
FilterInputStream.

public abstract class FilterReader extends Reader {

// Protected Constructors

protected FilterReader (Reader in);

// Public Methods Overriding Reader

public void close () throws IOException;

public void mark (int readAheadLimit) throws IOException;

public boolean markSupported ();

public int read () throws IOException;

public int read (char[] cbuf, int off, int len) throws IOException;

public boolean ready () throws IOException;

public void reset () throws IOException;

public long skip (long n) throws IOException;

// Protected Instance Fields

protected Reader in ;

}

Hierarchy: Object-->Reader-->FilterReader

Subclasses: PushbackReader

FilterWriter Java 1.1

java.io PJ1.1

file:///C|/orielly/jnut/ch11_01.htm (25 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

This abstract class is intended to act as a superclass for character output streams that filter the data written to them
before writing it to some other character output stream. FilterWriter is declared abstract so that it cannot be
instantiated. But none of its methods are themselves abstract: they all simply invoke the corresponding method on the
output stream that was passed to the FilterWriter constructor. If you were allowed to instantiate a
FilterWriter object, you'd find that it acts as a null filter (i.e., it simply passes the characters written to it along,
without any filtration).

Because FilterWriter implements a null filter, it is an ideal superclass for classes that want to implement simple
filters without having to override all of the methods of Writer. In order to create your own filtered character output
stream, you should subclass FilterWriter and override all its write() methods to perform the desired filtering
operation. Note that you can implement two of the write() methods in terms of the third and thus implement your
filtering algorithm only once. In some cases, you may want to override other Writer methods and add other methods
or constructors that are specific to your subclass. FilterWriter is the character-stream analog of
FilterOutputStream.

public abstract class FilterWriter extends Writer {

// Protected Constructors

protected FilterWriter (Writer out);

// Public Methods Overriding Writer

public void close () throws IOException;

public void flush () throws IOException;

public void write (int c) throws IOException;

public void write (char[] cbuf, int off, int len) throws IOException;

public void write (String str, int off, int len) throws IOException;

// Protected Instance Fields

protected Writer out ;

}

Hierarchy: Object-->Writer-->FilterWriter

InputStream Java 1.0

java.io PJ1.1

This abstract class is the superclass of all input streams. It defines the basic input methods all input stream classes
provide.read() reads a single byte or an array (or subarray) of bytes. It returns the byte read, the number of bytes read,
or -1 if the end-of-file has been reached. skip() skips a specified number of bytes of input. available() returns
the number of bytes that can be read without blocking. close() closes the input stream and frees up any system
resources associated with it. The stream should not be used after close() has been called.

If markSupported() returns true for a given InputStream, that stream supports mark() and reset()
methods. mark() marks the current position in the input stream so that reset() can return to that position (as long as
no more than the specified number of bytes have been read between the calls to mark() and reset()). See also

file:///C|/orielly/jnut/ch11_01.htm (26 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

Reader.

public abstract class InputStream {

// Public Constructors

public InputStream ();

// Public Instance Methods

public int available () throws IOException; constant

public void close () throws IOException; empty

public void mark (int readlimit); synchronized empty

public boolean markSupported (); constant

public abstract int read () throws IOException;

public int read (byte[] b) throws IOException;

public int read (byte[] b, int off, int len) throws IOException;

public void reset () throws IOException; synchronized

public long skip (long n) throws IOException;

}

Subclasses: ByteArrayInputStream, FileInputStream, FilterInputStream,
ObjectInputStream, PipedInputStream, SequenceInputStream,
StringBufferInputStream, javax.servlet.ServletInputStream,
org.omg.CORBA.portable.InputStream

Passed To: Too many methods to list.

Returned By: Too many methods to list.

Type Of: FilterInputStream.in, System.in

InputStreamReader Java 1.1

java.io PJ1.1

This class is a character input stream that uses a byte input stream as its data source. It reads bytes from a specified
InputStream and translates them into Unicode characters according to a particular platform- and locale-dependent
character encoding. This is an important internationalization feature in Java 1.1 and later. InputStreamReader
supports the standard Reader methods. It also has a getEncoding() method that returns the name of the encoding
being used to convert bytes to characters.

When you create an InputStreamReader, you specify an InputStream from which the InputStreamReader
is to read bytes and, optionally, the name of the character encoding used by those bytes. If you do not specify an
encoding name, the InputStreamReader uses the default encoding for the default locale, which is usually the
correct thing to do.

file:///C|/orielly/jnut/ch11_01.htm (27 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

public class InputStreamReader extends Reader {

// Public Constructors

public InputStreamReader (java.io.InputStream in);

public InputStreamReader (java.io.InputStream in, String enc) throws UnsupportedEncodingException;

// Public Instance Methods

public String getEncoding ();

// Public Methods Overriding Reader

public void close () throws IOException;

public int read () throws IOException;

public int read (char[] cbuf, int off, int len) throws IOException;

public boolean ready () throws IOException;

}

Hierarchy: Object-->Reader-->InputStreamReader

Subclasses: FileReader

InterruptedIOException Java 1.0

java.io serializable checked PJ1.1

An IOException that signals that an input or output operation was interrupted. The bytesTransferred field
contains the number of bytes read or written before the operation was interrupted.

public class InterruptedIOException extends IOException {

// Public Constructors

public InterruptedIOException ();

public InterruptedIOException (String s);

// Public Instance Fields

public int bytesTransferred ;

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->IOException--
>InterruptedIOException

InvalidClassException Java 1.1

java.io serializable checked PJ1.1

file:///C|/orielly/jnut/ch11_01.htm (28 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

Signals that the serialization mechanism has encountered one of several possible problems with the class of an object
that is being serialized or deserialized. The classname field should contain the name of the class in question, and the
getMessage() method is overridden to return this class name with the message.

public class InvalidClassException extends ObjectStreamException {

// Public Constructors

public InvalidClassException (String reason);

public InvalidClassException (String cname, String reason);

// Public Methods Overriding Throwable

public String getMessage ();

// Public Instance Fields

public String classname ;

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->IOException--
>ObjectStreamException-->InvalidClassException

InvalidObjectException Java 1.1

java.io serializable checked PJ1.1

This exception should be thrown by the validateObject() method of an object that implements the
ObjectInputValidation interface when a deserialized object fails an input validation test for any reason.

public class InvalidObjectException extends ObjectStreamException {

// Public Constructors

public InvalidObjectException (String reason);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->IOException--
>ObjectStreamException-->InvalidObjectException

Thrown By: java.awt.font.TextAttribute.readResolve(),
ObjectInputStream.registerValidation(), ObjectInputValidation.validateObject(),
java.text.AttributedCharacterIterator.Attribute.readResolve()

IOException Java 1.0

java.io serializable checked PJ1.1

file:///C|/orielly/jnut/ch11_01.htm (29 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

Signals that an exceptional condition has occurred during input or output. This class has several more specific
subclasses. See EOFException, FileNotFoundException, InterruptedIOException, and
UTFDataFormatException.

public class IOException extends Exception {

// Public Constructors

public IOException ();

public IOException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->IOException

Subclasses: CharConversionException, EOFException, FileNotFoundException,
InterruptedIOException, ObjectStreamException, SyncFailedException,
UnsupportedEncodingException, UTFDataFormatException,
java.net.MalformedURLException, java.net.ProtocolException,
java.net.SocketException, java.net.UnknownHostException,
java.net.UnknownServiceException, java.rmi.RemoteException,
java.util.zip.ZipException, javax.swing.text.ChangedCharSetException

Passed To: java.awt.print.PrinterIOException.PrinterIOException()

Returned By: java.awt.print.PrinterIOException.getIOException()

Thrown By: Too many methods to list.

LineNumberInputStream Java 1.0; Deprecated in Java 1.1

java.io PJ1.1

This class is a FilterInputStream that keeps track of the number of lines of data that have been read.
getLineNumber() returns the current line number; setLineNumber() sets the line number of the current line.
Subsequent lines are numbered starting from that number. This class is deprecated as of Java 1.1 because it does not
properly convert bytes to characters. Use LineNumberReader instead.

public class LineNumberInputStream extends FilterInputStream {

// Public Constructors

public LineNumberInputStream (java.io.InputStream in);

// Public Instance Methods

public int getLineNumber ();

public void setLineNumber (int lineNumber);

// Public Methods Overriding FilterInputStream

public int available () throws IOException;

file:///C|/orielly/jnut/ch11_01.htm (30 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

public void mark (int readlimit);

public int read () throws IOException;

public int read (byte[] b, int off, int len) throws IOException;

public void reset () throws IOException;

public long skip (long n) throws IOException;

}

Hierarchy: Object-->java.io.InputStream-->FilterInputStream-->LineNumberInputStream

LineNumberReader Java 1.1

java.io PJ1.1

This class is a character input stream that keeps track of the number of lines of text that have been read from it. It
supports the usual Reader methods and also the readLine() method introduced by its superclass. In addition to
these methods, you can call getLineNumber() to query the number of lines set so far. You can also call
setLineNumber() to set the line number for the current line. Subsequent lines are numbered sequentially from this
specified starting point. This class is a character-stream analog to LineNumberInputStream, which has been
deprecated as of Java 1.1.

public class LineNumberReader extends BufferedReader {

// Public Constructors

public LineNumberReader (Reader in);

public LineNumberReader (Reader in, int sz);

// Public Instance Methods

public int getLineNumber ();

public void setLineNumber (int lineNumber);

// Public Methods Overriding BufferedReader

public void mark (int readAheadLimit) throws IOException;

public int read () throws IOException;

public int read (char[] cbuf, int off, int len) throws IOException;

public String readLine () throws IOException;

public void reset () throws IOException;

public long skip (long n) throws IOException;

}

Hierarchy: Object-->Reader-->BufferedReader-->LineNumberReader

NotActiveException Java 1.1

file:///C|/orielly/jnut/ch11_01.htm (31 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

java.io serializable checked PJ1.1

This exception is thrown in several circumstances. It indicates that the invoked method was not invoked at the right time
or in the correct context. Typically, it means that an ObjectOutputStream or ObjectInputStream is not
currently active and therefore the requested operation cannot be performed.

public class NotActiveException extends ObjectStreamException {

// Public Constructors

public NotActiveException ();

public NotActiveException (String reason);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->IOException--
>ObjectStreamException-->NotActiveException

Thrown By: ObjectInputStream.{defaultReadObject(), readFields(),
registerValidation()}

NotSerializableException Java 1.1

java.io serializable checked PJ1.1

Signals that an object cannot be serialized. It is thrown when serialization is attempted on an instance of a class that does
not implement the Serializable interface. Note that it is also thrown when an attempt is made to serialize a
Serializable object that refers to (or contains) an object that is not Serializable. A subclass of a class that is
Serializable can prevent itself from being serialized by throwing this exception from its writeObject() and/or
readObject() methods.

public class NotSerializableException extends ObjectStreamException {

// Public Constructors

public NotSerializableException ();

public NotSerializableException (String classname);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->IOException--
>ObjectStreamException-->NotSerializableException

ObjectInput Java 1.1

java.io PJ1.1

file:///C|/orielly/jnut/ch11_01.htm (32 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

This interface extends the DataInput interface and adds methods for deserializing objects and reading bytes and
arrays of bytes.

public interface ObjectInput extends DataInput {

// Public Instance Methods

public abstract int available () throws IOException;

public abstract void close () throws IOException;

public abstract int read () throws IOException;

public abstract int read (byte[] b) throws IOException;

public abstract int read (byte[] b, int off, int len) throws IOException;

public abstract Object readObject () throws ClassNotFoundExceptionIOException;

public abstract long skip (long n) throws IOException;

}

Hierarchy: (ObjectInput(DataInput))

Implementations: ObjectInputStream

Passed To: java.awt.datatransfer.DataFlavor.readExternal(),
Externalizable.readExternal(), java.rmi.server.ObjID.read()

Returned By: java.rmi.server.RemoteCall.getInputStream()

ObjectInputStream Java 1.1

java.io PJ1.1

ObjectInputStream deserializes objects, arrays, and other values from a stream that was previously created with an
ObjectOutputStream. The readObject() method deserializes objects and arrays (which should then be cast to
the appropriate type); various other methods read primitive data values from the stream. Note that only objects that
implement the Serializable or Externalizable interface can be serialized and deserialized.

A class may implement its own private readObject(ObjectInputStream) method to customize the way it is
deserialized. If you define such a method, there are several ObjectInputStream methods you can use to help you
deserialize the object. defaultReadObject() is the easiest. It reads the content of the object just as an
ObjectInputStream would normally do. If you wrote additional data before or after the default object contents, you
should read that data before or after calling defaultReadObject(). When working with multiple versions or
implementations of a class, you may have to deserialize a set of fields that do not match the fields of your class. In this
case, give your class a static field named serialPersistentFields whose value is an array of
ObjectStreamField objects that describe the fields to be deserialized. If you do this, your readObject()
method can call readFields() to read the specified fields from the stream and return them in a
ObjectInputStream.GetField object. See ObjectStreamField and ObjectInputStream.GetField
for more details. Finally, you can call registerValidation() from a custom readObject() method. This

file:///C|/orielly/jnut/ch11_01.htm (33 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

method registers an ObjectInputValidation object (typically the object being deserialized) to be notified when a
complete tree of objects has been deserialized, and the original call to the readObject() method of the
ObjectInputStream is about to return to its caller.

The remaining methods include miscellaneous stream-manipulation methods and several protected methods for use by
subclasses that want to customize the deserialization behavior of ObjectInputStream.

public class ObjectInputStream extends java.io.InputStream implements ObjectInput, ObjectStreamConstants {

// Public Constructors

public ObjectInputStream (java.io.InputStream in) throws
IOExceptionStreamCorruptedException;

// Protected Constructors

1.2 protected ObjectInputStream () throws IOExceptionSecurityException;

// Inner Classes

1.2 ;

// Public Instance Methods

public void defaultReadObject () throws
IOExceptionClassNotFoundExceptionNotActiveException;

1.2
public ObjectInputStream.GetField readFields () throws
IOExceptionClassNotFoundExceptionNotActiveException;

public void registerValidation (ObjectInputValidation obj, int prio) throws
NotActiveExceptionInvalidObjectException;

synchronized

// Methods Implementing DataInput

public boolean readBoolean () throws IOException;

public byte readByte () throws IOException;

public char readChar () throws IOException;

public double readDouble () throws IOException;

public float readFloat () throws IOException;

public void readFully (byte[] data) throws IOException;

public void readFully (byte[] data, int offset, int size) throws IOException;

public int readInt () throws IOException;

public long readLong () throws IOException;

public short readShort () throws IOException;

public int readUnsignedByte () throws IOException;

public int readUnsignedShort () throws IOException;

public String readUTF () throws IOException;

public int skipBytes (int len) throws IOException;

// Methods Implementing ObjectInput

public int available () throws IOException;

public void close () throws IOException;

public int read () throws IOException;

public int read (byte[] b, int off, int len) throws IOException;

file:///C|/orielly/jnut/ch11_01.htm (34 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

public final Object readObject () throws
OptionalDataExceptionClassNotFoundExceptionIOException;

// Protected Instance Methods

protected boolean enableResolveObject (boolean enable) throws SecurityException;

1.3
protected ObjectStreamClass readClassDescriptor () throws
IOExceptionClassNotFoundException;

1.2
protected Object readObjectOverride () throws
OptionalDataExceptionClassNotFoundExceptionIOException;

constant

protected void readStreamHeader () throws IOExceptionStreamCorruptedException;

protected Class resolveClass (ObjectStreamClass v) throws
IOExceptionClassNotFoundException;

protected Object resolveObject (Object obj) throws IOException;

1.3
protected Class resolveProxyClass (String[] interfaces) throws
IOExceptionClassNotFoundException;

// Deprecated Public Methods

public String readLine () throws IOException; Implements:DataInput

}

Hierarchy: Object-->java.io.InputStream--
>ObjectInputStream(ObjectInput(DataInput),ObjectStreamConstants)

Passed To:
java.beans.beancontext.BeanContextServicesSupport.bcsPreDeserializationHook(),
java.beans.beancontext.BeanContextSupport.{bcsPreDeserializationHook(),
deserialize(), readChildren()}, javax.swing.text.StyleContext.{readAttributes(),
readAttributeSet()}

ObjectInputStream.GetField Java 1.2

java.io

This class holds the values of named fields read by an ObjectInputStream. It gives the programmer precise control
over the deserialization process and is typically used when implementing an object with a set of fields that do not match
the set of fields (and the serialization stream format) of the original implementation of the object. This class allows the
implementation of a class to change without breaking serialization compatibility.

In order to use the GetField class, your class must implement a private readObject() method that is responsible
for custom deserialization. Typically, when using the GetField class, you have also specified an array of
ObjectStreamField objects as the value of a private static field named serialPersistentFields. This array
specifies the names and types of all fields expected to be found when reading from a serialization stream. If there is no
serialPersistantField field, the array of ObjectStreamField objects is created from the actual fields
(excluding static and transient fields) of the class.

file:///C|/orielly/jnut/ch11_01.htm (35 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

Within the readObject() method of your class, call the readFields() method of ObjectInputStream().
This method reads the values of all fields from the stream and stores them in an ObjectInputStream.GetField
object that it returns. This GetField object is essentially a mapping from field names to field values, and you can
extract the values of whatever fields you need in order to restore the proper state of the object being deserialized. The
various get() methods return the values of named fields of specified types. Each method takes a default value as an
argument, in case no value for the named field was present in the serialization stream. (This can happen when
deserializing an object written by an earlier version of the class, for example.) Use the defaulted() method to
determine whether the GetField object contains a value for the named field. If this method returns true, the named
field had no value in the stream, so the get() method of the GetField object has to return the specified default
value. The getObjectStreamClass() method of a GetField object returns the ObjectStreamClass object
for the object being deserialized. This ObjectStreamClass can obtain the array of ObjectStreamField objects
for the class.

See also ObjectOutputStream.PutField

public abstract static class ObjectInputStream.GetField {

// Public Constructors

public GetField ();

// Public Instance Methods

public abstract boolean defaulted (String name) throws IOExceptionIllegalArgumentException;

public abstract boolean get (String name, boolean defvalue) throws IOExceptionIllegalArgumentException;

public abstract byte get (String name, byte defvalue) throws IOExceptionIllegalArgumentException;

public abstract char get (String name, char defvalue) throws IOExceptionIllegalArgumentException;

public abstract short get (String name, short defvalue) throws IOExceptionIllegalArgumentException;

public abstract int get (String name, int defvalue) throws IOExceptionIllegalArgumentException;

public abstract long get (String name, long defvalue) throws IOExceptionIllegalArgumentException;

public abstract float get (String name, float defvalue) throws IOExceptionIllegalArgumentException;

public abstract double get (String name, double defvalue) throws IOExceptionIllegalArgumentException;

public abstract Object get (String name, Object defvalue) throws IOExceptionIllegalArgumentException;

public abstract ObjectStreamClass getObjectStreamClass ();

}

Returned By: ObjectInputStream.readFields()

ObjectInputValidation Java 1.1

java.io PJ1.1

A class implements this interface and defines the validateObject() method in order to validate itself when it and
all the objects it depends on have been completely deserialized from an ObjectInputStream. The
validateObject() method is only invoked, however, if the object is passed to
ObjectInputStream.registerValidation(); this must be done from the readObject() method of the
object. Note that if an object is deserialized as part of a larger object graph, its validateObject() method is not

file:///C|/orielly/jnut/ch11_01.htm (36 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

invoked until the entire graph is read, and the original call to ObjectInputStream.readObject() is about to
return. validateObject() should throw an InvalidObjectException if the object fails validation. This
stops object serialization, and the original call to ObjectInputStream.readObject() terminates with the
InvalidObjectException exception.

public interface ObjectInputValidation {

// Public Instance Methods

public abstract void validateObject () throws InvalidObjectException;

}

Passed To: ObjectInputStream.registerValidation()

ObjectOutput Java 1.1

java.io PJ1.1

This interface extends the DataOutput interface and adds methods for serializing objects and writing bytes and arrays
of bytes.

public interface ObjectOutput extends DataOutput {

// Public Instance Methods

public abstract void close () throws IOException;

public abstract void flush () throws IOException;

public abstract void write (byte[] b) throws IOException;

public abstract void write (int b) throws IOException;

public abstract void write (byte[] b, int off, int len) throws IOException;

public abstract void writeObject (Object obj) throws IOException;

}

Hierarchy: (ObjectOutput(DataOutput))

Implementations: ObjectOutputStream

Passed To: java.awt.datatransfer.DataFlavor.writeExternal(),
Externalizable.writeExternal(), ObjectOutputStream.PutField.write(),
java.rmi.server.ObjID.write(), java.rmi.server.RemoteRef.getRefClass()

Returned By: java.rmi.server.RemoteCall.{getOutputStream(), getResultStream()}

ObjectOutputStream Java 1.1

file:///C|/orielly/jnut/ch11_01.htm (37 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

java.io PJ1.1

The ObjectOutputStream serializes objects, arrays, and other values to a stream. The writeObject() method
serializes an object or array, and various other methods write primitive data values to the stream. Note that only objects
that implement the Serializable or Externalizable interface can be serialized.

A class that wants to customize the way instances are serialized should declare a private
writeObject(ObjectOutputStream) method. This method is invoked when an object is being serialized and
can use several additional methods of ObjectOutputStream. defaultWriteObject() performs the same
serialization that would happen if no writeObject() method existed. An object can call this method to serialize
itself and then use other methods of ObjectOutputStream to write additional data to the serialization stream. The
class must define a matching readObject() method to read that additional data, of course. When working with
multiple versions or implementations of a class, you may have to serialize a set of fields that do not precisely match the
fields of your class. In this case, give your class a static field named serialPersistentFields whose value is an
array of ObjectStreamField objects that describe the fields to be serialized. In your writeObject() method,
call putFields() to obtain an ObjectOutputStream.PutField object. Store field names and values into this
object, and then call writeFields() to write them out to the serialization stream. See ObjectStreamField and
ObjectOutputStream.PutField for further details.

The remaining methods of ObjectOutputStream are miscellaneous stream-manipulation methods and protected
methods for use by subclasses that want to customize its serialization behavior.

public class ObjectOutputStream extends java.io.OutputStream implements ObjectOutput, ObjectStreamConstants {

// Public Constructors

public ObjectOutputStream (java.io.OutputStream out) throws IOException;

// Protected Constructors

1.2 protected ObjectOutputStream () throws IOExceptionSecurityException;

// Inner Classes

1.2 ;

// Public Instance Methods

public void defaultWriteObject () throws IOException;

1.2 public ObjectOutputStream.PutField putFields () throws IOException;

public void reset () throws IOException;

1.2 public void useProtocolVersion (int version) throws IOException;

1.2 public void writeFields () throws IOException;

// Methods Implementing DataOutput

public void writeBoolean (boolean data) throws IOException;

public void writeByte (int data) throws IOException;

public void writeBytes (String data) throws IOException;

public void writeChar (int data) throws IOException;

public void writeChars (String data) throws IOException;

public void writeDouble (double data) throws IOException;

public void writeFloat (float data) throws IOException;

file:///C|/orielly/jnut/ch11_01.htm (38 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

public void writeInt (int data) throws IOException;

public void writeLong (long data) throws IOException;

public void writeShort (int data) throws IOException;

public void writeUTF (String s) throws IOException;

// Methods Implementing ObjectOutput

public void close () throws IOException;

public void flush () throws IOException;

public void write (byte[] b) throws IOException;

public void write (int data) throws IOException;

public void write (byte[] b, int off, int len) throws IOException;

public final void writeObject (Object obj) throws IOException;

// Protected Instance Methods

protected void annotateClass (Class cl) throws IOException; empty

1.3 protected void annotateProxyClass (Class cl) throws IOException; empty

protected void drain () throws IOException;

protected boolean enableReplaceObject (boolean enable) throws SecurityException;

protected Object replaceObject (Object obj) throws IOException;

1.3 protected void writeClassDescriptor (ObjectStreamClass classdesc) throws IOException;

1.2 protected void writeObjectOverride (Object obj) throws IOException; empty

protected void writeStreamHeader () throws IOException;

}

Hierarchy: Object-->java.io.OutputStream--
>ObjectOutputStream(ObjectOutput(DataOutput),ObjectStreamConstants)

Passed To: java.awt.AWTEventMulticaster.{save(), saveInternal()},
java.beans.beancontext.BeanContextServicesSupport.bcsPreSerializationHook(),
java.beans.beancontext.BeanContextSupport.{bcsPreSerializationHook(),
serialize(), writeChildren()}, javax.swing.text.StyleContext.{writeAttributes(),
writeAttributeSet()}

ObjectOutputStream.PutField Java 1.2

java.io

This class holds values of named fields and allows them to be written to an ObjectOutputStream during the
process of object serialization. It gives the programmer precise control over the serialization process and is typically
used when the set of fields defined by a class do not match the set of fields (and the serialization stream format) defined
by the original implementation of the class. In other words, ObjectOutputStream.PutField allows the
implementation of a class to change without breaking serialization compatibility.

file:///C|/orielly/jnut/ch11_01.htm (39 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

In order to use the PutField class, you typically define a private static serialPersistentFields field that
refers to an array of ObjectStreamField objects. This array defines the set of fields written to the
ObjectOutputStream, and therefore defines the serialization format. If you do not declare a
serialPersistentFields field, the set of fields is all fields of the class, excluding static and transient
fields.

In addition to the serialPersistentFields field, your class must also define a private writeObject()
method that is responsible for the custom serialization of your class. In this method, call the putFields() method of
ObjectOutputStream to obtain an ObjectOutputStream.PutField object. Once you have this object, use
its various put() methods to specify the names and values of the field to be written out. The set of named fields should
match those specified by serialPersistentFields. You may specify the fields in any order; the PutField
class is responsible for writing them out in the correct order. Once you have specified the values of all fields, call the
write() method of your PutField object in order to write the field values out to the serialization stream.

To reverse this custom serialization process, see ObjectInputStream.GetField.

public abstract static class ObjectOutputStream.PutField {

// Public Constructors

public PutField ();

// Public Instance Methods

public abstract void put (String name, long value);

public abstract void put (String name, int value);

public abstract void put (String name, float value);

public abstract void put (String name, Object value);

public abstract void put (String name, double value);

public abstract void put (String name, char value);

public abstract void put (String name, boolean value);

public abstract void put (String name, short value);

public abstract void put (String name, byte value);

public abstract void write (ObjectOutput out) throws IOException;

}

Returned By: ObjectOutputStream.putFields()

ObjectStreamClass Java 1.1

java.io serializable PJ1.1

This class represents a class that is being serialized. An ObjectStreamClass object contains the name of a class, its
unique version identifier, and the name and type of the fields that constitute the serialization format for the class.
getSerialVersionUID() returns a unique version identifier for the class. It returns either the value of the private
serialVersionUID field of the class or a computed value that is based upon the public API of the class. In Java 1.2
and later, getFields() returns an array of ObjectStreamField objects that represent the names and types of the

file:///C|/orielly/jnut/ch11_01.htm (40 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

fields of the class to be serialized. getField() returns a single ObjectStreamField object that represents a
single named field. By default, these methods use all the fields of a class except those that are static or transient.
However, this default set of fields can be overridden by declaring a private serialPersistentFields field in the
class. The value of this field should be the desired array of ObjectStreamField objects.

ObjectStreamClass class does not have a constructor; you should use the static lookup() method to obtain an
ObjectStreamClass object for a given Class object. The forClass() instance method performs the opposite
operation; it returns the Class object that corresponds to a given ObjectStreamClass. Most applications never
need to use this class.

public class ObjectStreamClass implements Serializable {

// No Constructor

// Public Constants

1.2 public static final ObjectStreamField[] NO_FIELDS ;

// Public Class Methods

public static ObjectStreamClass lookup (Class cl);

// Public Instance Methods

public Class forClass ();

1.2 public ObjectStreamField getField (String name);

public ObjectStreamField[] getFields ();

public String getName ();

public long getSerialVersionUID ();

// Public Methods Overriding Object

public String toString ();

}

Hierarchy: Object-->ObjectStreamClass(Serializable)

Passed To: ObjectInputStream.resolveClass(),
ObjectOutputStream.writeClassDescriptor()

Returned By: ObjectInputStream.readClassDescriptor(),
ObjectInputStream.GetField.getObjectStreamClass(), ObjectStreamClass.lookup()

ObjectStreamConstants Java 1.2

java.io

This interface defines various constants used by the Java object-serialization mechanism. Two important constants are
PROTOCOL_VERSION_1 and PROTOCOL_VERSION_2, which specify the version of the serialization protocol to use.
In Java 1.2, you can pass either of these values to the useProtocolVersion() method of an
ObjectOutputStream. By default, Java 1.2 uses Version 2 of the protocol, and Java 1.1 uses Version 1 when
serializing objects. Java 1.2 can deserialize objects written using either version of the protocol, as can Java 1.1.7 and

file:///C|/orielly/jnut/ch11_01.htm (41 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

later. If you want to serialize an object so that it can be read by versions of Java prior to Java 1.1.7, use
PROTOCOL_VERSION_1.

The other constants defined by this interface are low-level values used by the serialization protocol. You do not need to
use them unless you are reimplementing the serialization mechanism yourself.

public interface ObjectStreamConstants {

// Public Constants

public static final int baseWireHandle ; =8257536

public static final int PROTOCOL_VERSION_1 ; =1

public static final int PROTOCOL_VERSION_2 ; =2

public static final byte SC_BLOCK_DATA ; =8

public static final byte SC_EXTERNALIZABLE ; =4

public static final byte SC_SERIALIZABLE ; =2

public static final byte SC_WRITE_METHOD ; =1

public static final short STREAM_MAGIC ; =-21267

public static final short STREAM_VERSION ; =5

public static final SerializablePermission SUBCLASS_IMPLEMENTATION_PERMISSION ;

public static final SerializablePermission SUBSTITUTION_PERMISSION ;

public static final byte TC_ARRAY ; =117

public static final byte TC_BASE ; =112

public static final byte TC_BLOCKDATA ; =119

public static final byte TC_BLOCKDATALONG ; =122

public static final byte TC_CLASS ; =118

public static final byte TC_CLASSDESC ; =114

public static final byte TC_ENDBLOCKDATA ; =120

public static final byte TC_EXCEPTION ; =123

1.3 public static final byte TC_LONGSTRING ; =124

public static final byte TC_MAX ; =125

public static final byte TC_NULL ; =112

public static final byte TC_OBJECT ; =115

1.3 public static final byte TC_PROXYCLASSDESC ; =125

public static final byte TC_REFERENCE ; =113

public static final byte TC_RESET ; =121

public static final byte TC_STRING ; =116

}

Implementations: ObjectInputStream, ObjectOutputStream

ObjectStreamException Java 1.1

file:///C|/orielly/jnut/ch11_01.htm (42 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

java.io serializable checked PJ1.1

This class is the superclass of a number of more specific exception types that may be raised in the process of serializing
and deserializing objects with the ObjectOutputStream and ObjectInputStream classes.

public abstract class ObjectStreamException extends IOException {

// Protected Constructors

protected ObjectStreamException ();

protected ObjectStreamException (String classname);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->IOException--
>ObjectStreamException

Subclasses: InvalidClassException, InvalidObjectException, NotActiveException,
NotSerializableException, OptionalDataException, StreamCorruptedException,
WriteAbortedException

Thrown By: java.awt.color.ICC_Profile.readResolve(),
java.security.cert.Certificate.writeReplace(),
java.security.cert.Certificate.CertificateRep.readResolve()

ObjectStreamField Java 1.2

java.io comparable

This class represents a named field of a specified type (i.e., a specified Class). When a class serializes itself by writing
a set of fields that are different from the fields it uses in its own implementation, it defines the set of fields to be written
with an array of ObjectStreamField objects. This array should be the value of a private static field named
serialPersistentFields. The methods of this class are used internally by the serialization mechanism and are
not typically used elsewhere. See also ObjectOutputStream.PutField and
ObjectInputStream.GetField.

public class ObjectStreamField implements Comparable {

// Public Constructors

public ObjectStreamField (String n, Class clazz);

// Property Accessor Methods (by property name)

public String getName ();

public int getOffset ();

public boolean isPrimitive ();

file:///C|/orielly/jnut/ch11_01.htm (43 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

public Class getType ();

public char getTypeCode ();

public String getTypeString ();

// Methods Implementing Comparable

public int compareTo (Object o);

// Public Methods Overriding Object

public String toString ();

// Protected Instance Methods

protected void setOffset (int offset);

}

Hierarchy: Object-->ObjectStreamField(Comparable)

Returned By: ObjectStreamClass.{getField(), getFields()}

Type Of: ObjectStreamClass.NO_FIELDS

OptionalDataException Java 1.1

java.io serializable checked PJ1.1

Thrown by the readObject() method of an ObjectInputStream when it encounters primitive type data where it
expects object data. Despite the exception name, this data is not optional, and object deserialization is stopped.

public class OptionalDataException extends
ObjectStreamException {

// No Constructor

// Public Instance Fields

public boolean eof ;

public int length ;

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->IOException--
>ObjectStreamException-->OptionalDataException

Thrown By: ObjectInputStream.{readObject(), readObjectOverride()}

OutputStream Java 1.0

java.io PJ1.1

file:///C|/orielly/jnut/ch11_01.htm (44 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

This abstract class is the superclass of all output streams. It defines the basic output methods all output stream classes
provide. write() writes a single byte or an array (or subarray) of bytes. flush() forces any buffered output to be
written. close() closes the stream and frees up any system resources associated with it. The stream may not be used
once close() has been called. See also Writer.

public abstract class OutputStream {

// Public Constructors

public OutputStream ();

// Public Instance Methods

public void close () throws IOException; empty

public void flush () throws IOException; empty

public abstract void write (int b) throws IOException;

public void write (byte[] b) throws IOException;

public void write (byte[] b, int off, int len) throws IOException;

}

Subclasses: ByteArrayOutputStream, FileOutputStream, FilterOutputStream,
ObjectOutputStream, PipedOutputStream, javax.servlet.ServletOutputStream,
org.omg.CORBA.portable.OutputStream

Passed To: Too many methods to list.

Returned By: Process.getOutputStream(), Runtime.getLocalizedOutputStream(),
java.net.Socket.getOutputStream(), java.net.SocketImpl.getOutputStream(),
java.net.URLConnection.getOutputStream(),
java.rmi.server.LogStream.getOutputStream()

Type Of: FilterOutputStream.out

OutputStreamWriter Java 1.1

java.io PJ1.1

This class is a character output stream that uses a byte output stream as the destination for its data. When characters are
written to an OutputStreamWriter, it translates them into bytes according to a particular locale- and/or platform-
specific character encoding and writes those bytes to the specified OutputStream. This is a very important
internationalization feature in Java 1.1 and later. OutputStreamWriter supports the usual Writer methods. It also
has a getEncoding() method that returns the name of the encoding being used to convert characters to bytes.

When you create an OutputStreamWriter, specify the OutputStream to which it writes bytes and, optionally,
the name of the character encoding that should be used to convert characters to bytes. If you do not specify an encoding
name, the OutputStreamWriter uses the default encoding of the default locale, which is usually the correct thing to
do.

file:///C|/orielly/jnut/ch11_01.htm (45 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

public class OutputStreamWriter extends Writer {

// Public Constructors

public OutputStreamWriter (java.io.OutputStream out);

public OutputStreamWriter (java.io.OutputStream out, String enc) throws UnsupportedEncodingException;

// Public Instance Methods

public String getEncoding ();

// Public Methods Overriding Writer

public void close () throws IOException;

public void flush () throws IOException;

public void write (int c) throws IOException;

public void write (char[] cbuf, int off, int len) throws IOException;

public void write (String str, int off, int len) throws IOException;

}

Hierarchy: Object-->Writer-->OutputStreamWriter

Subclasses: FileWriter

PipedInputStream Java 1.0

java.io PJ1.1

This class is an InputStream that implements one half of a pipe and is useful for communication between threads. A
PipedInputStream must be connected to a PipedOutputStream object, which may be specified when the
PipedInputStream is created or with the connect() method. Data read from a PipedInputStream object is
received from the PipedOutputStream to which it is connected. See InputStream for information on the low-
level methods for reading data from a PipedInputStream. A FilterInputStream can provide a higher-level
interface for reading data from a PipedInputStream.

public class PipedInputStream extends java.io.InputStream {

// Public Constructors

public PipedInputStream ();

public PipedInputStream (PipedOutputStream src) throws IOException;

// Protected Constants

1.1 protected static final int PIPE_SIZE ; =1024

// Public Instance Methods

public void connect (PipedOutputStream src) throws IOException;

// Public Methods Overriding InputStream

public int available () throws IOException; synchronized

file:///C|/orielly/jnut/ch11_01.htm (46 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

public void close () throws IOException;

public int read () throws IOException; synchronized

public int read (byte[] b, int off, int len) throws IOException; synchronized

// Protected Instance Methods

protected void receive (int b) throws IOException; synchronized

// Protected Instance Fields

protected byte[] buffer ;

protected int in ;

protected int out ;

}

Hierarchy: Object-->java.io.InputStream-->PipedInputStream

Passed To: PipedOutputStream.{connect(), PipedOutputStream()}

PipedOutputStream Java 1.0

java.io PJ1.1

This class is an OutputStream that implements one half of a pipe and is useful for communication between threads.
A PipedOutputStream must be connected to a PipedInputStream, which may be specified when the
PipedOutputStream is created or with the connect() method. Data written to the PipedOutputStream is
available for reading on the PipedInputStream. See OutputStream for information on the low-level methods for
writing data to a PipedOutputStream. A FilterOutputStream can provide a higher-level interface for writing
data to a PipedOutputStream.

public class PipedOutputStream extends java.io.OutputStream {

// Public Constructors

public PipedOutputStream ();

public PipedOutputStream (PipedInputStream snk) throws IOException;

// Public Instance Methods

public void connect (PipedInputStream snk) throws IOException; synchronized

// Public Methods Overriding OutputStream

public void close () throws IOException;

public void flush () throws IOException; synchronized

public void write (int b) throws IOException;

public void write (byte[] b, int off, int len) throws IOException;

}

Hierarchy: Object-->java.io.OutputStream-->PipedOutputStream

file:///C|/orielly/jnut/ch11_01.htm (47 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

Passed To: PipedInputStream.{connect(), PipedInputStream()}

PipedReader Java 1.1

java.io PJ1.1

PipedReader is a character input stream that reads characters from a PipedWriter character output stream to
which it is connected. PipedReader implements one half of a pipe and is useful for communication between two
threads of an application. A PipedReader cannot be used until it is connected to a PipedWriter object, which may
be passed to the PipedReader() constructor or to the connect() method. PipedReader inherits most of the
methods of its superclass. See Reader for more information. PipedReader is the character-stream analog of
PipedInputStream.

public class PipedReader extends Reader {

// Public Constructors

public PipedReader ();

public PipedReader (PipedWriter src) throws IOException;

// Public Instance Methods

public void connect (PipedWriter src) throws IOException;

// Public Methods Overriding Reader

public void close () throws IOException;

1.2 public int read () throws IOException; synchronized

public int read (char[] cbuf, int off, int len) throws IOException; synchronized

1.2 public boolean ready () throws IOException; synchronized

}

Hierarchy: Object-->Reader-->PipedReader

Passed To: PipedWriter.{connect(), PipedWriter()}

PipedWriter Java 1.1

java.io PJ1.1

PipedWriter is a character output stream that writes characters to the PipedReader character input stream to
which it is connected. PipedWriter implements one half of a pipe and is useful for communication between two
threads of an application. A PipedWriter cannot be used until it is connected to a PipedReader object, which may
be passed to the PipedWriter() constructor, or to the connect() method. PipedWriter inherits most of the
methods of its superclass. See Writer for more information. PipedWriter is the character-stream analog of
PipedOutputStream.

file:///C|/orielly/jnut/ch11_01.htm (48 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

public class PipedWriter extends Writer {

// Public Constructors

public PipedWriter ();

public PipedWriter (PipedReader snk) throws IOException;

// Public Instance Methods

public void connect (PipedReader snk) throws IOException; synchronized

// Public Methods Overriding Writer

public void close () throws IOException;

public void flush () throws IOException; synchronized

1.2 public void write (int c) throws IOException;

public void write (char[] cbuf, int off, int len) throws IOException;

}

Hierarchy: Object-->Writer-->PipedWriter

Passed To: PipedReader.{connect(), PipedReader()}

PrintStream Java 1.0

java.io PJ1.1

This class is a FilterOutputStream that implements a number of methods for displaying textual representations of
Java primitive data types. The print() methods output standard textual representations of each data type. The
println() methods do the same and follow the representations with newlines. Each method converts a Java primitive
type to a String representation and outputs the resulting string. When an Object is passed to a print() or
println(), it is converted to a String by calling its toString() method. PrintStream is the
OutputStream type that makes it easiest to output text. As such, it is the most commonly used of the output streams.
The System.out variable is a PrintStream.

Note that in Java 1.0 this class does not handle Unicode characters correctly; it discards the top 8 bits of all 16-bit
characters and thus works only with Latin-1 (ISO8859-1) characters. Although this problem has been fixed as of Java
1.1, PrintStream has been superseded by PrintWriter as of Java 1.1. The constructors of this class have been
deprecated, but the class itself has not, because it is still used by the System.out and System.err standard output
streams.

PrintStream, and its PrintWriter replacement, output textual representations of Java data types. Use
DataOutputStream to output binary representations of data.

public class PrintStream extends FilterOutputStream {

// Public Constructors

public PrintStream (java.io.OutputStream out);

public PrintStream (java.io.OutputStream out, boolean autoFlush);

file:///C|/orielly/jnut/ch11_01.htm (49 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

// Public Instance Methods

public boolean checkError ();

public void print (long l);

public void print (int i);

public void print (char c);

public void print (float f);

public void print (String s);

public void print (Object obj);

public void print (double d);

public void print (char[] s);

public void print (boolean b);

public void println ();

public void println (long x);

public void println (float x);

public void println (char x);

public void println (int x);

public void println (String x);

public void println (Object x);

public void println (double x);

public void println (char[] x);

public void println (boolean x);

// Public Methods Overriding FilterOutputStream

public void close ();

public void flush ();

public void write (int b);

public void write (byte[] buf, int off, int len);

// Protected Instance Methods

1.1 protected void setError ();

}

Hierarchy: Object-->java.io.OutputStream-->FilterOutputStream-->PrintStream

Subclasses: java.rmi.server.LogStream

Passed To: Too many methods to list.

Returned By: java.rmi.server.LogStream.getDefaultStream(),
java.rmi.server.RemoteServer.getLog(), java.sql.DriverManager.getLogStream(),
javax.swing.DebugGraphics.logStream()

Type Of: System.{err, out}

file:///C|/orielly/jnut/ch11_01.htm (50 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

PrintWriter Java 1.1

java.io PJ1.1

This class is a character output stream that implements a number of print() and println() methods that output
textual representations of primitive values and objects. When you create a PrintWriter object, you specify a
character or byte output stream that it should write its characters to and, optionally, whether the PrintWriter stream
should be automatically flushed whenever println() is called. If you specify a byte output stream as the destination,
the PrintWriter() constructor automatically creates the necessary OutputStreamWriter object to convert
characters to bytes using the default encoding.

PrintWriter implements the normal write(), flush(), and close() methods all Writer subclasses define.
It is more common to use the higher-level print() and println() methods, each of which converts its argument to
a string before outputting it. println() can also terminate the line (and optionally flush the buffer) after printing its
argument.

The methods of PrintWriter never throw exceptions. Instead, when errors occur, they set an internal flag you can
check by calling checkError(). checkError() first flushes the internal stream and then returns true if any
exception has occurred while writing values to that stream. Once an error has occurred on a PrintWriter object, all
subsequent calls to checkError() return true; there is no way to reset the error flag.

PrintWriter is the character stream analog to PrintStream, which it supersedes. You can usually trivially
replace any PrintStream objects in a program with PrintWriter objects. This is particularly important for
internationalized programs. The only valid remaining use for the PrintStream class is for the System.out and
System.err standard output streams. See PrintStream for details.

public class PrintWriter extends Writer {

// Public Constructors

public PrintWriter (java.io.OutputStream out);

public PrintWriter (Writer out);

public PrintWriter (java.io.OutputStream out, boolean autoFlush);

public PrintWriter (Writer out, boolean autoFlush);

// Public Instance Methods

public boolean checkError ();

public void print (int i);

public void print (long l);

public void print (boolean b);

public void print (char c);

public void print (double d);

public void print (char[] s);

public void print (String s);

public void print (float f);

file:///C|/orielly/jnut/ch11_01.htm (51 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

public void print (Object obj);

public void println ();

public void println (int x);

public void println (long x);

public void println (boolean x);

public void println (char x);

public void println (String x);

public void println (Object x);

public void println (char[] x);

public void println (float x);

public void println (double x);

// Public Methods Overriding Writer

public void close ();

public void flush ();

public void write (char[] buf);

public void write (String s);

public void write (int c);

public void write (String s, int off, int len);

public void write (char[] buf, int off, int len);

// Protected Instance Methods

protected void setError ();

// Protected Instance Fields

protected Writer out ;

}

Hierarchy: Object-->Writer-->PrintWriter

Passed To: Too many methods to list.

Returned By: java.sql.DriverManager.getLogWriter(),
javax.servlet.ServletResponse.getWriter(),
javax.sql.ConnectionPoolDataSource.getLogWriter(),
javax.sql.DataSource.getLogWriter(), javax.sql.XADataSource.getLogWriter()

PushbackInputStream Java 1.0

java.io PJ1.1

This class is a FilterInputStream that implements a one-byte pushback buffer or, as of Java 1.1, a pushback
buffer of a specified length. The unread() methods push bytes back into the stream; these bytes are the first ones read
by the next call to a read() method. This class is sometimes useful when writing parsers. See also

file:///C|/orielly/jnut/ch11_01.htm (52 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

PushbackReader.

public class PushbackInputStream extends FilterInputStream {

// Public Constructors

public PushbackInputStream (java.io.InputStream in);

1.1 public PushbackInputStream (java.io.InputStream in, int size);

// Public Instance Methods

public void unread (int b) throws IOException;

1.1 public void unread (byte[] b) throws IOException;

1.1 public void unread (byte[] b, int off, int len) throws IOException;

// Public Methods Overriding FilterInputStream

public int available () throws IOException;

1.2 public void close () throws IOException; synchronized

public boolean markSupported (); constant

public int read () throws IOException;

public int read (byte[] b, int off, int len) throws IOException;

1.2 public long skip (long n) throws IOException;

// Protected Instance Fields

1.1 protected byte[] buf ;

1.1 protected int pos ;

}

Hierarchy: Object-->java.io.InputStream-->FilterInputStream-->PushbackInputStream

PushbackReader Java 1.1

java.io PJ1.1

This class is a character input stream that uses another input stream as its input source and adds the ability to push
characters back onto the stream. This feature is often useful when writing parsers. When you create a
PushbackReader stream, you specify the stream to be read from and, optionally, the size of the pushback buffer (i.e.,
the number of characters that may be pushed back onto the stream or unread). If you do not specify a size for this buffer,
the default size is one character. PushbackReader inherits or overrides all standard Reader methods and adds three
unread() methods that push a single character, an array of characters, or a portion of an array of characters back onto
the stream. This class is the character stream analog of PushbackInputStream.

public class PushbackReader extends FilterReader {

// Public Constructors

public PushbackReader (Reader in);

public PushbackReader (Reader in, int size);

// Public Instance Methods

file:///C|/orielly/jnut/ch11_01.htm (53 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

public void unread (int c) throws IOException;

public void unread (char[] cbuf) throws IOException;

public void unread (char[] cbuf, int off, int len) throws IOException;

// Public Methods Overriding FilterReader

public void close () throws IOException;

1.2 public void mark (int readAheadLimit) throws IOException;

public boolean markSupported (); constant

public int read () throws IOException;

public int read (char[] cbuf, int off, int len) throws IOException;

public boolean ready () throws IOException;

1.2 public void reset () throws IOException;

}

Hierarchy: Object-->Reader-->FilterReader-->PushbackReader

RandomAccessFile Java 1.0

java.io PJ1.1(opt)

This class allows you to read and write arbitrary bytes, text, and primitive Java data types from or to any specified
location in a file. Because this class provides random, rather than sequential, access to files, it is neither a subclass of
InputStream nor of OutputStream, but provides an entirely independent method for reading and writing data
from or to files. RandomAccessFile implements the same interfaces as DataInputStream and
DataOutputStream, and thus defines the same methods for reading and writing data as those classes do.

The seek() method provides random access to the file; it is used to select the position in the file where data should be
read or written. The mode argument to the constructor methods should be "r" for a file that is to be read-only or "rw" for
a file that is to be written (and perhaps read as well).

public class RandomAccessFile implements DataInputDataOutput {

// Public Constructors

public RandomAccessFile (String name, String mode) throws FileNotFoundException;

public RandomAccessFile (File file, String mode) throws FileNotFoundException;

// Public Instance Methods

public void close () throws IOException; native

public final FileDescriptor getFD () throws IOException;

public long getFilePointer () throws IOException; native

public long length () throws IOException; native

public int read () throws IOException; native

public int read (byte[] b) throws IOException;

public int read (byte[] b, int off, int len) throws IOException;

file:///C|/orielly/jnut/ch11_01.htm (54 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

public void seek (long pos) throws IOException; native

1.2 public void setLength (long newLength) throws IOException; native

// Methods Implementing DataInput

public final boolean readBoolean () throws IOException;

public final byte readByte () throws IOException;

public final char readChar () throws IOException;

public final double readDouble () throws IOException;

public final float readFloat () throws IOException;

public final void readFully (byte[] b) throws IOException;

public final void readFully (byte[] b, int off, int len) throws IOException;

public final int readInt () throws IOException;

public final String readLine () throws IOException;

public final long readLong () throws IOException;

public final short readShort () throws IOException;

public final int readUnsignedByte () throws IOException;

public final int readUnsignedShort () throws IOException;

public final String readUTF () throws IOException;

public int skipBytes (int n) throws IOException;

// Methods Implementing DataOutput

public void write (int b) throws IOException; native

public void write (byte[] b) throws IOException;

public void write (byte[] b, int off, int len) throws IOException;

public final void writeBoolean (boolean v) throws IOException;

public final void writeByte (int v) throws IOException;

public final void writeBytes (String s) throws IOException;

public final void writeChar (int v) throws IOException;

public final void writeChars (String s) throws IOException;

public final void writeDouble (double v) throws IOException;

public final void writeFloat (float v) throws IOException;

public final void writeInt (int v) throws IOException;

public final void writeLong (long v) throws IOException;

public final void writeShort (int v) throws IOException;

public final void writeUTF (String str) throws IOException;

}

Hierarchy: Object-->RandomAccessFile(DataInput,DataOutput)

Reader Java 1.1

file:///C|/orielly/jnut/ch11_01.htm (55 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

java.io PJ1.1

This abstract class is the superclass of all character input streams. It is an analog to InputStream, which is the
superclass of all byte input streams. Reader defines the basic methods that all character output streams provide.
read() returns a single character or an array (or subarray) of characters, blocking if necessary; it returns -1 if the end
of the stream has been reached. ready() returns true if there are characters available for reading. If ready()
returns true, the next call to read() is guaranteed not to block. close() closes the character input stream. skip()
skips a specified number of characters in the input stream. If markSupported() returns true, mark() marks a
position in the stream and, if necessary, creates a look-ahead buffer of the specified size. Future calls to reset()
restore the stream to the marked position if they occur within the specified look-ahead limit. Note that not all stream
types support this mark-and-reset functionality. To create a subclass of Reader, you need only implement the three-
argument version of read() and the close() method. Most subclasses implement additional methods, however.

public abstract class Reader {

// Protected Constructors

protected Reader ();

protected Reader (Object lock);

// Public Instance Methods

public abstract void close () throws IOException;

public void mark (int readAheadLimit) throws IOException;

public boolean markSupported (); constant

public int read () throws IOException;

public int read (char[] cbuf) throws IOException;

public abstract int read (char[] cbuf, int off, int len) throws IOException;

public boolean ready () throws IOException; constant

public void reset () throws IOException;

public long skip (long n) throws IOException;

// Protected Instance Fields

protected Object lock ;

}

Subclasses: BufferedReader, CharArrayReader, FilterReader, InputStreamReader,
PipedReader, StringReader

Passed To: Too many methods to list.

Returned By: java.awt.datatransfer.DataFlavor.getReaderForText(),
java.sql.Clob.getCharacterStream(), java.sql.ResultSet.getCharacterStream(),
java.sql.SQLInput.readCharacterStream()

Type Of: FilterReader.in

file:///C|/orielly/jnut/ch11_01.htm (56 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

SequenceInputStream Java 1.0

java.io PJ1.1

This class provides a way of seamlessly concatenating the data from two or more input streams. It provides an
InputStream interface to a sequence of InputStream objects. Data is read from the streams in the order in which
the streams are specified. When the end of one stream is reached, data is automatically read from the next stream. This
class might be useful, for example, when implementing an include file facility for a parser of some sort.

public class SequenceInputStream extends java.io.InputStream {

// Public Constructors

public SequenceInputStream (java.util.Enumeration e);

public SequenceInputStream (java.io.InputStream s1, java.io.InputStream s2);

// Public Methods Overriding InputStream

1.1 public int available () throws IOException;

public void close () throws IOException;

public int read () throws IOException;

public int read (byte[] b, int off, int len) throws IOException;

}

Hierarchy: Object-->java.io.InputStream-->SequenceInputStream

Serializable Java 1.1

java.io serializable PJ1.1

The Serializable interface defines no methods or constants. A class should implement this interface simply to
indicate that it allows itself to be serialized and deserialized with ObjectOutputStream.writeObject() and
ObjectInputStream.readObject().

Objects that need special handling during serialization or deserialization may implement one or both of the following
methods. Note, however, that these methods are not part of the Serializable interface:

private void writeObject(java.io.ObjectOutputStream out) throws IOException;
private void readObject(java.io.ObjectInputStream in) throws IOException,
ClassNotFoundException;

Typically, the writeObject() method performs any necessary cleanup or preparation for serialization, invokes the
defaultWriteObject() method of the ObjectOutputStream to serialize the non-transient fields of the class,
and optionally writes any additional data that is required. Similarly, the readObject() method typically invokes the
defaultReadObject() method of the ObjectInputStream, reads any additional data written by the

file:///C|/orielly/jnut/ch11_01.htm (57 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

corresponding writeObject() method, and performs any extra initialization required by the object. The
readObject() method may also register an ObjectInputValidation object to validate the object once it is
completely deserialized.

public interface Serializable {

}

Implementations: Too many classes to list.

Passed To: java.security.SignedObject.SignedObject(),
javax.crypto.SealedObject.SealedObject(), javax.jms.ObjectMessage.setObject(),
javax.jms.Session.createObjectMessage(), org.omg.CORBA.Any.insert_Value(),
org.omg.CORBA.DataOutputStream.write_Value(), org.omg.CORBA.DynAny.insert_val(),
org.omg.CORBA.StreamingPolicy.marshal(),
org.omg.CORBA.StringValueHelper.write_value(),
org.omg.CORBA.ValueBaseHelper.{insert(), write()},
org.omg.CORBA.ValueBaseHolder.ValueBaseHolder(),
org.omg.CORBA.WStringValueHelper.write_value(),
org.omg.CORBA.portable.BoxedValueHelper.write_value()

Returned By: java.beans.beancontext.BeanContextSupport.getChildSerializable(),
javax.jms.ObjectMessage.getObject(), org.omg.CORBA.Any.extract_Value(),
org.omg.CORBA.DataInputStream.read_Value(), org.omg.CORBA.DynAny.get_val(),
org.omg.CORBA.StreamingPolicy.unmarshal(),
org.omg.CORBA.StringValueHelper.read_value(),
org.omg.CORBA.ValueBaseHelper.{extract(), read()},
org.omg.CORBA.WStringValueHelper.read_value(),
org.omg.CORBA.portable.BoxedValueHelper.read_value(),
org.omg.CORBA.portable.ValueFactory.read_value()

Type Of: org.omg.CORBA.ValueBaseHolder.value

SerializablePermission Java 1.2

java.io serializable permission

This class is a java.security.Permission that governs the use of certain sensitive features of serialization.
SerializablePermission objects have a name, or target, but do not have an action list. The name
"enableSubclassImplementation" represents permission to serialize and deserialize objects using subclasses of
ObjectOutputStream and ObjectInputStream. This capability is protected by a permission because malicious
code can define object stream subclasses that incorrectly serialize and deserialize objects.

The only other name supported by SerializablePermission is "enableSubstitution", which represents
permission for one object to be substituted for another during serialization or deserialization. The
ObjectOutputStream.enableReplaceObject() and
ObjectInputStream.enableResolveObject() methods require a permission of this type.

file:///C|/orielly/jnut/ch11_01.htm (58 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

Applications never need to use this class. Programmers writing system-level code may use it, and system adminstrators
configuring security policies should be familiar with it.

public final class SerializablePermission extends java.security.BasicPermission {

// Public Constructors

public SerializablePermission (String name);

public SerializablePermission (String name, String actions);

}

Hierarchy: Object-->java.security.Permission(java.security.Guard,Serializable)--
>java.security.BasicPermission(Serializable)-->SerializablePermission

Type Of: ObjectStreamConstants.{SUBCLASS_IMPLEMENTATION_PERMISSION,
SUBSTITUTION_PERMISSION}

StreamCorruptedException Java 1.1

java.io serializable checked PJ1.1

Signals that the data stream being read by an ObjectInputStream has been corrupted and does not contain valid
serialized object data.

public class StreamCorruptedException extends ObjectStreamException {

// Public Constructors

public StreamCorruptedException ();

public StreamCorruptedException (String reason);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->IOException--
>ObjectStreamException-->StreamCorruptedException

Thrown By: ObjectInputStream.{ObjectInputStream(), readStreamHeader()},
java.rmi.server.RemoteCall.getResultStream()

StreamTokenizer Java 1.0

java.io PJ1.1

This class performs lexical analysis of a specified input stream and breaks the input into tokens. It can be extremely
useful when writing simple parsers. nextToken() returns the next token in the stream; this is either one of the

file:///C|/orielly/jnut/ch11_01.htm (59 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

constants defined by the class (which represent end-of-file, end-of-line, a parsed floating-point number, and a parsed
word) or a character value. pushBack() pushes the token back onto the stream, so that it is returned by the next call to
nextToken(). The public variables sval and nval contain the string and numeric values (if applicable) of the most
recently read token. They are applicable when the returned token is TT_WORD or TT_NUMBER. lineno() returns the
current line number.

The remaining methods allow you to specify how tokens are recognized. wordChars() specifies a range of characters
that should be treated as parts of words. whitespaceChars() specifies a range of characters that serve to delimit
tokens. ordinaryChars() and ordinaryChar() specify characters that are never part of tokens and should be
returned as-is. resetSyntax() makes all characters ordinary. eolIsSignificant() specifies whether end-of-
line is significant. If so, the TT_EOL constant is returned for end-of-lines; otherwise, they are treated as whitespace.
commentChar() specifies a character that begins a comment that lasts until the end of the line. No characters in the
comment are returned. slashStarComments() and slashSlashComments() specify whether the
StreamTokenizer should recognize C- and C++-style comments. If so, no part of the comment is returned as a
token. quoteChar() specifies a character used to delimit strings. When a string token is parsed, the quote character is
returned as the token value, and the body of the string is stored in the sval variable. lowerCaseMode() specifies
whether TT_WORD tokens should be converted to all lowercase characters before being stored in sval.
parseNumbers() specifies that the StreamTokenizer should recognize and return double-precision floating-
point number tokens.

public class StreamTokenizer {

// Public Constructors

1.1 public StreamTokenizer (Reader r);

public StreamTokenizer (java.io.InputStream is);

// Public Constants

public static final int TT_EOF ; =-1

public static final int TT_EOL ; =10

public static final int TT_NUMBER ; =-2

public static final int TT_WORD ; =-3

// Public Instance Methods

public void commentChar (int ch);

public void eolIsSignificant (boolean flag);

public int lineno ();

public void lowerCaseMode (boolean fl);

public int nextToken () throws IOException;

public void ordinaryChar (int ch);

public void ordinaryChars (int low, int hi);

public void parseNumbers ();

public void pushBack ();

public void quoteChar (int ch);

public void resetSyntax ();

public void slashSlashComments (boolean flag);

public void slashStarComments (boolean flag);

file:///C|/orielly/jnut/ch11_01.htm (60 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

public void whitespaceChars (int low, int hi);

public void wordChars (int low, int hi);

// Public Methods Overriding Object

public String toString ();

// Public Instance Fields

public double nval ;

public String sval ;

public int ttype ;

}

StringBufferInputStream Java 1.0; Deprecated in Java 1.1

java.io PJ1.1

This class is a subclass of InputStream in which input bytes come from the characters of a specified String object.
This class does not correctly convert the characters of a StringBuffer into bytes and is deprecated as of Java 1.1.
Use StringReader instead to convert characters into bytes or use ByteArrayInputStream to read bytes from
an array of bytes.

public class StringBufferInputStream extends java.io.InputStream {

// Public Constructors

public StringBufferInputStream (String s);

// Public Methods Overriding InputStream

public int available (); synchronized

public int read (); synchronized

public int read (byte[] b, int off, int len); synchronized

public void reset (); synchronized

public long skip (long n); synchronized

// Protected Instance Fields

protected String buffer ;

protected int count ;

protected int pos ;

}

Hierarchy: Object-->java.io.InputStream-->StringBufferInputStream

StringReader Java 1.1

java.io PJ1.1

file:///C|/orielly/jnut/ch11_01.htm (61 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

This class is a character input stream that uses a String object as the source of the characters it returns. When you
create a StringReader, you must specify the String to read from. StringReader defines the normal Reader
methods and supports mark() and reset(). If reset() is called before mark() has been called, the stream is
reset to the beginning of the specified string. StringReader is a character stream analog to
StringBufferInputStream, which is deprecated as of Java 1.1. StringReader is also similar to
CharArrayReader.

public class StringReader extends Reader {

// Public Constructors

public StringReader (String s);

// Public Methods Overriding Reader

public void close ();

public void mark (int readAheadLimit) throws IOException;

public boolean markSupported (); constant

public int read () throws IOException;

public int read (char[] cbuf, int off, int len) throws IOException;

public boolean ready () throws IOException;

public void reset () throws IOException;

public long skip (long ns) throws IOException;

}

Hierarchy: Object-->Reader-->StringReader

StringWriter Java 1.1

java.io PJ1.1

This class is a character output stream that uses an internal StringBuffer object as the destination of the characters
written to the stream. When you create a StringWriter, you may optionally specify an initial size for the
StringBuffer, but you do not specify the StringBuffer itself; it is managed internally by the StringWriter
and grows as necessary to accommodate the characters written to it. StringWriter defines the standard write(),
flush(), and close() methods all Writer subclasses define, as well as two methods to obtain the characters that
have been written to the stream's internal buffer. toString() returns the contents of the internal buffer as a String,
and getBuffer() returns the buffer itself. Note that getBuffer() returns a reference to the actual internal buffer,
not a copy of it, so any changes you make to the buffer are reflected in subsequent calls to toString().
StringWriter is quite similar to CharArrayWriter, but does not have a byte-stream analog.

public class StringWriter extends Writer {

// Public Constructors

public StringWriter ();

public StringWriter (int initialSize);

// Public Instance Methods

file:///C|/orielly/jnut/ch11_01.htm (62 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

public StringBuffer getBuffer ();

// Public Methods Overriding Writer

public void close () throws IOException;

public void flush ();

public void write (int c);

public void write (String str);

public void write (String str, int off, int len);

public void write (char[] cbuf, int off, int len);

// Public Methods Overriding Object

public String toString ();

}

Hierarchy: Object-->Writer-->StringWriter

SyncFailedException Java 1.1

java.io serializable checked PJ1.1

Signals that a call to FileDescriptor.sync() did not complete successfully.

public class SyncFailedException extends IOException {

// Public Constructors

public SyncFailedException (String desc);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->IOException--
>SyncFailedException

Thrown By: FileDescriptor.sync()

UnsupportedEncodingException Java 1.1

java.io serializable checked PJ1.1

Signals that a requested character encoding is not supported by the current Java Virtual Machine.

public class UnsupportedEncodingException extends IOException {

// Public Constructors

public UnsupportedEncodingException ();

file:///C|/orielly/jnut/ch11_01.htm (63 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

public UnsupportedEncodingException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->IOException--
>UnsupportedEncodingException

Thrown By: ByteArrayOutputStream.toString(), InputStreamReader.InputStreamReader(),
OutputStreamWriter.OutputStreamWriter(), String.{getBytes(), String()}

UTFDataFormatException Java 1.0

java.io serializable checked PJ1.1

An IOException that signals that a malformed UTF-8 string has been encountered by a class that implements the
DataInput interface. UTF-8 is an ASCII-compatible transformation format for Unicode characters that is often used
to store and transmit Unicode text.

public class UTFDataFormatException extends IOException {

// Public Constructors

public UTFDataFormatException ();

public UTFDataFormatException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->IOException--
>UTFDataFormatException

WriteAbortedException Java 1.1

java.io serializable checked PJ1.1

Thrown when reading a stream of data that is incomplete because an exception was thrown while it was being written.
The detail field may contain the exception that terminated the output stream. The getMessage() method has been
overridden to include the message of this detail exception, if any.

public class WriteAbortedException extends ObjectStreamException {

// Public Constructors

public WriteAbortedException (String s, Exception ex);

// Public Methods Overriding Throwable

public String getMessage ();

// Public Instance Fields

file:///C|/orielly/jnut/ch11_01.htm (64 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

public Exception detail ;

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->IOException--
>ObjectStreamException-->WriteAbortedException

Writer Java 1.1

java.io PJ1.1

This abstract class is the superclass of all character output streams. It is an analog to OutputStream, which is the
superclass of all byte output streams. Writer defines the basic write(), flush(), and close() methods all
character output streams provide. The five versions of the write() method write a single character, a character array
or subarray, or a string or substring to the destination of the stream. The most general version of this method--the one
that writes a specified portion of a character array--is abstract and must be implemented by all subclasses. By default,
the other write() methods are implemented in terms of this abstract one. The flush() method is another abstract
method all subclasses must implement. It should force any output buffered by the stream to be written to its destination.
If that destination is itself a character or byte output stream, it should invoke the flush() method of the destination
stream as well. The close() method is also abstract. A subclass must implement this method so that it flushes and
then closes the current stream and also closes whatever destination stream it is connected to. Once the stream is closed,
any future calls to write() or flush() should throw an IOException.

public abstract class Writer {

// Protected Constructors

protected Writer ();

protected Writer (Object lock);

// Public Instance Methods

public abstract void close () throws IOException;

public abstract void flush () throws IOException;

public void write (String str) throws IOException;

public void write (char[] cbuf) throws IOException;

public void write (int c) throws IOException;

public void write (String str, int off, int len) throws IOException;

public abstract void write (char[] cbuf, int off, int len) throws IOException;

// Protected Instance Fields

protected Object lock ;

}

Subclasses: BufferedWriter, CharArrayWriter, FilterWriter, OutputStreamWriter,
PipedWriter, PrintWriter, StringWriter

Passed To: Too many methods to list.

file:///C|/orielly/jnut/ch11_01.htm (65 of 66) [2/5/2003 7:50:18 PM]

The java.io Package (Java in a Nutshell)

Returned By: javax.swing.text.AbstractWriter.getWriter()

Type Of: FilterWriter.out, PrintWriter.out

10.1. The
java.beans.beancontext
Package

12. The java.lang Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch11_01.htm (66 of 66) [2/5/2003 7:50:18 PM]

file:///C|/orielly/jnut/copyrght.htm

The java.lang Package (Java in a Nutshell)

Part 2: API Quick Reference

Chapter 12. The java.lang Package
The java.lang package contains the classes that are most central to the Java language. As you can see from Figure 12-1, the class
hierarchy is broad rather than deep, which means that the classes are independent of each other.

Figure 12-1. The java.lang package

Object is the ultimate superclass of all Java classes and is therefore at the top of all class hierarchies. Class is a class that describes a
Java class. There is one Class object for each class that is loaded into Java.

file:///C|/orielly/jnut/ch12_01.htm (1 of 59) [2/5/2003 7:50:33 PM]

The java.lang Package (Java in a Nutshell)

Boolean, Character, Byte, Short, Integer, Long, Float, and Double are immutable class wrappers around each of the
primitive Java data types. These classes are useful when you need to manipulate primitive types as objects. They also contain useful
conversion and utility methods. String and StringBuffer are objects that represent strings. String is an immutable type, while
StringBuffer can have its string changed in place. In Java 1.2 and later, all these classes (except StringBuffer) implement the
Comparable interface, which enables sorting and searching algorithms. The Math class (and, in Java 1.3, the StrictMath class)
defines static methods for various floating-point mathematical functions.

The Thread class provides support for multiple threads of control running within the same Java interpreter. The Runnable interface
is implemented by objects that have a run() method that can serve as the body of a thread.

System provides low-level system methods. Runtime provides similar low-level methods, including an exec() method that, along
with the Process class, defines an API for running external processes.

Throwable is the root class of the exception and error hierarchy. Throwable objects are used with the Java throw and catch
statements. java.lang defines quite a few subclasses of Throwable. Exception and Error are the superclasses of all
exceptions and errors. Figure 12-2 and Figure 12-3 show the class hierarchies for these core Java exceptions and errors.

Figure 12-2. The exception classes in the java.lang package

file:///C|/orielly/jnut/ch12_01.htm (2 of 59) [2/5/2003 7:50:33 PM]

The java.lang Package (Java in a Nutshell)

Figure 12-3. The error classes in the java.lang package

AbstractMethodError Java 1.0

java.lang serializable error PJ1.1

Signals an attempt to invoke an abstract method.

public class AbstractMethodError extends IncompatibleClassChangeError {

// Public Constructors

public AbstractMethodError ();

public AbstractMethodError (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Error-->LinkageError--
>IncompatibleClassChangeError-->AbstractMethodError

ArithmeticException Java 1.0

java.lang serializable unchecked PJ1.1

A RuntimeException that signals an exceptional arithmetic condition, such as integer division by zero.

public class ArithmeticException extends RuntimeException {

// Public Constructors

public ArithmeticException ();

file:///C|/orielly/jnut/ch12_01.htm (3 of 59) [2/5/2003 7:50:33 PM]

The java.lang Package (Java in a Nutshell)

public ArithmeticException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->RuntimeException--
>ArithmeticException

ArrayIndexOutOfBoundsException Java 1.0

java.lang
serializable unchecked

PJ1.1

Signals that an array index less than zero or greater than or equal to the array size has been used.

public class ArrayIndexOutOfBoundsException extends IndexOutOfBoundsException {

// Public Constructors

public ArrayIndexOutOfBoundsException ();

public ArrayIndexOutOfBoundsException (String s);

public ArrayIndexOutOfBoundsException (int index);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->RuntimeException--
>IndexOutOfBoundsException-->ArrayIndexOutOfBoundsException

Thrown By: Too many methods to list.

ArrayStoreException Java 1.0

java.lang serializable unchecked PJ1.1

Signals an attempt to store the wrong type of object into an array.

public class ArrayStoreException extends RuntimeException {

// Public Constructors

public ArrayStoreException ();

public ArrayStoreException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->RuntimeException--
>ArrayStoreException

Boolean Java 1.0

java.lang serializable PJ1.1

file:///C|/orielly/jnut/ch12_01.htm (4 of 59) [2/5/2003 7:50:33 PM]

The java.lang Package (Java in a Nutshell)

This class provides an immutable object wrapper around the boolean primitive type. Note that the TRUE and FALSE constants are
Boolean objects; they are not the same as the true and falseboolean values. As of Java 1.1, this class defines a Class constant
that represents the boolean type. booleanValue() returns the boolean value of a Boolean object. The class method
getBoolean() retrieves the boolean value of a named property from the system property list. The class method valueOf()
parses a string and returns the boolean value it represents.

public final class Boolean implements Serializable {

// Public Constructors

public Boolean (boolean value);

public Boolean (String s);

// Public Constants

public static final Boolean FALSE ;

public static final Boolean TRUE ;

1.1 public static final Class TYPE ;

// Public Class Methods

public static boolean getBoolean (String name);

public static Boolean valueOf (String s);

// Public Instance Methods

public boolean booleanValue ();

// Public Methods Overriding Object

public boolean equals (Object obj);

public int hashCode ();

public String toString ();

}

Hierarchy: Object-->Boolean(Serializable)

Passed To: javax.swing.DefaultDesktopManager.setWasIcon()

Returned By: Boolean.valueOf(), javax.swing.filechooser.FileView.isTraversable()

Type Of: java.awt.font.TextAttribute.{RUN_DIRECTION_LTR, RUN_DIRECTION_RTL, STRIKETHROUGH_ON,
SWAP_COLORS_ON}, Boolean.{FALSE, TRUE}

Byte Java 1.1

java.lang serializable comparable PJ1.1

This class provides an object wrapper around the byte primitive type. It defines useful constants for the minimum and maximum
values that can be stored by the byte type and a Class object constant that represents the byte type. It also provides various
methods for converting Byte values to and from strings and other numeric types.

Most of the static methods of this class can convert a String to a Byte object or a byte value: the four parseByte() and
valueOf() methods parse a number from the specified string using an optionally specified radix and return it in one of these two
forms. The decode() method parses a byte specified in base 10, base 8, or base 16 and returns it as a Byte. If the string begins with
"0x" or "#", it is interpreted as a hexadecimal number. If it begins with "0", it is interpreted as an octal number. Otherwise, it is
interpreted as a decimal number.

file:///C|/orielly/jnut/ch12_01.htm (5 of 59) [2/5/2003 7:50:33 PM]

The java.lang Package (Java in a Nutshell)

Note that this class has two toString() methods. One is static and converts a byte primitive value to a string; the other is the usual
toString() method that converts a Byte object to a string. Most of the remaining methods convert a Byte to various primitive
numeric types.

public final class Byte extends Number implements Comparable {

// Public Constructors

public Byte (byte value);

public Byte (String s) throws NumberFormatException;

// Public Constants

public static final byte MAX_VALUE ; =127

public static final byte MIN_VALUE ; =-128

public static final Class TYPE ;

// Public Class Methods

public static Byte decode (String nm) throws NumberFormatException;

public static byte parseByte (String s) throws NumberFormatException;

public static byte parseByte (String s, int radix) throws NumberFormatException;

public static String toString (byte b);

public static Byte valueOf (String s) throws NumberFormatException;

public static Byte valueOf (String s, int radix) throws NumberFormatException;

// Public Instance Methods

1.2 public int compareTo (Byte anotherByte);

// Methods Implementing Comparable

1.2 public int compareTo (Object o);

// Public Methods Overriding Number

public byte byteValue ();

public double doubleValue ();

public float floatValue ();

public int intValue ();

public long longValue ();

public short shortValue ();

// Public Methods Overriding Object

public boolean equals (Object obj);

public int hashCode ();

public String toString ();

}

Hierarchy: Object-->Number(Serializable)-->Byte(Comparable)

Passed To: Byte.compareTo()

Returned By: Byte.{decode(), valueOf()}

Character Java 1.0

java.lang serializable comparable PJ1.1

file:///C|/orielly/jnut/ch12_01.htm (6 of 59) [2/5/2003 7:50:33 PM]

The java.lang Package (Java in a Nutshell)

This class provides an immutable object wrapper around the primitive char data type. charValue() returns the char value of a
Character object. A number of class methods provide the Java/Unicode equivalent of the C <ctype.h> character macros for
checking the type of characters and converting to uppercase and lowercase letters. getType() returns the character type. The return
value is one of the constants defined by the class, which represents a number of broad Unicode character categories. digit() returns
the integer equivalent of a given character for a given radix (e.g., radix 16 for hexadecimal). forDigit() returns the character that
corresponds to the specified value for the specified radix.

public final class Character implements ComparableSerializable {

// Public Constructors

public Character (char value);

// Public Constants

1.1 public static final byte COMBINING_SPACING_MARK ; =8

1.1 public static final byte CONNECTOR_PUNCTUATION ; =23

1.1 public static final byte CONTROL ; =15

1.1 public static final byte CURRENCY_SYMBOL ; =26

1.1 public static final byte DASH_PUNCTUATION ; =20

1.1 public static final byte DECIMAL_DIGIT_NUMBER ; =9

1.1 public static final byte ENCLOSING_MARK ; =7

1.1 public static final byte END_PUNCTUATION ; =22

1.1 public static final byte FORMAT ; =16

1.1 public static final byte LETTER_NUMBER ; =10

1.1 public static final byte LINE_SEPARATOR ; =13

1.1 public static final byte LOWERCASE_LETTER ; =2

1.1 public static final byte MATH_SYMBOL ; =25

public static final int MAX_RADIX ; =36

public static final char MAX_VALUE ; ='\uFFFF'

public static final int MIN_RADIX ; =2

public static final char MIN_VALUE ; ='\0'

1.1 public static final byte MODIFIER_LETTER ; =4

1.1 public static final byte MODIFIER_SYMBOL ; =27

1.1 public static final byte NON_SPACING_MARK ; =6

1.1 public static final byte OTHER_LETTER ; =5

1.1 public static final byte OTHER_NUMBER ; =11

1.1 public static final byte OTHER_PUNCTUATION ; =24

1.1 public static final byte OTHER_SYMBOL ; =28

1.1 public static final byte PARAGRAPH_SEPARATOR ; =14

1.1 public static final byte PRIVATE_USE ; =18

1.1 public static final byte SPACE_SEPARATOR ; =12

1.1 public static final byte START_PUNCTUATION ; =21

1.1 public static final byte SURROGATE ; =19

1.1 public static final byte TITLECASE_LETTER ; =3

1.1 public static final Class TYPE ;

1.1 public static final byte UNASSIGNED ; =0

1.1 public static final byte UPPERCASE_LETTER ; =1

// Inner Classes

1.2 ;

file:///C|/orielly/jnut/ch12_01.htm (7 of 59) [2/5/2003 7:50:33 PM]

The java.lang Package (Java in a Nutshell)

1.2 ;

// Public Class Methods

public static int digit (char ch, int radix);

public static char forDigit (int digit, int radix);

1.1 public static int getNumericValue (char ch);

1.1 public static int getType (char ch);

public static boolean isDefined (char ch);

public static boolean isDigit (char ch);

1.1 public static boolean isIdentifierIgnorable (char ch);

1.1 public static boolean isISOControl (char ch);

1.1 public static boolean isJavaIdentifierPart (char ch);

1.1 public static boolean isJavaIdentifierStart (char ch);

public static boolean isLetter (char ch);

public static boolean isLetterOrDigit (char ch);

public static boolean isLowerCase (char ch);

1.1 public static boolean isSpaceChar (char ch);

public static boolean isTitleCase (char ch);

1.1 public static boolean isUnicodeIdentifierPart (char ch);

1.1 public static boolean isUnicodeIdentifierStart (char ch);

public static boolean isUpperCase (char ch);

1.1 public static boolean isWhitespace (char ch);

public static char toLowerCase (char ch);

public static char toTitleCase (char ch);

public static char toUpperCase (char ch);

// Public Instance Methods

public char charValue ();

1.2 public int compareTo (Character anotherCharacter);

// Methods Implementing Comparable

1.2 public int compareTo (Object o);

// Public Methods Overriding Object

public boolean equals (Object obj);

public int hashCode ();

public String toString ();

// Deprecated Public Methods

public static boolean isJavaLetter (char ch);

public static boolean isJavaLetterOrDigit (char ch);

public static boolean isSpace (char ch);

}

Hierarchy: Object-->Character(Comparable,Serializable)

Passed To: Character.compareTo()

Character.Subset Java 1.2

file:///C|/orielly/jnut/ch12_01.htm (8 of 59) [2/5/2003 7:50:33 PM]

The java.lang Package (Java in a Nutshell)

java.lang

This class represents a named subset of the Unicode character set. The toString() method returns the name of the subset. This is a
base class intended for further subclassing. Note, in particular, that it does not provide a way to list the members of the subset, nor a
way to test for membership in the subset. See Character.UnicodeBlock.

public static class Character.Subset {

// Protected Constructors

protected Subset (String name);

// Public Methods Overriding Object

public final boolean equals (Object obj);

public final int hashCode ();

public final String toString ();

}

Subclasses: java.awt.im.InputSubset, Character.UnicodeBlock

Passed To: java.awt.im.InputContext.setCharacterSubsets(),
java.awt.im.spi.InputMethod.setCharacterSubsets()

Character.UnicodeBlock Java 1.2

java.lang

This subclass of Character.Subset defines a number of constants that represent named subsets of the Unicode character set. The
subsets and their names are the "character blocks" defined by the Unicode 2.0 specification (see http://www.unicode.org/•). The static
method of() takes a character and returns the Character.UnicodeBlock to which it belongs, or null if it is not part of any
defined block. When presented with an unknown Unicode character, this method provides a useful way to determine what alphabet it
belongs to.

public static final class Character.UnicodeBlock extends Character.Subset {

// No Constructor

// Public Constants

public static final Character.UnicodeBlock ALPHABETIC_PRESENTATION_FORMS ;

public static final Character.UnicodeBlock ARABIC ;

public static final Character.UnicodeBlock ARABIC_PRESENTATION_FORMS_A ;

public static final Character.UnicodeBlock ARABIC_PRESENTATION_FORMS_B ;

public static final Character.UnicodeBlock ARMENIAN ;

public static final Character.UnicodeBlock ARROWS ;

public static final Character.UnicodeBlock BASIC_LATIN ;

public static final Character.UnicodeBlock BENGALI ;

public static final Character.UnicodeBlock BLOCK_ELEMENTS ;

public static final Character.UnicodeBlock BOPOMOFO ;

public static final Character.UnicodeBlock BOX_DRAWING ;

public static final Character.UnicodeBlock CJK_COMPATIBILITY ;

file:///C|/orielly/jnut/ch12_01.htm (9 of 59) [2/5/2003 7:50:33 PM]

http://www.unicode.org/

The java.lang Package (Java in a Nutshell)

public static final Character.UnicodeBlock CJK_COMPATIBILITY_FORMS ;

public static final Character.UnicodeBlock CJK_COMPATIBILITY_IDEOGRAPHS ;

public static final Character.UnicodeBlock CJK_SYMBOLS_AND_PUNCTUATION ;

public static final Character.UnicodeBlock CJK_UNIFIED_IDEOGRAPHS ;

public static final Character.UnicodeBlock COMBINING_DIACRITICAL_MARKS ;

public static final Character.UnicodeBlock COMBINING_HALF_MARKS ;

public static final Character.UnicodeBlock COMBINING_MARKS_FOR_SYMBOLS ;

public static final Character.UnicodeBlock CONTROL_PICTURES ;

public static final Character.UnicodeBlock CURRENCY_SYMBOLS ;

public static final Character.UnicodeBlock CYRILLIC ;

public static final Character.UnicodeBlock DEVANAGARI ;

public static final Character.UnicodeBlock DINGBATS ;

public static final Character.UnicodeBlock ENCLOSED_ALPHANUMERICS ;

public static final Character.UnicodeBlock ENCLOSED_CJK_LETTERS_AND_MONTHS ;

public static final Character.UnicodeBlock GENERAL_PUNCTUATION ;

public static final Character.UnicodeBlock GEOMETRIC_SHAPES ;

public static final Character.UnicodeBlock GEORGIAN ;

public static final Character.UnicodeBlock GREEK ;

public static final Character.UnicodeBlock GREEK_EXTENDED ;

public static final Character.UnicodeBlock GUJARATI ;

public static final Character.UnicodeBlock GURMUKHI ;

public static final Character.UnicodeBlock HALFWIDTH_AND_FULLWIDTH_FORMS ;

public static final Character.UnicodeBlock HANGUL_COMPATIBILITY_JAMO ;

public static final Character.UnicodeBlock HANGUL_JAMO ;

public static final Character.UnicodeBlock HANGUL_SYLLABLES ;

public static final Character.UnicodeBlock HEBREW ;

public static final Character.UnicodeBlock HIRAGANA ;

public static final Character.UnicodeBlock IPA_EXTENSIONS ;

public static final Character.UnicodeBlock KANBUN ;

public static final Character.UnicodeBlock KANNADA ;

public static final Character.UnicodeBlock KATAKANA ;

public static final Character.UnicodeBlock LAO ;

public static final Character.UnicodeBlock LATIN_1_SUPPLEMENT ;

public static final Character.UnicodeBlock LATIN_EXTENDED_A ;

public static final Character.UnicodeBlock LATIN_EXTENDED_ADDITIONAL ;

public static final Character.UnicodeBlock LATIN_EXTENDED_B ;

public static final Character.UnicodeBlock LETTERLIKE_SYMBOLS ;

public static final Character.UnicodeBlock MALAYALAM ;

public static final Character.UnicodeBlock MATHEMATICAL_OPERATORS ;

public static final Character.UnicodeBlock MISCELLANEOUS_SYMBOLS ;

public static final Character.UnicodeBlock MISCELLANEOUS_TECHNICAL ;

public static final Character.UnicodeBlock NUMBER_FORMS ;

public static final Character.UnicodeBlock OPTICAL_CHARACTER_RECOGNITION ;

public static final Character.UnicodeBlock ORIYA ;

public static final Character.UnicodeBlock PRIVATE_USE_AREA ;

file:///C|/orielly/jnut/ch12_01.htm (10 of 59) [2/5/2003 7:50:33 PM]

The java.lang Package (Java in a Nutshell)

public static final Character.UnicodeBlock SMALL_FORM_VARIANTS ;

public static final Character.UnicodeBlock SPACING_MODIFIER_LETTERS ;

public static final Character.UnicodeBlock SPECIALS ;

public static final Character.UnicodeBlock SUPERSCRIPTS_AND_SUBSCRIPTS ;

public static final Character.UnicodeBlock SURROGATES_AREA ;

public static final Character.UnicodeBlock TAMIL ;

public static final Character.UnicodeBlock TELUGU ;

public static final Character.UnicodeBlock THAI ;

public static final Character.UnicodeBlock TIBETAN ;

// Public Class Methods

public static Character.UnicodeBlock of (char c);

}

Returned By: Character.UnicodeBlock.of()

Type Of: Too many fields to list.

Class Java 1.0

java.lang serializable PJ1.1

This class represents a Java class or interface, or, as of Java 1.1, any Java type. There is one Class object for each class that is loaded
into the Java Virtual Machine, and, as of Java 1.1, there are special Class objects that represent the Java primitive types. The TYPE
constants defined by Boolean, Integer, and the other primitive wrapper classes hold these special Class objects. Array types are
also represented by Class objects in Java 1.1.

There is no constructor for this class. You can obtain a Class object by calling the getClass() method of any instance of the
desired class. In Java 1.1 and later, you can also refer to a Class object by appending .class to the name of a class. Finally, and
most interestingly, a class can be dynamically loaded by passing its fully qualified name (i.e., package name plus class name) to the
static Class.forName() method. This method loads the named class (if it is not already loaded) into the Java interpreter and returns
a Class object for it. Classes can also be loaded with a ClassLoader object.

The newInstance() method creates an instance of a given class; this allows you to create instances of dynamically loaded classes
for which you cannot use the new keyword. Note that this method only works when the target class has a no-argument constructor. See
newInstance() in java.lang.reflect.Constructor for a more powerful way to instantiate dynamically loaded classes.

getName() returns the name of the class. getSuperclass() returns its superclass. isInterface() tests whether the Class
object represents an interface, and getInterfaces() returns an array of the interfaces that this class implements. In Java 1.2 and
later, getPackage() returns a Package object that represents the package containing the class. getProtectionDomain()
returns the java.security.ProtectionDomain to which this class belongs. The various other get() and is() methods
return other information about the represented class; they form part of the Java Reflection API, along with the classes in
java.lang.reflect.

public final class Class implements Serializable {

// No Constructor

// Public Class Methods

public static Class forName (String className) throws ClassNotFoundException;

1.2 public static Class forName (String name, boolean initialize, ClassLoader loader) throws ClassNotFoundException;

file:///C|/orielly/jnut/ch12_01.htm (11 of 59) [2/5/2003 7:50:33 PM]

The java.lang Package (Java in a Nutshell)

// Property Accessor Methods (by property name)

1.1 public boolean isArray (); native

1.1 public Class[] getClasses ();

public ClassLoader getClassLoader ();

1.1 public Class getComponentType (); native

1.1 public java.lang.reflect.Constructor[] getConstructors () throws SecurityException;

1.1 public Class[] getDeclaredClasses () throws SecurityException;

1.1 public java.lang.reflect.Constructor[] getDeclaredConstructors () throws SecurityException;

1.1 public java.lang.reflect.Field[] getDeclaredFields () throws SecurityException;

1.1 public java.lang.reflect.Method[] getDeclaredMethods () throws SecurityException;

1.1 public Class getDeclaringClass (); native

1.1 public java.lang.reflect.Field[] getFields () throws SecurityException;

public boolean isInterface (); native

public Class[] getInterfaces (); native

1.1 public java.lang.reflect.Method[] getMethods () throws SecurityException;

1.1 public int getModifiers (); native

public String getName (); native

1.2 public Package getPackage ();

1.1 public boolean isPrimitive (); native

1.2 public java.security.ProtectionDomain getProtectionDomain ();

1.1 public Object[] getSigners (); native

public Class getSuperclass (); native

// Public Instance Methods

1.1
public java.lang.reflect.Constructor getConstructor (Class[] parameterTypes) throws
NoSuchMethodExceptionSecurityException;

1.1
public java.lang.reflect.Constructor getDeclaredConstructor (Class[] parameterTypes) throws
NoSuchMethodExceptionSecurityException;

1.1 public java.lang.reflect.Field getDeclaredField (String name) throws NoSuchFieldExceptionSecurityException;

1.1
public java.lang.reflect.Method getDeclaredMethod (String name, Class[] parameterTypes) throws
NoSuchMethodExceptionSecurityException;

1.1 public java.lang.reflect.Field getField (String name) throws NoSuchFieldExceptionSecurityException;

1.1
public java.lang.reflect.Method getMethod (String name, Class[] parameterTypes) throws
NoSuchMethodExceptionSecurityException;

1.1 public java.net.URL getResource (String name);

1.1 public java.io.InputStream getResourceAsStream (String name);

1.1 public boolean isAssignableFrom (Class cls); native

1.1 public boolean isInstance (Object obj); native

public Object newInstance () throws InstantiationExceptionIllegalAccessException;

// Public Methods Overriding Object

public String toString ();

}

Hierarchy: Object-->Class(Serializable)

Passed To: Too many methods to list.

file:///C|/orielly/jnut/ch12_01.htm (12 of 59) [2/5/2003 7:50:33 PM]

The java.lang Package (Java in a Nutshell)

Returned By: Too many methods to list.

Type Of: java.beans.beancontext.BeanContextServiceAvailableEvent.serviceClass,
java.beans.beancontext.BeanContextServiceRevokedEvent.serviceClass, Boolean.TYPE,
Byte.TYPE, Character.TYPE, Double.TYPE, Float.TYPE, Integer.TYPE, Long.TYPE, Short.TYPE,
Void.TYPE

ClassCastException Java 1.0

java.lang serializable unchecked PJ1.1

Signals an invalid cast of an object to a type of which it is not an instance.

public class ClassCastException extends RuntimeException {

// Public Constructors

public ClassCastException ();

public ClassCastException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->RuntimeException--
>ClassCastException

ClassCircularityError Java 1.0

java.lang serializable error PJ1.1

Signals that a circular dependency has been detected while performing initialization for a class.

public class ClassCircularityError extends LinkageError {

// Public Constructors

public ClassCircularityError ();

public ClassCircularityError (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Error-->LinkageError-->ClassCircularityError

ClassFormatError Java 1.0

java.lang serializable error PJ1.1

Signals an error in the binary format of a class file.

public class ClassFormatError extends LinkageError {

// Public Constructors

file:///C|/orielly/jnut/ch12_01.htm (13 of 59) [2/5/2003 7:50:33 PM]

The java.lang Package (Java in a Nutshell)

public ClassFormatError ();

public ClassFormatError (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Error-->LinkageError-->ClassFormatError

Subclasses: UnsupportedClassVersionError

Thrown By: ClassLoader.defineClass()

ClassLoader Java 1.0

java.lang PJ1.1

This class is the abstract superclass of objects that know how to load Java classes into a Java VM. Given a ClassLoader object, you
can dynamically load a class by calling the public loadClass() method, specifying the full name of the desired class. You can
obtain a resource associated with a class by calling getResource(), getResources(), and getResourceAsStream().
Many applications do not need to use ClassLoader directly; these applications use the Class.forName() and
Class.getResource() methods to dynamically load classes and resources using the ClassLoader object that loaded the
application itself.

In order to load classes over the network or from any source other than the standard system classes, you must use a custom
ClassLoader object that knows how to obtain data from that source. A java.net.URLClassLoader is suitable for this purpose
for almost all applications. Only rarely should an application need to define a ClassLoader subclass of its own. When this is
necessary, the subclass should typically extend java.security.SecureClassLoader and override the findClass()
method. This method must find the bytes that comprise the named class, then pass them to the defineClass() method and return
the resulting Class object. In Java 1.2 and later, the findClass() method must also define the Package object associated with the
class, if it has not already been defined. It can use getPackage() and definePackage() for this purpose. Custom subclasses of
ClassLoader should also override findResource() and findResources() to enable the public getResource() and
getResources() methods.

public abstract class ClassLoader {

// Protected Constructors

protected ClassLoader ();

1.2 protected ClassLoader (ClassLoader parent);

// Public Class Methods

1.2 public static ClassLoader getSystemClassLoader ();

1.1 public static java.net.URL getSystemResource (String name);

1.1 public static java.io.InputStream getSystemResourceAsStream (String name);

1.2 public static java.util.Enumeration getSystemResources (String name) throws java.io.IOException;

// Public Instance Methods

1.2 public final ClassLoader getParent ();

1.1 public java.net.URL getResource (String name);

1.1 public java.io.InputStream getResourceAsStream (String name);

1.2 public final java.util.Enumeration getResources (String name) throws java.io.IOException;

1.1 public Class loadClass (String name) throws ClassNotFoundException;

// Protected Instance Methods

file:///C|/orielly/jnut/ch12_01.htm (14 of 59) [2/5/2003 7:50:33 PM]

The java.lang Package (Java in a Nutshell)

1.1 protected final Class defineClass (String name, byte[] b, int off, int len) throws ClassFormatError;

1.2
protected final Class defineClass (String name, byte[] b, int off, int len, java.security.ProtectionDomain
protectionDomain) throws ClassFormatError;

1.2
protected Package definePackage (String name, String specTitle, String specVersion, String specVendor, String
implTitle, String implVersion, String implVendor, java.net.URL sealBase) throws IllegalArgumentException;

1.2 protected Class findClass (String name) throws ClassNotFoundException;

1.2 protected String findLibrary (String libname); constant

1.1 protected final Class findLoadedClass (String name); native

1.2 protected java.net.URL findResource (String name); constant

1.2 protected java.util.Enumeration findResources (String name) throws java.io.IOException;

protected final Class findSystemClass (String name) throws ClassNotFoundException;

1.2 protected Package getPackage (String name);

1.2 protected Package[] getPackages ();

protected Class loadClass (String name, boolean resolve) throws ClassNotFoundException; synchronized

protected final void resolveClass (Class c);

1.1 protected final void setSigners (Class c, Object[] signers);

// Deprecated Protected Methods

protected final Class defineClass (byte[] b, int off, int len) throws ClassFormatError;

}

Subclasses: java.security.SecureClassLoader

Passed To: Too many methods to list.

Returned By: Class.getClassLoader(), ClassLoader.{getParent(), getSystemClassLoader()},
SecurityManager.currentClassLoader(), Thread.getContextClassLoader(),
java.rmi.server.RMIClassLoader.getClassLoader()

ClassNotFoundException Java 1.0

java.lang serializable checked PJ1.1

Signals that a class to be loaded cannot be found.

public class ClassNotFoundException extends Exception {

// Public Constructors

public ClassNotFoundException ();

public ClassNotFoundException (String s);

1.2 public ClassNotFoundException (String s, Throwable ex);

// Public Instance Methods

1.2 public Throwable getException (); default:null

// Public Methods Overriding Throwable

1.2 public void printStackTrace ();

1.2 public void printStackTrace (java.io.PrintWriter pw);

1.2 public void printStackTrace (java.io.PrintStream ps);

}

file:///C|/orielly/jnut/ch12_01.htm (15 of 59) [2/5/2003 7:50:33 PM]

The java.lang Package (Java in a Nutshell)

Hierarchy: Object-->Throwable(Serializable)-->Exception-->ClassNotFoundException

Thrown By: Too many methods to list.

Cloneable Java 1.0

java.lang cloneable PJ1.1

This interface defines no methods or variables, but indicates that the class that implements it may be cloned (i.e., copied) by calling the
Object method clone(). Calling clone() for an object that does not implement this interface (and does not override clone()
with its own implementation) causes a CloneNotSupportedException to be thrown.

public interface Cloneable {

}

Implementations: Too many classes to list.

CloneNotSupportedException Java 1.0

java.lang serializable checked PJ1.1

Signals that the clone() method has been called for an object of a class that does not implement the Cloneable interface.

public class CloneNotSupportedException extends Exception {

// Public Constructors

public CloneNotSupportedException ();

public CloneNotSupportedException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->CloneNotSupportedException

Subclasses: java.rmi.server.ServerCloneException

Thrown By: java.awt.datatransfer.DataFlavor.clone(), Object.clone(),
java.rmi.server.UnicastRemoteObject.clone(), java.security.MessageDigest.clone(),
java.security.MessageDigestSpi.clone(), java.security.Signature.clone(),
java.security.SignatureSpi.clone(), javax.crypto.Mac.clone(), javax.crypto.MacSpi.clone(),
javax.swing.AbstractAction.clone(), javax.swing.DefaultListSelectionModel.clone(),
javax.swing.tree.DefaultTreeSelectionModel.clone()

Comparable Java 1.2

java.lang comparable

file:///C|/orielly/jnut/ch12_01.htm (16 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

This interface defines a single method, compareTo(), that is responsible for comparing one object to another and determining their
relative order, according to some natural ordering for that class of objects. Any general-purpose class that represents a value that can be
sorted or ordered should implement this interface. Any class that does implement this interface can make use of various powerful
methods such as java.util.Collections.sort() and java.util.Arrays.binarySearch(). As of Java 1.2, many of
the key classes in the Java API have been modified to implement this interface.

The compareTo() object compares this object to the object passed as an argument. It should assume that the supplied object is of the
appropriate type; if it is not, it should throw a ClassCastException. If this object is less than the supplied object or should appear
before the supplied object in a sorted list, compareTo() should return a negative number. If this object is greater than the supplied
object or should come after the supplied object in a sorted list, compareTo() should return a positive integer. If the two objects are
equivalent, and their relative order in a sorted list does not matter, compareTo() should return 0. If compareTo() returns 0 for two
objects, the equals() method should typically return true. If this is not the case, the Comparable objects are not suitable for use
in java.util.TreeSet and java.util.TreeMap classes.

See java.util.Comparator for a way to define an ordering for objects that do not implement Comparable or to define an
ordering other than the natural ordering defined by a Comparable class.

public interface Comparable {

// Public Instance Methods

public abstract int compareTo (Object o);

}

Implementations: java.io.File, java.io.ObjectStreamField, Byte, Character, Double, Float,
Integer, Long, Short, String, java.math.BigDecimal, java.math.BigInteger,
java.text.CollationKey, java.util.Date

Compiler Java 1.0

java.lang PJ1.1

The static methods of this class provide an interface to the just-in-time (JIT) byte-code-to-native code compiler in use by the Java
interpreter. If no JIT compiler is in use by the VM, these methods do nothing. compileClass() asks the JIT compiler to compile the
specified class. compileClasses() asks the JIT compiler to compile all classes that match the specified name. These methods
return true if the compilation was successful, or false if it failed or if there is no JIT compiler on the system. enable() and
disable() turn just-in-time compilation on and off. command() asks the JIT compiler to perform some compiler-specific
operation; this is a hook for vendor extensions. No standard operations have been defined.

public final class Compiler {

// No Constructor

// Public Class Methods

public static Object command (Object any); native

public static boolean compileClass (Class clazz); native

public static boolean compileClasses (String string); native

public static void disable (); native

public static void enable (); native

}

Double Java 1.0

file:///C|/orielly/jnut/ch12_01.htm (17 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

java.lang serializable comparable PJ1.1

This class provides an immutable object wrapper around the double primitive data type. valueOf() converts a string to a Double,
doubleValue() returns the primitive double value of a Double object, and there are other methods for returning a Double
value as a variety of other primitive types. This class also provides some useful constants and static methods for testing double
values. MIN_VALUE and MAX_VALUE are the smallest (closest to zero) and largest representable double values. isInfinite() in
class and instance method forms tests whether a double or a Double has an infinite value. Similarly, isNaN() tests whether a
double or Double is not-a-number; this is a comparison that cannot be done directly because the NaN constant never tests equal to
any other value, including itself. doubleToLongBits() and longBitsToDouble() allow you to manipulate the bit
representation of a double directly.

public final class Double extends Number implements Comparable {

// Public Constructors

public Double (String s) throws NumberFormatException;

public Double (double value);

// Public Constants

public static final double MAX_VALUE ; =1.7976931348623157E308

public static final double MIN_VALUE ;

public static final double NaN ; =NaN

public static final double NEGATIVE_INFINITY ; =-Infinity

public static final double POSITIVE_INFINITY ; =Infinity

1.1 public static final Class TYPE ;

// Public Class Methods

public static long doubleToLongBits (double value); native

1.3 public static long doubleToRawLongBits (double value); native

public static boolean isInfinite (double v);

public static boolean isNaN (double v);

public static double longBitsToDouble (long bits); native

1.2 public static double parseDouble (String s) throws NumberFormatException;

public static String toString (double d);

public static Double valueOf (String s) throws NumberFormatException;

// Public Instance Methods

1.2 public int compareTo (Double anotherDouble);

public boolean isInfinite ();

public boolean isNaN ();

// Methods Implementing Comparable

1.2 public int compareTo (Object o);

// Public Methods Overriding Number

1.1 public byte byteValue ();

public double doubleValue ();

public float floatValue ();

public int intValue ();

public long longValue ();

1.1 public short shortValue ();

// Public Methods Overriding Object

public boolean equals (Object obj);

file:///C|/orielly/jnut/ch12_01.htm (18 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

public int hashCode ();

public String toString ();

}

Hierarchy: Object-->Number(Serializable)-->Double(Comparable)

Passed To: Double.compareTo()

Returned By: Double.valueOf()

Error Java 1.0

java.lang serializable error PJ1.1

This class forms the root of the error hierarchy in Java. Subclasses of Error, unlike subclasses of Exception, should not be caught
and generally cause termination of the program. Subclasses of Error need not be declared in the throws clause of a method
definition. getMessage() returns a message associated with the error. See Throwable for other methods.

public class Error extends Throwable {

// Public Constructors

public Error ();

public Error (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Error

Subclasses: java.awt.AWTError, LinkageError, ThreadDeath, VirtualMachineError

Passed To: java.rmi.ServerError.ServerError()

Exception Java 1.0

java.lang serializable checked PJ1.1

This class forms the root of the exception hierarchy in Java. An Exception signals an abnormal condition that must be specially
handled to prevent program termination. Exceptions may be caught and handled. An exception that is not a subclass of
RuntimeException must be declared in the throws clause of any method that can throw it. getMessage() returns a message
associated with the exception. See Throwable for other methods.

public class Exception extends Throwable {

// Public Constructors

public Exception ();

public Exception (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception

file:///C|/orielly/jnut/ch12_01.htm (19 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

Subclasses: Too many classes to list.

Passed To: Too many methods to list.

Returned By: java.awt.event.InvocationEvent.getException(),
java.security.PrivilegedActionException.getException(),
javax.ejb.EJBException.getCausedByException(), javax.jms.JMSException.getLinkedException(),
org.omg.CORBA.Environment.exception()

Thrown By: java.rmi.server.RemoteCall.executeCall(), java.rmi.server.RemoteRef.invoke(),
java.rmi.server.Skeleton.dispatch(), java.security.PrivilegedExceptionAction.run(),
javax.naming.spi.NamingManager.getObjectInstance(),
javax.naming.spi.ObjectFactory.getObjectInstance()

Type Of: java.io.WriteAbortedException.detail, java.rmi.server.ServerCloneException.detail

ExceptionInInitializerError Java 1.1

java.lang serializable error PJ1.1

This error is thrown by the Java Virtual Machine when an exception occurs in the static initializer of a class. You can use the
getException() method to obtain the Throwable object that was thrown from the initializer.

public class ExceptionInInitializerError extends LinkageError {

// Public Constructors

public ExceptionInInitializerError ();

public ExceptionInInitializerError (String s);

public ExceptionInInitializerError (Throwable thrown);

// Public Instance Methods

public Throwable getException (); default:null

// Public Methods Overriding Throwable

1.2 public void printStackTrace ();

1.2 public void printStackTrace (java.io.PrintWriter pw);

1.2 public void printStackTrace (java.io.PrintStream ps);

}

Hierarchy: Object-->Throwable(Serializable)-->Error-->LinkageError--
>ExceptionInInitializerError

Float Java 1.0

java.lang serializable comparable PJ1.1

This class provides an immutable object wrapper around the float primitive data type. valueOf() converts a string to a Float,
floatValue() returns the primitive float value of a Float object, and there are methods for returning a Float value as a
variety of other primitive types. This class also provides some useful constants and static methods for testing float values.

file:///C|/orielly/jnut/ch12_01.htm (20 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

MIN_VALUE and MAX_VALUE are the smallest (closest to zero) and largest representable double values. isInfinite() in class
and instance method forms tests whether a float or a Float has an infinite value. Similarly, isNaN() tests whether a float or
Float is not-a-number; this is a comparison that cannot be done directly because the NaN constant never tests equal to any other value,
including itself. floatToIntBits() and intBitsToFloat() allow you to manipulate the bit representation of a float
directly.

public final class Float extends Number implements Comparable {

// Public Constructors

public Float (String s) throws NumberFormatException;

public Float (float value);

public Float (double value);

// Public Constants

public static final float MAX_VALUE ; =3.4028235E38

public static final float MIN_VALUE ; =1.4E-45

public static final float NaN ; =NaN

public static final float NEGATIVE_INFINITY ; =-Infinity

public static final float POSITIVE_INFINITY ; =Infinity

1.1 public static final Class TYPE ;

// Public Class Methods

public static int floatToIntBits (float value); native

1.3 public static int floatToRawIntBits (float value); native

public static float intBitsToFloat (int bits); native

public static boolean isInfinite (float v);

public static boolean isNaN (float v);

1.2 public static float parseFloat (String s) throws NumberFormatException;

public static String toString (float f);

public static Float valueOf (String s) throws NumberFormatException;

// Public Instance Methods

1.2 public int compareTo (Float anotherFloat);

public boolean isInfinite ();

public boolean isNaN ();

// Methods Implementing Comparable

1.2 public int compareTo (Object o);

// Public Methods Overriding Number

1.1 public byte byteValue ();

public double doubleValue ();

public float floatValue ();

public int intValue ();

public long longValue ();

1.1 public short shortValue ();

// Public Methods Overriding Object

public boolean equals (Object obj);

public int hashCode ();

public String toString ();

}

file:///C|/orielly/jnut/ch12_01.htm (21 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

Hierarchy: Object-->Number(Serializable)-->Float(Comparable)

Passed To: Float.compareTo()

Returned By: Float.valueOf()

Type Of: Too many fields to list.

IllegalAccessError Java 1.0

java.lang serializable error PJ1.1

Signals an attempted use of a class, method, or field that is not accessible.

public class IllegalAccessError extends IncompatibleClassChangeError {

// Public Constructors

public IllegalAccessError ();

public IllegalAccessError (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Error-->LinkageError--
>IncompatibleClassChangeError-->IllegalAccessError

IllegalAccessException Java 1.0

java.lang serializable checked PJ1.1

Signals that a class or initializer is not accessible. Thrown by Class.newInstance().

public class IllegalAccessException extends Exception {

// Public Constructors

public IllegalAccessException ();

public IllegalAccessException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->IllegalAccessException

Thrown By: Too many methods to list.

IllegalArgumentException Java 1.0

java.lang serializable unchecked PJ1.1

Signals an illegal argument to a method. See subclasses IllegalThreadStateException and NumberFormatException.

file:///C|/orielly/jnut/ch12_01.htm (22 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

public class IllegalArgumentException extends RuntimeException {

// Public Constructors

public IllegalArgumentException ();

public IllegalArgumentException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->RuntimeException--
>IllegalArgumentException

Subclasses: IllegalThreadStateException, NumberFormatException,
java.security.InvalidParameterException

Thrown By: Too many methods to list.

IllegalMonitorStateException Java 1.0

java.lang serializable unchecked PJ1.1

Signals an illegal monitor state. It is thrown by the Objectnotify() and wait() methods used for thread synchronization.

public class IllegalMonitorStateException extends RuntimeException {

// Public Constructors

public IllegalMonitorStateException ();

public IllegalMonitorStateException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->RuntimeException--
>IllegalMonitorStateException

IllegalStateException Java 1.1

java.lang serializable unchecked PJ1.1

Signals that a method has been invoked on an object that is not in an appropriate state to perform the requested operation.

public class IllegalStateException extends RuntimeException {

// Public Constructors

public IllegalStateException ();

public IllegalStateException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->RuntimeException--
>java.lang.IllegalStateException

Subclasses: java.awt.IllegalComponentStateException, java.awt.dnd.InvalidDnDOperationException

file:///C|/orielly/jnut/ch12_01.htm (23 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

Thrown By: Too many methods to list.

IllegalThreadStateException Java 1.0

java.lang serializable unchecked PJ1.1

Signals that a thread is not in the appropriate state for an attempted operation to succeed.

public class IllegalThreadStateException extends IllegalArgumentException {

// Public Constructors

public IllegalThreadStateException ();

public IllegalThreadStateException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->RuntimeException--
>IllegalArgumentException-->IllegalThreadStateException

IncompatibleClassChangeError Java 1.0

java.lang serializable error PJ1.1

This is the superclass of a group of related error types. It signals some kind of illegal use of a legal class.

public class IncompatibleClassChangeError extends LinkageError {

// Public Constructors

public IncompatibleClassChangeError ();

public IncompatibleClassChangeError (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Error-->LinkageError--
>IncompatibleClassChangeError

Subclasses: AbstractMethodError, IllegalAccessError, InstantiationError, NoSuchFieldError,
NoSuchMethodError

IndexOutOfBoundsException Java 1.0

java.lang serializable unchecked PJ1.1

Signals that an index is out of bounds. See the subclasses ArrayIndexOutOfBoundsException and
StringIndexOutOfBoundsException.

public class IndexOutOfBoundsException extends RuntimeException {

// Public Constructors

file:///C|/orielly/jnut/ch12_01.htm (24 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

public IndexOutOfBoundsException ();

public IndexOutOfBoundsException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->RuntimeException--
>IndexOutOfBoundsException

Subclasses: ArrayIndexOutOfBoundsException, StringIndexOutOfBoundsException

Thrown By: java.awt.Toolkit.createCustomCursor(), java.awt.print.Book.{getPageFormat(),
getPrintable(), setPage()}, java.awt.print.Pageable.{getPageFormat(), getPrintable()}

InheritableThreadLocal Java 1.2

java.lang

This class holds a thread-local value that is inherited by child threads. See ThreadLocal for a discussion of thread-local values. Note
that the inheritance referred to in the name of this class is not superclass-to-subclass inheritance; instead, it is parent-thread-to-child-
thread inheritance.

This class is best understood by example. Suppose that an application has defined an InheritableThreadLocal object and that a
certain thread (the parent thread) has a thread-local value stored in that object. Whenever that thread creates a new thread (a child
thread), the InheritableThreadLocal object is automatically updated so that the new child thread has the same value associated
with it as the parent thread. Note that the value associated with the child thread is independent from the value associated with the parent
thread. If the child thread subsequently alters its value by calling the set() method of the InheritableThreadLocal, the value
associated with the parent thread does not change.

By default, a child thread inherits a parent's values unmodified. By overriding the childValue() method, however, you can create a
subclass of InheritableThreadLocal in which the child thread inherits some arbitrary function of the parent thread's value.

public class InheritableThreadLocal extends ThreadLocal {

// Public Constructors

public InheritableThreadLocal ();

// Protected Instance Methods

protected Object childValue (Object parentValue);

}

Hierarchy: Object-->ThreadLocal-->InheritableThreadLocal

InstantiationError Java 1.0

java.lang serializable error PJ1.1

Signals an attempt to instantiate an interface or abstract class.

public class InstantiationError extends IncompatibleClassChangeError {

// Public Constructors

file:///C|/orielly/jnut/ch12_01.htm (25 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

public InstantiationError ();

public InstantiationError (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Error-->LinkageError--
>IncompatibleClassChangeError-->InstantiationError

InstantiationException Java 1.0

java.lang serializable checked PJ1.1

Signals an attempt to instantiate an interface or an abstract class.

public class InstantiationException extends Exception {

// Public Constructors

public InstantiationException ();

public InstantiationException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->InstantiationException

Thrown By: Class.newInstance(), java.lang.reflect.Constructor.newInstance(),
javax.swing.UIManager.setLookAndFeel()

Integer Java 1.0

java.lang serializable comparable PJ1.1

This class provides an immutable object wrapper around the int primitive data type. This class also contains useful minimum and
maximum constants and useful conversion methods. parseInt() and valueOf() convert a string to an int or to an Integer,
respectively. Each can take a radix argument to specify the base the value is represented in. decode() also converts a String to an
Integer. It assumes a hexadecimal number if the string begins with "0X" or "0x", or an octal number if the string begins with "0".
Otherwise, a decimal number is assumed. toString() converts in the other direction, and the static version takes a radix
argument. toBinaryString(), toOctalString(), and toHexString() convert an int to a string using base 2, base 8, and
base 16. These methods treat the integer as an unsigned value. Other routines return the value of an Integer as various primitive
types, and, finally, the getInteger() methods return the integer value of a named property from the system property list, or the
specified default value.

public final class Integer extends Number implements Comparable {

// Public Constructors

public Integer (String s) throws NumberFormatException;

public Integer (int value);

// Public Constants

public static final int MAX_VALUE ; =2147483647

public static final int MIN_VALUE ; =-2147483648

1.1 public static final Class TYPE ;

file:///C|/orielly/jnut/ch12_01.htm (26 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

// Public Class Methods

public static Integer decode (String nm) throws NumberFormatException;

public static Integer getInteger (String nm);

public static Integer getInteger (String nm, int val);

public static Integer getInteger (String nm, Integer val);

public static int parseInt (String s) throws NumberFormatException;

public static int parseInt (String s, int radix) throws NumberFormatException;

public static String toBinaryString (int i);

public static String toHexString (int i);

public static String toOctalString (int i);

public static String toString (int i);

public static String toString (int i, int radix);

public static Integer valueOf (String s) throws NumberFormatException;

public static Integer valueOf (String s, int radix) throws NumberFormatException;

// Public Instance Methods

1.2 public int compareTo (Integer anotherInteger);

// Methods Implementing Comparable

1.2 public int compareTo (Object o);

// Public Methods Overriding Number

1.1 public byte byteValue ();

public double doubleValue ();

public float floatValue ();

public int intValue ();

public long longValue ();

1.1 public short shortValue ();

// Public Methods Overriding Object

public boolean equals (Object obj);

public int hashCode ();

public String toString ();

}

Hierarchy: Object-->Number(Serializable)-->Integer(Comparable)

Passed To: Integer.{compareTo(), getInteger()}, javax.swing.JInternalFrame.setLayer()

Returned By: Integer.{decode(), getInteger(), valueOf()},
javax.swing.JLayeredPane.getObjectForLayer()

Type Of: java.awt.font.TextAttribute.{SUPERSCRIPT_SUB, SUPERSCRIPT_SUPER,
UNDERLINE_LOW_DASHED, UNDERLINE_LOW_DOTTED, UNDERLINE_LOW_GRAY, UNDERLINE_LOW_ONE_PIXEL,
UNDERLINE_LOW_TWO_PIXEL, UNDERLINE_ON}, javax.swing.JLayeredPane.{DEFAULT_LAYER,
DRAG_LAYER, FRAME_CONTENT_LAYER, MODAL_LAYER, PALETTE_LAYER, POPUP_LAYER}

InternalError Java 1.0

java.lang serializable error PJ1.1

file:///C|/orielly/jnut/ch12_01.htm (27 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

Signals an internal error in the Java interpreter.

public class InternalError extends VirtualMachineError {

// Public Constructors

public InternalError ();

public InternalError (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Error-->VirtualMachineError-->InternalError

InterruptedException Java 1.0

java.lang serializable checked PJ1.1

Signals that the thread has been interrupted.

public class InterruptedException extends Exception {

// Public Constructors

public InterruptedException ();

public InterruptedException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->InterruptedException

Thrown By: Too many methods to list.

LinkageError Java 1.0

java.lang serializable error PJ1.1

The superclass of a group of errors that signal problems linking a class or resolving dependencies between classes.

public class LinkageError extends Error {

// Public Constructors

public LinkageError ();

public LinkageError (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Error-->LinkageError

Subclasses: ClassCircularityError, ClassFormatError, ExceptionInInitializerError,
IncompatibleClassChangeError, NoClassDefFoundError, UnsatisfiedLinkError, VerifyError

file:///C|/orielly/jnut/ch12_01.htm (28 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

Long Java 1.0

java.lang serializable comparable PJ1.1

This class provides an immutable object wrapper around the long primitive data type. This class also contains useful minimum and
maximum constants and useful conversion methods. parseLong() and valueOf() convert a string to a long or to a Long,
respectively. Each can take a radix argument to specify the base the value is represented in. toString() converts in the other
direction and may also take a radix argument. toBinaryString(), toOctalString(), and toHexString() convert a long
to a string using base 2, base 8, and base 16. These methods treat the long as an unsigned value. Other routines return the value of a
Long as various primitive types, and, finally, the getLong() methods return the long value of a named property or the value of the
specified default.

public final class Long extends Number implements Comparable {

// Public Constructors

public Long (long value);

public Long (String s) throws NumberFormatException;

// Public Constants

public static final long MAX_VALUE ; =9223372036854775807

public static final long MIN_VALUE ; =-9223372036854775808

1.1 public static final Class TYPE ;

// Public Class Methods

1.2 public static Long decode (String nm) throws NumberFormatException;

public static Long getLong (String nm);

public static Long getLong (String nm, long val);

public static Long getLong (String nm, Long val);

public static long parseLong (String s) throws NumberFormatException;

public static long parseLong (String s, int radix) throws NumberFormatException;

public static String toBinaryString (long i);

public static String toHexString (long i);

public static String toOctalString (long i);

public static String toString (long i);

public static String toString (long i, int radix);

public static Long valueOf (String s) throws NumberFormatException;

public static Long valueOf (String s, int radix) throws NumberFormatException;

// Public Instance Methods

1.2 public int compareTo (Long anotherLong);

// Methods Implementing Comparable

1.2 public int compareTo (Object o);

// Public Methods Overriding Number

1.1 public byte byteValue ();

public double doubleValue ();

public float floatValue ();

public int intValue ();

public long longValue ();

1.1 public short shortValue ();

file:///C|/orielly/jnut/ch12_01.htm (29 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

// Public Methods Overriding Object

public boolean equals (Object obj);

public int hashCode ();

public String toString ();

}

Hierarchy: Object-->Number(Serializable)-->Long(Comparable)

Passed To: Long.{compareTo(), getLong()}

Returned By: Long.{decode(), getLong(), valueOf()}

Math Java 1.0

java.lang PJ1.1

This class defines constants for the mathematical values e and π and defines static methods for floating-point trigonometry,
exponentiation, and other operations. It is the equivalent of the C <math.h> functions. It also contains methods for computing minimum
and maximum values and for generating pseudo-random numbers.

Most methods of Math operate on float and double floating-point values. Remember that these values are only approximations of
actual real numbers. To allow implementations to take full advantage of the floating-point capabilities of a native platform, the methods
of Math are not required to return exactly the same values on all platforms. In other words, the results returned by different
implementations may differ slightly in the least-significant bits. In Java 1.3, applications that require strict platform-independence of
results should use StrictMath instead.

public final class Math {

// No Constructor

// Public Constants

public static final double E ; =2.718281828459045

public static final double PI ; =3.141592653589793

// Public Class Methods

public static int abs (int a); strictfp

public static long abs (long a); strictfp

public static float abs (float a); strictfp

public static double abs (double a); strictfp

public static double acos (double a); strictfp

public static double asin (double a); strictfp

public static double atan (double a); strictfp

public static double atan2 (double a, double b); strictfp

public static double ceil (double a); strictfp

public static double cos (double a); strictfp

public static double exp (double a); strictfp

public static double floor (double a); strictfp

public static double IEEEremainder (double f1, double f2); strictfp

public static double log (double a); strictfp

file:///C|/orielly/jnut/ch12_01.htm (30 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

public static int max (int a, int b); strictfp

public static long max (long a, long b); strictfp

public static float max (float a, float b); strictfp

public static double max (double a, double b); strictfp

public static int min (int a, int b); strictfp

public static long min (long a, long b); strictfp

public static float min (float a, float b); strictfp

public static double min (double a, double b); strictfp

public static double pow (double a, double b); strictfp

public static double random (); strictfp

public static double rint (double a); strictfp

public static int round (float a); strictfp

public static long round (double a); strictfp

public static double sin (double a); strictfp

public static double sqrt (double a); strictfp

public static double tan (double a); strictfp

1.2 public static double toDegrees (double angrad); strictfp

1.2 public static double toRadians (double angdeg); strictfp

}

NegativeArraySizeException Java 1.0

java.lang serializable unchecked PJ1.1

Signals an attempt to allocate an array with fewer than zero elements.

public class NegativeArraySizeException extends RuntimeException {

// Public Constructors

public NegativeArraySizeException ();

public NegativeArraySizeException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->RuntimeException--
>NegativeArraySizeException

Thrown By: java.lang.reflect.Array.newInstance()

NoClassDefFoundError Java 1.0

java.lang serializable error PJ1.1

Signals that the definition of a specified class cannot be found.

public class NoClassDefFoundError extends LinkageError {

// Public Constructors

file:///C|/orielly/jnut/ch12_01.htm (31 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

public NoClassDefFoundError ();

public NoClassDefFoundError (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Error-->LinkageError-->NoClassDefFoundError

NoSuchFieldError Java 1.0

java.lang serializable error PJ1.1

Signals that a specified field cannot be found.

public class NoSuchFieldError extends IncompatibleClassChangeError {

// Public Constructors

public NoSuchFieldError ();

public NoSuchFieldError (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Error-->LinkageError--
>IncompatibleClassChangeError-->NoSuchFieldError

NoSuchFieldException Java 1.1

java.lang serializable checked PJ1.1

This exception signals that the specified field does not exist in the specified class.

public class NoSuchFieldException extends Exception {

// Public Constructors

public NoSuchFieldException ();

public NoSuchFieldException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->NoSuchFieldException

Thrown By: Class.{getDeclaredField(), getField()}

NoSuchMethodError Java 1.0

java.lang serializable error PJ1.1

Signals that a specified method cannot be found.

file:///C|/orielly/jnut/ch12_01.htm (32 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

public class NoSuchMethodError extends IncompatibleClassChangeError {

// Public Constructors

public NoSuchMethodError ();

public NoSuchMethodError (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Error-->LinkageError--
>IncompatibleClassChangeError-->NoSuchMethodError

NoSuchMethodException Java 1.0

java.lang serializable checked PJ1.1

Signals that the specified method does not exist in the specified class.

public class NoSuchMethodException extends Exception {

// Public Constructors

public NoSuchMethodException ();

public NoSuchMethodException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->NoSuchMethodException

Thrown By: Class.{getConstructor(), getDeclaredConstructor(), getDeclaredMethod(),
getMethod()}

NullPointerException Java 1.0

java.lang serializable unchecked PJ1.1

Signals an attempt to access a field or invoke a method of a null object.

public class NullPointerException extends RuntimeException {

// Public Constructors

public NullPointerException ();

public NullPointerException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->RuntimeException--
>NullPointerException

Thrown By: java.awt.print.PrinterJob.setPageable()

Number Java 1.0

file:///C|/orielly/jnut/ch12_01.htm (33 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

java.lang serializable PJ1.1

This is an abstract class that is the superclass of Byte, Short, Integer, Long, Float, and Double. It defines the conversion
functions those types implement.

public abstract class Number implements Serializable {

// Public Constructors

public Number ();

// Public Instance Methods

1.1 public byte byteValue ();

public abstract double doubleValue ();

public abstract float floatValue ();

public abstract int intValue ();

public abstract long longValue ();

1.1 public short shortValue ();

}

Hierarchy: Object-->Number(Serializable)

Subclasses: Byte, Double, Float, Integer, Long, Short, java.math.BigDecimal,
java.math.BigInteger

Passed To: java.awt.Button.AccessibleAWTButton.setCurrentAccessibleValue(),
java.awt.Checkbox.AccessibleAWTCheckbox.setCurrentAccessibleValue(),
java.awt.CheckboxMenuItem.AccessibleAWTCheckboxMenuItem.setCurrentAccessibleValue(),
java.awt.MenuItem.AccessibleAWTMenuItem.setCurrentAccessibleValue(),
java.awt.Scrollbar.AccessibleAWTScrollBar.setCurrentAccessibleValue(),
javax.accessibility.AccessibleValue.setCurrentAccessibleValue(),
javax.swing.AbstractButton.AccessibleAbstractButton.setCurrentAccessibleValue(),
javax.swing.JInternalFrame.AccessibleJInternalFrame.setCurrentAccessibleValue(),
javax.swing.JInternalFrame.JDesktopIcon.AccessibleJDesktopIcon.setCurrentAccessibleValue(),
javax.swing.JProgressBar.AccessibleJProgressBar.setCurrentAccessibleValue(),
javax.swing.JScrollBar.AccessibleJScrollBar.setCurrentAccessibleValue(),
javax.swing.JSlider.AccessibleJSlider.setCurrentAccessibleValue(),
javax.swing.JSplitPane.AccessibleJSplitPane.setCurrentAccessibleValue()

Returned By: Too many methods to list.

NumberFormatException Java 1.0

java.lang serializable unchecked PJ1.1

Signals an illegal number format.

public class NumberFormatException extends IllegalArgumentException {

// Public Constructors

file:///C|/orielly/jnut/ch12_01.htm (34 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

public NumberFormatException ();

public NumberFormatException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->RuntimeException--
>IllegalArgumentException-->NumberFormatException

Thrown By: Too many methods to list.

Object Java 1.0

java.lang PJ1.1

This is the root class in Java. All classes are subclasses of Object, and thus all objects can invoke the public and protected
methods of this class. equals() tests whether two objects have the same value (not whether two variables refer to the same object,
but whether two distinct objects have byte-for-byte equivalence). For classes that implement the Cloneable interface, clone()
makes a byte-for-byte copy of an Object. getClass() returns the Class object associated with any Object, and the
notify(), notifyAll(), and wait() methods are used for thread synchronization on a given Object.

A number of these Object methods should be overridden by subclasses of Object. For example, a subclass should provide its own
definition of the toString() method so that it can be used with the string concatenation operator and with the
PrintWriter.println() methods. Defining the toString() method for all objects also helps with debugging.

A class that contains references to other objects may want to override the equals() and clone() methods (for Cloneable
objects) so that it recursively calls the equals() and clone() methods of the objects referred to within the original object. Some
classes, particularly those that override equals(), may also want to override the hashCode() method to provide an appropriate
hashcode to be used when storing instances in a Hashtable data structure.

A class that allocates system resources other than memory (such as file descriptors or windowing system graphic contexts) should
override the finalize() method to release these resources when the object is no longer referred to and is about to be garbage-
collected.

public class Object {

// Public Constructors

public Object (); empty

// Public Instance Methods

public boolean equals (Object obj);

public final Class getClass (); native

public int hashCode (); native

public final void notify (); native

public final void notifyAll (); native

public String toString ();

public final void wait () throws InterruptedException;

public final void wait (long timeout) throws InterruptedException; native

public final void wait (long timeout, int nanos) throws InterruptedException;

// Protected Instance Methods

protected Object clone () throws CloneNotSupportedException; native

protected void finalize () throws Throwable; empty

file:///C|/orielly/jnut/ch12_01.htm (35 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

}

Subclasses: Too many classes to list.

Passed To: Too many methods to list.

Returned By: Too many methods to list.

Type Of: Too many fields to list.

OutOfMemoryError Java 1.0

java.lang serializable error PJ1.1

Signals that the interpreter has run out of memory (and that garbage collection is unable to free any memory).

public class OutOfMemoryError extends VirtualMachineError {

// Public Constructors

public OutOfMemoryError ();

public OutOfMemoryError (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Error-->VirtualMachineError-->OutOfMemoryError

Package Java 1.2

java.lang

This class represents a Java package. You can obtain the Package object for a given Class by calling the getPackage() method
of the Class object. The static Package.getPackage() method returns a Package object for the named package, if any such
package has been loaded by the current class loader. Similarly, the static Package.getPackages() returns all Package objects
that have been loaded by the current class loader. Note that a Package object is not defined unless at least one class has been loaded
from that package. Although you can obtain the Package of a given Class, you cannot obtain an array of Class objects contained
in a specified Package.

If the classes that comprise a package are contained in a JAR file that has the appropriate attributes set in its manifest file, the
Package object allows you to query the title, vendor, and version of both the package specification and the package implementation;
all six values are strings. The specification version string has a special format. It consists of one or more integers, separated from each
other by periods. Each integer can have leading zeros, but is not considered an octal digit. Increasing numbers indicate later versions.
The isCompatibleWith() method calls getSpecificationVersion() to obtain the specification version and compares it
with the version string supplied as an argument. If the package-specification version is the same as or greater than the specified string,
isCompatibleWith() returns true. This allows you to test whether the version of a package (typically a standard extension) is
new enough for the purposes of your application.

Packages may be sealed, which means that all classes in the package must come from the same JAR file. If a package is sealed, the no-
argument version of isSealed() returns true. The one-argument version of isSealed() returns true if the specified URL
represents the JAR file from which the package is loaded.

file:///C|/orielly/jnut/ch12_01.htm (36 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

public class Package {

// No Constructor

// Public Class Methods

public static Package getPackage (String name);

public static Package[] getPackages ();

// Property Accessor Methods (by property name)

public String getImplementationTitle ();

public String getImplementationVendor ();

public String getImplementationVersion ();

public String getName ();

public boolean isSealed ();

public boolean isSealed (java.net.URL url);

public String getSpecificationTitle ();

public String getSpecificationVendor ();

public String getSpecificationVersion ();

// Public Instance Methods

public boolean isCompatibleWith (String desired) throws NumberFormatException;

// Public Methods Overriding Object

public int hashCode ();

public String toString ();

}

Returned By: Class.getPackage(), ClassLoader.{definePackage(), getPackage(), getPackages()},
Package.{getPackage(), getPackages()}, java.net.URLClassLoader.definePackage()

Process Java 1.0

java.lang PJ1.1

This class describes a process that is running externally to the Java interpreter. Note that a Process is very different from a Thread;
the Process class is abstract and cannot be instantiated. Call one of the Runtime.exec() methods to start a process and return a
corresponding Process object.

waitFor() blocks until the process exits. exitValue() returns the exit code of the process. destroy() kills the process.
getErrorStream() returns an InputStream from which you can read any bytes the process sends to its standard error stream.
getInputStream() returns an InputStream from which you can read any bytes the process sends to its standard output stream.
getOutputStream() returns an OutputStream you can use to send bytes to the standard input stream of the process.

public abstract class Process {

// Public Constructors

public Process ();

// Property Accessor Methods (by property name)

public abstract java.io.InputStream getErrorStream ();

public abstract java.io.InputStream getInputStream ();

public abstract java.io.OutputStream getOutputStream ();

// Public Instance Methods

file:///C|/orielly/jnut/ch12_01.htm (37 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

public abstract void destroy ();

public abstract int exitValue ();

public abstract int waitFor () throws InterruptedException;

}

Returned By: Runtime.exec()

Runnable Java 1.0

java.lang runnable PJ1.1

This interface specifies the run() method that is required to use with the Thread class. Any class that implements this interface can
provide the body of a thread. See Thread for more information.

public interface Runnable {

// Public Instance Methods

public abstract void run ();

}

Implementations: java.awt.image.renderable.RenderableImageProducer, Thread,
java.util.TimerTask, javax.jms.Session, javax.swing.text.AsyncBoxView.ChildState

Passed To: java.awt.EventQueue.{invokeAndWait(), invokeLater()},
java.awt.event.InvocationEvent.InvocationEvent(), Thread.Thread(),
javax.swing.SwingUtilities.{invokeAndWait(), invokeLater()},
javax.swing.text.AbstractDocument.render(), javax.swing.text.Document.render(),
javax.swing.text.LayoutQueue.addTask()

Returned By: javax.swing.text.LayoutQueue.waitForWork()

Type Of: java.awt.event.InvocationEvent.runnable

Runtime Java 1.0

java.lang PJ1.1

This class encapsulates a number of platform-dependent system functions. The static method getRuntime() returns the Runtime
object for the current platform; this object can perform system functions in a platform-independent way.

exit() causes the Java interpreter to exit and return a specified return code. This method is usually invoked through
System.exit(). In Java 1.3, addShutdownHook() registers an unstarted Thread object that is run when the virtual machine
shuts down, either through a call to exit() or through a user interrupt (a CTRL-C, for example). The purpose of a shutdown hook is
to perform necessary cleanup, such as shutting down network connections, deleting temporary files, and so on. Any number of hooks
can be registered with addShutdownHook(). Before the interpreter exits, it starts all registered shutdown-hook threads and lets them
run concurrently. Any hooks you write should perform their cleanup operation and exit promptly so they do not delay the shutdown
process. To remove a shutdown hook before it is run, call removeShutdownHook(). To force an immediate exit that does not
invoke the shutdown hooks, call halt().

file:///C|/orielly/jnut/ch12_01.htm (38 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

exec() starts a new process running externally to the interpreter. Note that any processes run outside of Java may be system-
dependent.

freeMemory() returns the approximate amount of free memory. totalMemory() returns the total amount of memory available to
the Java interpreter. gc() forces the garbage collector to run synchronously, which may free up more memory. Similarly,
runFinalization() forces the finalize() methods of unreferenced objects to be run immediately. This may free up system
resources those objects were holding.

load() loads a dynamic library with a fully specified pathname. loadLibrary() loads a dynamic library with only the library
name specified; it looks in platform-dependent locations for the specified library. These libraries generally contain native code
definitions for native methods.

traceInstructions() and traceMethodCalls() enable and disable tracing by the interpreter. These methods are used for
debugging or profiling an application. It is not specified how the VM emits the trace information, and VMs are not even required to
support this feature.

Note that some of the Runtime methods are more commonly called via the static methods of the System class.

public class Runtime {

// No Constructor

// Public Class Methods

public static Runtime getRuntime ();

// Public Instance Methods

1.3 public void addShutdownHook (Thread hook);

public Process exec (String[] cmdarray) throws java.io.IOException;

public Process exec (String command) throws java.io.IOException;

public Process exec (String command, String[] envp) throws java.io.IOException;

public Process exec (String[] cmdarray, String[] envp) throws java.io.IOException;

public void exit (int status);

public long freeMemory (); native

public void gc (); native

1.3 public void halt (int status);

public void load (String filename);

public void loadLibrary (String libname);

1.3 public boolean removeShutdownHook (Thread hook);

public void runFinalization ();

public long totalMemory (); native

public void traceInstructions (boolean on); native

public void traceMethodCalls (boolean on); native

// Deprecated Public Methods

public java.io.InputStream getLocalizedInputStream (java.io.InputStream in);

public java.io.OutputStream getLocalizedOutputStream (java.io.OutputStream out);

1.1# public static void runFinalizersOnExit (boolean value);

}

Returned By: Runtime.getRuntime()

file:///C|/orielly/jnut/ch12_01.htm (39 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

RuntimeException Java 1.0

java.lang serializable unchecked PJ1.1

This exception type is not used directly, but serves as a superclass of a group of run-time exceptions that need not be declared in the
throws clause of a method definition. These exceptions need not be declared because they are runtime conditions that can generally
occur in any Java method. Thus, declaring them would be unduly burdensome, and Java does not require it.

public class RuntimeException extends Exception {

// Public Constructors

public RuntimeException ();

public RuntimeException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->RuntimeException

Subclasses: Too many classes to list.

RuntimePermission Java 1.2

java.lang serializable permission

This class is a java.security.Permission that represents access to various important system facilities. A
RuntimePermission has a name, or target, that represents the facility for which permission is being sought or granted. The name
"exitVM" represents permission to call System.exit(), and the name "accessClassInPackage.java.lang" represents permission to
read classes from the java.lang package. The name of a RuntimePermission may use a ".*" suffix as a wildcard. For example,
the name "accessClassInPackage.java.*" represents permission to read classes from any package whose name begins with "java.".
RuntimePermission does not use action list strings as some Permission classes do; the name of the permission alone is enough.

Supported RuntimePermssion names are: "accessClassInPackage.package", "accessDeclaredMembers", "createClassLoader",
"createSecurityManager", "defineClassInPackage.package", "exitVM", "getClassLoader", "getProtectionDomain",
"loadLibrary.library_name", "modifyThread", "modifyThreadGroup", "queuePrintJob", "readFileDescriptor", "set-
ContextClassLoader", "setFactory", "setIO", "setSecurityManager", "stopThread", and "writeFileDescriptor".

System administrators configuring security policies should be familiar with these permission names, the operations they govern access
to, and with the risks inherent in granting any of them. Although system programmers may need to work with this class, application
programmers should never need to use RuntimePermssion directly.

public final class RuntimePermission extends java.security.BasicPermission {

// Public Constructors

public RuntimePermission (String name);

public RuntimePermission (String name, String actions);

}

Hierarchy: Object-->java.security.Permission(java.security.Guard,Serializable)--
>java.security.BasicPermission(Serializable)-->RuntimePermission

file:///C|/orielly/jnut/ch12_01.htm (40 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

SecurityException Java 1.0

java.lang serializable unchecked PJ1.1

Signals that an operation is not permitted for security reasons.

public class SecurityException extends RuntimeException {

// Public Constructors

public SecurityException ();

public SecurityException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->RuntimeException-->SecurityException

Subclasses: java.rmi.RMISecurityException, java.security.AccessControlException

Thrown By: Too many methods to list.

SecurityManager Java 1.0

java.lang PJ1.1

This class defines the methods necessary to implement a security policy for the safe execution of untrusted code. Before performing
potentially sensitive operations, Java calls methods of the SecurityManager object currently in effect to determine whether the
operations are permitted. These methods throw a SecurityException if the operation is not permitted. Typical applications do not
need to use or subclass SecurityManager. It is typically used only by web browsers, applet viewers, and other programs that need
to run untrusted code in a controlled environment.

Prior to Java 1.2, this class is abstract, and the default implementation of each check() method throws a
SecurityException unconditionally. The Java security mechanism has been overhauled as of Java 1.2. As part of the overhaul,
this class is no longer abstract and its methods have useful default implementations, so there is rarely a need to subclass it. If so, the
method returns silently; if not, it throws a SecurityException. checkPermission() operates by invoking the
checkPermission() method of the system java.security.AccessController object. In Java 1.2 and later, all other
check() methods of SecurityManager are now implemented on top of checkPermission().

public class SecurityManager {

// Public Constructors

public SecurityManager ();

// Property Accessor Methods (by property name)

public Object getSecurityContext (); default:AccessControlContext

1.1 public ThreadGroup getThreadGroup ();

// Public Instance Methods

public void checkAccept (String host, int port);

public void checkAccess (Thread t);

public void checkAccess (ThreadGroup g);

1.1 public void checkAwtEventQueueAccess ();

file:///C|/orielly/jnut/ch12_01.htm (41 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

public void checkConnect (String host, int port);

public void checkConnect (String host, int port, Object context);

public void checkCreateClassLoader ();

public void checkDelete (String file);

public void checkExec (String cmd);

public void checkExit (int status);

public void checkLink (String lib);

public void checkListen (int port);

1.1 public void checkMemberAccess (Class clazz, int which);

1.1 public void checkMulticast (java.net.InetAddress maddr);

1.1 public void checkMulticast (java.net.InetAddress maddr, byte ttl);

public void checkPackageAccess (String pkg);

public void checkPackageDefinition (String pkg);

1.2 public void checkPermission (java.security.Permission perm);

1.2 public void checkPermission (java.security.Permission perm, Object context);

1.1 public void checkPrintJobAccess ();

public void checkPropertiesAccess ();

public void checkPropertyAccess (String key);

public void checkRead (String file);

public void checkRead (java.io.FileDescriptor fd);

public void checkRead (String file, Object context);

1.1 public void checkSecurityAccess (String target);

public void checkSetFactory ();

1.1 public void checkSystemClipboardAccess ();

public boolean checkTopLevelWindow (Object window);

public void checkWrite (String file);

public void checkWrite (java.io.FileDescriptor fd);

// Protected Instance Methods

protected Class[] getClassContext (); native

// Deprecated Public Methods

public boolean getInCheck (); default:false

// Deprecated Protected Methods

protected int classDepth (String name); native

protected int classLoaderDepth ();

protected ClassLoader currentClassLoader ();

1.1# protected Class currentLoadedClass ();

protected boolean inClass (String name);

protected boolean inClassLoader ();

// Deprecated Protected Fields

protected boolean inCheck ;

}

Subclasses: java.rmi.RMISecurityManager

Passed To: System.setSecurityManager()

file:///C|/orielly/jnut/ch12_01.htm (42 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

Returned By: System.getSecurityManager()

Short Java 1.1

java.lang serializable comparable PJ1.1

This class provides an object wrapper around the short primitive type. It defines useful constants for the minimum and maximum
values that can be stored by the short type, and also a Class object constant that represents the short type. It also provides various
methods for converting Short values to and from strings and other numeric types.

Most of the static methods of this class can convert a String to a Short object or a short value; the four parseShort() and
valueOf() methods parse a number from the specified string using an optionally specified radix and return it in one of these two
forms. The decode() method parses a number specified in base 10, base 8, or base 16 and returns it as a Short. If the string begins
with "0x" or "#", it is interpreted as a hexadecimal number; if it begins with "0", it is interpreted as an octal number. Otherwise, it is
interpreted as a decimal number.

Note that this class has two different toString() methods. One is static and converts a short primitive value to a string. The other
is the usual toString() method that converts a Short object to a string. Most of the remaining methods convert a Short to
various primitive numeric types.

public final class Short extends Number implements Comparable {

// Public Constructors

public Short (short value);

public Short (String s) throws NumberFormatException;

// Public Constants

public static final short MAX_VALUE ; =32767

public static final short MIN_VALUE ; =-32768

public static final Class TYPE ;

// Public Class Methods

public static Short decode (String nm) throws NumberFormatException;

public static short parseShort (String s) throws NumberFormatException;

public static short parseShort (String s, int radix) throws NumberFormatException;

public static String toString (short s);

public static Short valueOf (String s) throws NumberFormatException;

public static Short valueOf (String s, int radix) throws NumberFormatException;

// Public Instance Methods

1.2 public int compareTo (Short anotherShort);

// Methods Implementing Comparable

1.2 public int compareTo (Object o);

// Public Methods Overriding Number

public byte byteValue ();

public double doubleValue ();

public float floatValue ();

public int intValue ();

public long longValue ();

public short shortValue ();

file:///C|/orielly/jnut/ch12_01.htm (43 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

// Public Methods Overriding Object

public boolean equals (Object obj);

public int hashCode ();

public String toString ();

}

Hierarchy: Object-->Number(Serializable)-->Short(Comparable)

Passed To: Short.compareTo()

Returned By: Short.{decode(), valueOf()}

StackOverflowError Java 1.0

java.lang serializable error PJ1.1

Signals that a stack overflow has occurred within the Java interpreter.

public class StackOverflowError extends VirtualMachineError {

// Public Constructors

public StackOverflowError ();

public StackOverflowError (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Error-->VirtualMachineError-->StackOverflowError

StrictMath Java 1.3 Beta

java.lang

This class is identical to the Math class, but additionally requires that its methods strictly adhere to the behavior of certain published
algorithms. The methods of StrictMath are intended to operate identically, down to the very least significant bit, for all possible
arguments. When strict platform-independence of floating-point results is not required, use the Math class for better performance.

public final class StrictMath {

// No Constructor

// Public Constants

public static final double E ; =2.718281828459045

public static final double PI ; =3.141592653589793

// Public Class Methods

public static int abs (int a); strictfp

public static long abs (long a); strictfp

public static float abs (float a); strictfp

public static double abs (double a); strictfp

public static double acos (double a); native strictfp

file:///C|/orielly/jnut/ch12_01.htm (44 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

public static double asin (double a); native strictfp

public static double atan (double a); native strictfp

public static double atan2 (double a, double b); native strictfp

public static double ceil (double a); native strictfp

public static double cos (double a); native strictfp

public static double exp (double a); native strictfp

public static double floor (double a); native strictfp

public static double IEEEremainder (double f1, double f2); native strictfp

public static double log (double a); native strictfp

public static int max (int a, int b); strictfp

public static long max (long a, long b); strictfp

public static float max (float a, float b); strictfp

public static double max (double a, double b); strictfp

public static int min (int a, int b); strictfp

public static long min (long a, long b); strictfp

public static float min (float a, float b); strictfp

public static double min (double a, double b); strictfp

public static double pow (double a, double b); native strictfp

public static double random (); strictfp

public static double rint (double a); native strictfp

public static int round (float a); strictfp

public static long round (double a); strictfp

public static double sin (double a); native strictfp

public static double sqrt (double a); native strictfp

public static double tan (double a); native strictfp

public static double toDegrees (double angrad); strictfp

public static double toRadians (double angdeg); strictfp

}

String Java 1.0

java.lang serializable comparable PJ1.1

The String class represents a string of characters. A String object is created by the Java compiler whenever it encounters a string
in double quotes; this method of creation is typically simpler than using a constructor. Some methods of this class provide useful string-
manipulation functions. length() returns the number of characters in a string. charAt() extracts a character from a string.
compareTo() compares two strings, while equalsIgnoreCase() tests strings for equality, ignoring case. startsWith() and
endsWith() compare the start and end of a string to a specified value. indexOf() and lastIndexOf() search forward and
backward in a string for a specified character or substring. substring() returns a substring of a string. replace() creates a new
copy of the string with one character replaced by another. toUpperCase() and toLowerCase() convert the case of a string.
trim() strips whitespace from the start and end of a string. concat() concatenates two strings, which can also be done with the +
operator. The static valueOf() methods convert various Java primitive types to strings.

Note that String objects are immutable; there is no setCharAt() method to change the contents. The methods above that return a
String do not modify the string they are passed, but instead return a modified copy of the string. Use a StringBuffer if you want
to manipulate the contents of a string or toCharArray() to convert a string to an array of char values.

file:///C|/orielly/jnut/ch12_01.htm (45 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

public final class String implements ComparableSerializable {

// Public Constructors

public String ();

1.1 public String (byte[] bytes);

public String (StringBuffer buffer);

public String (String value);

public String (char[] value);

1.1 public String (byte[] bytes, String enc) throws java.io.UnsupportedEncodingException;

public String (byte[] ascii, int hibyte);

public String (char[] value, int offset, int count);

1.1 public String (byte[] bytes, int offset, int length);

1.1 public String (byte[] bytes, int offset, int length, String enc) throws java.io.UnsupportedEncodingException;

public String (byte[] ascii, int hibyte, int offset, int count);

// Public Constants

1.2 public static final java.util.Comparator CASE_INSENSITIVE_ORDER ;

// Public Class Methods

public static String copyValueOf (char[] data);

public static String copyValueOf (char[] data, int offset, int count);

public static String valueOf (long l);

public static String valueOf (float f);

public static String valueOf (double d);

public static String valueOf (int i);

public static String valueOf (Object obj);

public static String valueOf (char[] data);

public static String valueOf (char c);

public static String valueOf (boolean b);

public static String valueOf (char[] data, int offset, int count);

// Public Instance Methods

public char charAt (int index);

public int compareTo (String anotherString);

1.2 public int compareToIgnoreCase (String str);

public String concat (String str);

public boolean endsWith (String suffix);

public boolean equalsIgnoreCase (String anotherString);

1.1 public byte[] getBytes ();

1.1 public byte[] getBytes (String enc) throws java.io.UnsupportedEncodingException;

public void getChars (int srcBegin, int srcEnd, char[] dst, int dstBegin);

public int indexOf (String str);

public int indexOf (int ch);

public int indexOf (int ch, int fromIndex);

public int indexOf (String str, int fromIndex);

public String intern (); native

public int lastIndexOf (int ch);

public int lastIndexOf (String str);

public int lastIndexOf (int ch, int fromIndex);

file:///C|/orielly/jnut/ch12_01.htm (46 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

public int lastIndexOf (String str, int fromIndex);

public int length ();

public boolean regionMatches (int toffset, String other, int ooffset, int len);

public boolean regionMatches (boolean ignoreCase, int toffset, String other, int ooffset, int len);

public String replace (char oldChar, char newChar);

public boolean startsWith (String prefix);

public boolean startsWith (String prefix, int toffset);

public String substring (int beginIndex);

public String substring (int beginIndex, int endIndex);

public char[] toCharArray ();

public String toLowerCase ();

1.1 public String toLowerCase (java.util.Locale locale);

public String toUpperCase ();

1.1 public String toUpperCase (java.util.Locale locale);

public String trim ();

// Methods Implementing Comparable

1.2 public int compareTo (Object o);

// Public Methods Overriding Object

public boolean equals (Object anObject);

public int hashCode ();

public String toString ();

// Deprecated Public Methods

public void getBytes (int srcBegin, int srcEnd, byte[] dst, int dstBegin);

}

Hierarchy: Object-->String(Comparable,Serializable)

Passed To: Too many methods to list.

Returned By: Too many methods to list.

Type Of: Too many fields to list.

StringBuffer Java 1.0

java.lang serializable PJ1.1

This class represents a mutable string of characters that can grow or shrink as necessary. Its mutability makes it suitable for processing
text in place, which is not possible with the immutable String class. Its resizability and the various methods it implements make it
easier to use than a char[]. You can query the character stored at a given index with charAt() and set the character with
setCharAt(). Use the various append() methods to append text to the end of the buffer. Use insert() to insert text at a
specified position within the buffer. Note that arguments to append() and insert() are converted to strings as necessary before
they are appended or inserted. Use toString() to convert the contents of a StringBuffer to a String object. In Java 1.2 and
later, use deleteCharAt() or delete() to delete a single character or a range of characters from the buffer. Use replace() to
replace a range of characters with a specified String, and use substring() to convert a portion of a StringBuffer to a
String.

file:///C|/orielly/jnut/ch12_01.htm (47 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

String concatenation in Java is performed with the + operator and is implemented using the append() method of a StringBuffer.
After a string is processed in a StringBuffer object, it can be efficiently converted to a String object for subsequent use. The
StringBuffer.toString() method is typically implemented so that it does not copy the internal array of characters. Instead, it
shares that array with the new String object, making a new copy for itself only if and when further modifications are made to the
StringBuffer object.

public final class StringBuffer implements Serializable {

// Public Constructors

public StringBuffer ();

public StringBuffer (int length);

public StringBuffer (String str);

// Public Instance Methods

public StringBuffer append (char[] str); synchronized

public StringBuffer append (boolean b);

public StringBuffer append (Object obj); synchronized

public StringBuffer append (String str); synchronized

public StringBuffer append (char c); synchronized

public StringBuffer append (float f);

public StringBuffer append (double d);

public StringBuffer append (int i);

public StringBuffer append (long l);

public StringBuffer append (char[] str, int offset, int len); synchronized

public int capacity ();

public char charAt (int index); synchronized

1.2 public StringBuffer delete (int start, int end); synchronized

1.2 public StringBuffer deleteCharAt (int index); synchronized

public void ensureCapacity (int minimumCapacity); synchronized

public void getChars (int srcBegin, int srcEnd, char[] dst, int dstBegin); synchronized

public StringBuffer insert (int offset, char[] str); synchronized

public StringBuffer insert (int offset, boolean b);

public StringBuffer insert (int offset, Object obj); synchronized

public StringBuffer insert (int offset, String str); synchronized

public StringBuffer insert (int offset, char c); synchronized

public StringBuffer insert (int offset, float f);

public StringBuffer insert (int offset, double d);

public StringBuffer insert (int offset, int i);

public StringBuffer insert (int offset, long l);

1.2 public StringBuffer insert (int index, char[] str, int offset, int len); synchronized

public int length ();

1.2 public StringBuffer replace (int start, int end, String str); synchronized

public StringBuffer reverse (); synchronized

public void setCharAt (int index, char ch); synchronized

public void setLength (int newLength); synchronized

1.2 public String substring (int start);

1.2 public String substring (int start, int end); synchronized

// Public Methods Overriding Object

file:///C|/orielly/jnut/ch12_01.htm (48 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

public String toString ();

}

Hierarchy: Object-->StringBuffer(Serializable)

Passed To: Too many methods to list.

Returned By: Too many methods to list.

StringIndexOutOfBoundsException Java 1.0

java.lang
serializable unchecked

PJ1.1

Signals that the index used to access a character of a String or StringBuffer is less than zero or is too large.

public class StringIndexOutOfBoundsException extends IndexOutOfBoundsException {

// Public Constructors

public StringIndexOutOfBoundsException ();

public StringIndexOutOfBoundsException (int index);

public StringIndexOutOfBoundsException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->RuntimeException--
>IndexOutOfBoundsException-->StringIndexOutOfBoundsException

System Java 1.0

java.lang PJ1.1

This class defines a platform-independent interface to system facilities, including system properties and system input and output
streams. All methods and variables of this class are static, and the class cannot be instantiated. Because the methods defined by this
class are low-level system methods, most require special permissions and cannot be executed by untrusted code.

getProperty() looks up a named property on the system-properties list, returning the optionally specified default value if no
property definition is found. getProperties() returns the entire properties list. setProperties() sets a Properties object
on the properties list. In Java 1.2 and later, setProperty() sets the value of a system property. The following table lists system
properties that are always defined. Untrusted code may be unable to read some or all of these properties. Additional properties can be
defined using the -D option when invoking the Java interpreter.

Property Name Description

java.home The directory Java is installed in

java.class.path Where classes are loaded from

java.specification.version Version of the Java API specification (•Java 1.2)

java.specification.vendor Vendor of the Java API specifiction (•Java 1.2)

file:///C|/orielly/jnut/ch12_01.htm (49 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

java.specification.name Name of the Java API specification (•Java 1.2)

java.version Version of the Java API implementation

java.vendor Vendor of this Java API implementation

java.vendor.url URL of the vendor of this Java API implementation

java.vm.specification.version Version of the Java VM specification (•Java 1.2)

java.vm.specification.vendor Vendor of the Java VM specification (•Java 1.2)

java.vm.specification.name Name of the Java VM specification (•Java 1.2)

java.vm.version Version of the Java VM implementation (•Java 1.2)

java.vm.vendor Vendor of the Java VM implementation (•Java 1.2)

java.vm.name Name of the Java VM implementation (•Java 1.2)

java.class.version Version of the Java class file format

os.name Name of the host operating system

os.arch Host operating system architecture

os.version Version of the host operating system

file.separator Platform directory separator character

path.separator Platform path separator character

line.separator Platform line separator character(s)

user.name Current user's account name

user.home Home directory of current user

user.dir The current working directory

The in, out, and err fields hold the standard input, output, and error streams for the system. These fields are frequently used in calls
such as System.out.println(). In Java 1.1, setIn(), setOut(), and setErr() allow these streams to be redirected.

System also defines various other useful static methods. exit() causes the Java VM to exit. arraycopy() efficiently copies an
array or a portion of an array into a destination array. currentTimeMillis() returns the current time in milliseconds since
midnight GMT, January 1, 1970 GMT. gc() requests that the garbage collector perform a thorough garbage-collection pass, and
runFinalization() requests that the garbage collector finalize all objects that are ready for finalization. Applications do not
typically need to call these garbage-collection methods, but they can be useful when benchmarking code with
currentTimeMillis(). identityHashCode() computes the hashcode for an object in the same way that the default
Object.hashCode() method does. It does this regardless of whether or how the hashCode() method has been overridden.
load() and loadLibrary() can read libraries of native code into the system. mapLibraryName() converts a system-
independent library name into a system-dependent library filename. Finally, getSecurityManager() and
setSecurityManager() get and set the system SecurityManager object responsible for the system security policy.

See also Runtime, which defines several other methods that provide low-level access to system facilities.

public final class System {

// No Constructor

// Public Constants

public static final java.io.PrintStream err ;

public static final java.io.InputStream in ;

public static final java.io.PrintStream out ;

// Public Class Methods

public static void arraycopy (Object src, int src_position, Object dst, int dst_position, int length); native

public static long currentTimeMillis (); native

file:///C|/orielly/jnut/ch12_01.htm (50 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

public static void exit (int status);

public static void gc ();

public static java.util.Properties getProperties ();

public static String getProperty (String key);

public static String getProperty (String key, String def);

public static SecurityManager getSecurityManager ();

1.1 public static int identityHashCode (Object x); native

public static void load (String filename);

public static void loadLibrary (String libname);

1.2 public static String mapLibraryName (String libname); native

public static void runFinalization ();

1.1 public static void setErr (java.io.PrintStream err);

1.1 public static void setIn (java.io.InputStream in);

1.1 public static void setOut (java.io.PrintStream out);

public static void setProperties (java.util.Properties props);

1.2 public static String setProperty (String key, String value);

public static void setSecurityManager (SecurityManager s);

// Deprecated Public Methods

public static String getenv (String name);

1.1# public static void runFinalizersOnExit (boolean value);

}

Thread Java 1.0

java.lang runnable PJ1.1

This class encapsulates all information about a single thread of control running on the Java interpreter. To create a thread, you must
either pass a Runnable object (i.e., an object that implements the Runnable interface by defining a run() method) to the Thread
constructor or subclass Thread so that it defines its own run() method. The run() method of the Thread or of the specified
Runnable object is the body of the thread. It begins executing when the start() method of the Thread object is called. The thread
runs until the run() method returns. isAlive() returns true if a thread has been started, and the run() method has not yet
exited.

The static methods of this class operate on the currently running thread. currentThread() returns the Thread object of the
currently running code. sleep() makes the current thread stop for a specified amount of time. yield() makes the current thread
give up control to any other threads of equal priority that are waiting to run.

The instance methods may be called by one thread to operate on a different thread. checkAccess() checks whether the running
thread has permission to modify a Thread object and throws a SecurityException if it does not. join() waits for a thread to
die. interrupt() wakes up a waiting or sleeping thread (with an InterruptedException) or sets an interrupted flag on a
nonsleeping thread. A thread can test its own interrupted flag with the static interrupted() method or can test the flag of another
thread with isInterrupted(). Calling interrupted() implicitly clears the interrupted flag, but calling isInterrupted()
does not. Methods related to sleep() and interrupt() are the wait() and notify() methods defined by the Object class.
Calling wait() causes the current thread to block until the object's notify() method is called by another thread.

setName() sets the name of a thread, which is purely optional. setPriority() sets the priority of the thread. Higher priority
threads run before lower-priority threads. Java does not specify what happens to multiple threads of equal priority; some systems
perform time-slicing and share the CPU between such threads. On other systems, one compute-bound thread that does not call
yield() may starve another thread of the same priority. setDaemon() sets a boolean flag that specifies whether this thread is a

file:///C|/orielly/jnut/ch12_01.htm (51 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

daemon or not. The Java VM keeps running as long as at least one non-daemon thread is running. Call getThreadGroup() to
obtain the ThreadGroup of which a thread is part. In Java 1.2 and later, use setContextClassLoader() to specify the
ClassLoader to be used to load any classes required by the thread.

suspend(), resume(), and stop() suspend, resume, and stop a given thread, respectively, but all three methods are deprecated
because they are inherently unsafe and can cause deadlock. If a thread must be stoppable, have it periodically check a flag and exit if the
flag is set.

public class Thread implements Runnable {

// Public Constructors

public Thread ();

public Thread (String name);

public Thread (Runnable target);

public Thread (Runnable target, String name);

public Thread (ThreadGroup group, Runnable target);

public Thread (ThreadGroup group, String name);

public Thread (ThreadGroup group, Runnable target, String name);

// Public Constants

public static final int MAX_PRIORITY ; =10

public static final int MIN_PRIORITY ; =1

public static final int NORM_PRIORITY ; =5

// Public Class Methods

public static int activeCount ();

public static Thread currentThread (); native

public static void dumpStack ();

public static int enumerate (Thread[] tarray);

public static boolean interrupted ();

public static void sleep (long millis) throws InterruptedException; native

public static void sleep (long millis, int nanos) throws InterruptedException;

public static void yield (); native

// Property Accessor Methods (by property name)

public final boolean isAlive (); native default:false

1.2 public ClassLoader getContextClassLoader ();

1.2 public void setContextClassLoader (ClassLoader cl);

public final boolean isDaemon (); default:false

public final void setDaemon (boolean on);

public boolean isInterrupted (); default:false

public final String getName (); default:"Thread-0"

public final void setName (String name);

public final int getPriority (); default:5

public final void setPriority (int newPriority);

public final ThreadGroup getThreadGroup ();

// Public Instance Methods

public final void checkAccess ();

public void destroy ();

public void interrupt ();

file:///C|/orielly/jnut/ch12_01.htm (52 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

public final void join () throws InterruptedException;

public final void join (long millis) throws InterruptedException; synchronized

public final void join (long millis, int nanos) throws InterruptedException; synchronized

public void start (); native synchronized

// Methods Implementing Runnable

public void run ();

// Public Methods Overriding Object

public String toString ();

// Deprecated Public Methods

public int countStackFrames (); native

public final void resume ();

public final void stop ();

public final void stop (Throwable obj); synchronized

public final void suspend ();

}

Hierarchy: Object-->Thread(Runnable)

Passed To: Runtime.{addShutdownHook(), removeShutdownHook()}, SecurityManager.checkAccess(),
Thread.enumerate(), ThreadGroup.{enumerate(), uncaughtException()}

Returned By: Thread.currentThread(), javax.swing.text.AbstractDocument.getCurrentWriter()

ThreadDeath Java 1.0

java.lang serializable error PJ1.1

Signals that a thread should terminate. This error is thrown in a thread when the Thread.stop() method is called for that thread.
This is an unusual Error type that simply causes a thread to be terminated, but does not print an error message or cause the interpreter
to exit. You can catch ThreadDeath errors to do any necessary cleanup for a thread, but if you do, you must rethrow the error so that
the thread actually terminates.

public class ThreadDeath extends Error {

// Public Constructors

public ThreadDeath ();

}

Hierarchy: Object-->Throwable(Serializable)-->Error-->ThreadDeath

ThreadGroup Java 1.0

java.lang PJ1.1

This class represents a group of threads and allows that group to be manipulated as a whole. A ThreadGroup can contain Thread
objects, as well as other child ThreadGroup objects. All ThreadGroup objects are created as children of some other

file:///C|/orielly/jnut/ch12_01.htm (53 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

ThreadGroup, and thus there is a parent/child hierarchy of ThreadGroup objects. Use getParent() to obtain the parent
ThreadGroup, and use activeCount(), activeGroupCount(), and the various enumerate() methods to list the child
Thread and ThreadGroup objects. Most applications can simply rely on the default system thread group. System-level code and
applications such as servers that need to create a large number of threads may find it convenient to create their own ThreadGroup
objects, however.

interrupt() interrupts all threads in the group at once. setMaxPriority() specifies the maximum priority any thread in the
group can have. checkAccess() checks whether the calling thread has permission to modify the given thread group. The method
throws a SecurityException if the current thread does not have access. uncaughtException() contains the code that is run
when a thread terminates because of an uncaught exception or error. You can customize this method by subclassing ThreadGroup.

public class ThreadGroup {

// Public Constructors

public ThreadGroup (String name);

public ThreadGroup (ThreadGroup parent, String name);

// Property Accessor Methods (by property name)

public final boolean isDaemon ();

public final void setDaemon (boolean daemon);

1.1 public boolean isDestroyed (); synchronized

public final int getMaxPriority ();

public final void setMaxPriority (int pri);

public final String getName ();

public final ThreadGroup getParent ();

// Public Instance Methods

public int activeCount ();

public int activeGroupCount ();

public final void checkAccess ();

public final void destroy ();

public int enumerate (ThreadGroup[] list);

public int enumerate (Thread[] list);

public int enumerate (ThreadGroup[] list, boolean recurse);

public int enumerate (Thread[] list, boolean recurse);

1.2 public final void interrupt ();

public void list ();

public final boolean parentOf (ThreadGroup g);

public void uncaughtException (Thread t, Throwable e);

// Public Methods Overriding Object

public String toString ();

// Deprecated Public Methods

1.1# public boolean allowThreadSuspension (boolean b);

public final void resume ();

public final void stop ();

public final void suspend ();

}

Passed To: SecurityManager.checkAccess(), Thread.Thread(), ThreadGroup.{enumerate(),
parentOf(), ThreadGroup()}

file:///C|/orielly/jnut/ch12_01.htm (54 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

Returned By: SecurityManager.getThreadGroup(), Thread.getThreadGroup(),
ThreadGroup.getParent()

ThreadLocal Java 1.2

java.lang

This class provides a convenient way to create thread-local variables. When you declare a static field in a class, there is only one value
for that field, shared by all objects of the class. When you declare a nonstatic instance field in a class, every object of the class has its
own separate copy of that variable. ThreadLocal provides an option between these two extremes. If you declare a static field to hold
a ThreadLocal object, that ThreadLocal holds a different value for each thread. Objects running in the same thread see the same
value when they call the get() method of the ThreadLocal object. Objects running in different threads obtain different values from
get(), however.

The set() method sets the value held by the ThreadLocal object for the currently running thread. get() returns the value held for
the currently running thread. Note that there is no way to obtain the value of the ThreadLocal object for any thread other than the
one that calls get(). To understand the ThreadLocal class, you may find it helpful to think of a ThreadLocal object as a
hashtable or java.util.Map that maps from Thread objects to arbitrary values. Calling set() creates an association between the
current Thread (Thread.currentThread()) and the specified value. Calling get() first looks up the current thread, then uses
the hashtable to look up the value associated with that current thread.

If a thread calls get() for the first time without having first called set() to establish a thread-local value, get() calls the protected
initialValue() method to obtain the initial value to return. The default implementation of initialValue() simply returns
null, but subclasses can override this if they desire.

See also InheritableThreadLocal, which allows thread-local values to be inherited from parent threads by child threads.

public class ThreadLocal {

// Public Constructors

public ThreadLocal ();

// Public Instance Methods

public Object get ();

public void set (Object value);

// Protected Instance Methods

protected Object initialValue (); constant

}

Subclasses: InheritableThreadLocal

Throwable Java 1.0

java.lang serializable PJ1.1

This is the root class of the Java exception and error hierarchy. All exceptions and errors are subclasses of Throwable. The
getMessage() method retrieves any error message associated with the exception or error. printStackTrace() prints a stack
trace that shows where the exception occurred. fillInStackTrace() extends the stack trace when the exception is partially
handled and then rethrown.

file:///C|/orielly/jnut/ch12_01.htm (55 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

public class Throwable implements Serializable {

// Public Constructors

public Throwable ();

public Throwable (String message);

// Public Instance Methods

public Throwable fillInStackTrace (); native

1.1 public String getLocalizedMessage (); default:null

public String getMessage (); default:null

public void printStackTrace ();

public void printStackTrace (java.io.PrintStream s);

1.1 public void printStackTrace (java.io.PrintWriter s);

// Public Methods Overriding Object

public String toString ();

}

Hierarchy: Object-->Throwable(Serializable)

Subclasses: Error, Exception

Passed To: Too many methods to list.

Returned By: ClassNotFoundException.getException(),
ExceptionInInitializerError.getException(), Throwable.fillInStackTrace(),
java.lang.reflect.InvocationTargetException.getTargetException(),
java.lang.reflect.UndeclaredThrowableException.getUndeclaredThrowable(),
javax.naming.NamingException.getRootCause(), javax.servlet.ServletException.getRootCause()

Thrown By: java.awt.AWTEvent.finalize(), java.awt.Font.finalize(), java.awt.Frame.finalize(),
java.awt.Window.finalize(), Object.finalize(),
java.lang.reflect.InvocationHandler.invoke(),
javax.swing.text.AbstractDocument.AbstractElement.finalize()

Type Of: java.rmi.RemoteException.detail, java.rmi.activation.ActivationException.detail,
javax.naming.NamingException.rootException,
org.omg.CORBA.portable.UnknownException.originalEx

UnknownError Java 1.0

java.lang serializable error PJ1.1

Signals that an unknown error has occurred at the level of the Java Virtual Machine.

public class UnknownError extends VirtualMachineError {

// Public Constructors

public UnknownError ();

public UnknownError (String s);

}

file:///C|/orielly/jnut/ch12_01.htm (56 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

Hierarchy: Object-->Throwable(Serializable)-->Error-->VirtualMachineError-->UnknownError

UnsatisfiedLinkError Java 1.0

java.lang serializable error PJ1.1

Signals that Java cannot satisfy all the links in a class that it has loaded.

public class UnsatisfiedLinkError extends LinkageError {

// Public Constructors

public UnsatisfiedLinkError ();

public UnsatisfiedLinkError (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Error-->LinkageError-->UnsatisfiedLinkError

UnsupportedClassVersionError Java 1.2

java.lang serializable error

Every Java class file contains a version number that specifies the version of the class file format. This error is thrown when the Java
Virtual Machine attempts to read a class file with a version number it does not support.

public class UnsupportedClassVersionError extends ClassFormatError {

// Public Constructors

public UnsupportedClassVersionError ();

public UnsupportedClassVersionError (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Error-->LinkageError-->ClassFormatError--
>UnsupportedClassVersionError

UnsupportedOperationException Java 1.2

java.lang serializable unchecked

Signals that a method you have called is not supported, and its implementation does not do anything (except throw this exception). This
exception is used most often by the Java collection framework of java.util. Immutable or unmodifiable collections throw this
exception when a modification method, such as add() or delete(), is called.

public class UnsupportedOperationException extends RuntimeException {

// Public Constructors

public UnsupportedOperationException ();

file:///C|/orielly/jnut/ch12_01.htm (57 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

public UnsupportedOperationException (String message);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->RuntimeException--
>UnsupportedOperationException

VerifyError Java 1.0

java.lang serializable error PJ1.1

Signals that a class has not passed the byte-code verification procedures.

public class VerifyError extends LinkageError {

// Public Constructors

public VerifyError ();

public VerifyError (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Error-->LinkageError-->VerifyError

VirtualMachineError Java 1.0

java.lang serializable error PJ1.1

An abstract error type that serves as superclass for a group of errors related to the Java Virtual Machine. See InternalError,
UnknownError, OutOfMemoryError, and StackOverflowError.

public abstract class VirtualMachineError extends Error {

// Public Constructors

public VirtualMachineError ();

public VirtualMachineError (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Error-->VirtualMachineError

Subclasses: InternalError, OutOfMemoryError, StackOverflowError, UnknownError

Void Java 1.1

java.lang PJ1.1

The Void class cannot be instantiated and serves merely as a placeholder for its static TYPE field, which is a Class object constant
that represents the void type.

file:///C|/orielly/jnut/ch12_01.htm (58 of 59) [2/5/2003 7:50:34 PM]

The java.lang Package (Java in a Nutshell)

public final class Void {

// No Constructor

// Public Constants

public static final Class TYPE ;

}

11.1. The java.io Package 13. The java.lang.ref Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch12_01.htm (59 of 59) [2/5/2003 7:50:34 PM]

file:///C|/orielly/jnut/copyrght.htm

The java.lang.ref Package (Java in a Nutshell)

Part 2: API Quick Reference

Chapter 13. The java.lang.ref Package
The java.lang.ref package defines classes that allow Java programs to interact with the Java
garbage collector. A Reference represents an indirect reference to an arbitrary object, known as the
referent. SoftReference, WeakReference, and PhantomReference are three concrete
subclasses of Reference that interact with the garbage collector in different ways, as explained in the
individual class descriptions that follow. ReferenceQueue represents a linked list of Reference
objects. Any Reference object may have a ReferenceQueue associated with it. A Reference
object is enqueued on its ReferenceQueue at some point after the garbage collector determines that
the referent object has become appropriately unreachable. (The exact level of unreachability depends on
the type of Reference being used.) An application can monitor a ReferenceQueue to determine
when referent objects enter a new reachability status. Figure 13-1 shows the hierarchy of this package,
which is new as of Java 1.2.

Figure 13-1. The java.lang.ref package

Using the mechanisms defined in this package, you can implement a cache that grows and shrinks in size
according to the amount of available system memory. Or, you can implement a hashtable that associates
auxiliary information with arbitrary objects, but does not prevent those objects from being garbage-
collected if they are otherwise unused. The mechanisms provided by this package are low-level ones,
however, and typical applications do not use java.lang.ref directly. Instead, they rely on higher-
level utilities built on top of the package. See java.util.WeakHashMap for one example.

PhantomReference Java 1.2

file:///C|/orielly/jnut/ch13_01.htm (1 of 6) [2/5/2003 7:50:39 PM]

The java.lang.ref Package (Java in a Nutshell)

java.lang.ref

This class represents a reference to an object that does not prevent the referent object from being
finalized by the garbage collector. When (or at some point after) the garbage collector determines that
there are no more hard (direct) references to the referent object, that there are no SoftReference or
WeakReference objects that refer to the referent, and that the referent has been finalized, it enqueues
the PhantomReference object on the ReferenceQueue specified when the
PhantomReference was created. This serves as notification that the object has been finalized and
provides one last opportunity for any required cleanup code to be run.

To prevent a PhantomReference object from resurrecting its referent object, its get() method
always returns null, both before and after the PhantomReference is enqueued. Nevertheless, a
PhantomReference is not automatically cleared when it is enqueued, so when you remove a
PhantomReference from a ReferenceQueue, you must call its clear() method or allow the
PhantomReference object itself to be garbage-collected.

This class provides a more flexible mechanism for object cleanup than the finalize() method does.
Note that in order to take advantage of it, it is necessary to subclass PhantomReference and define a
method to perform the desired cleanup. Furthermore, since the get() method of a
PhantomReference always returns null, such a subclass must also store whatever data is required
for the cleanup operation.

public class PhantomReference extends java.lang.ref.Reference {

// Public Constructors

public PhantomReference (Object referent, ReferenceQueue q);

// Public Methods Overriding Reference

public Object get (); constant

}

Hierarchy: Object-->java.lang.ref.Reference-->PhantomReference

Reference Java 1.2

java.lang.ref

This abstract class represents some type of indirect reference to a referent. get() returns the referent if

file:///C|/orielly/jnut/ch13_01.htm (2 of 6) [2/5/2003 7:50:39 PM]

The java.lang.ref Package (Java in a Nutshell)

the reference has not been explicitly cleared by the clear() method or implicitly cleared by the
garbage collector. There are three concrete subclasses of Reference. The garbage collector handles
these subclasses differently and clears their references under different circumstances.

Each of the subclasses of Reference defines a constructor that allows a ReferenceQueue to be
associated with the Reference object. The garbage collector places Reference objects onto their
associated ReferenceQueue objects to provide notification about the state of the referent object.
isEnqueued() tests whether a Reference has been placed on the associated queue, and
enqueue() explicitly places it on the queue. enqueue() returns false if the Reference object
does not have an associated ReferenceQueue, or if it has already been enqueued.

public abstract class Reference {

// No Constructor

// Public Instance Methods

public void clear ();

public boolean enqueue ();

public Object get ();

public boolean isEnqueued ();

}

Subclasses: PhantomReference, SoftReference, WeakReference

Returned By: ReferenceQueue.{poll(), remove()}

ReferenceQueue Java 1.2

java.lang.ref

This class represents a queue (or linked list) of Reference objects that have been enqueued because
the garbage collector has determined that the referent objects to which they refer are no longer
adequately reachable. It serves as a notification system for object-reachability changes. Use poll() to
return the first Reference object on the queue; the method returns null if the queue is empty. Use
remove() to return the first element on the queue, or, if the queue is empty, to wait for a Reference
object to be enqueued. You can create as many ReferenceQueue objects as needed. Specify a
ReferenceQueue for a Reference object by passing it to the SoftReference(),
WeakReference(), or PhantomReference() constructor.

A ReferenceQueue is required to use PhantomReference objects. It is optional with

file:///C|/orielly/jnut/ch13_01.htm (3 of 6) [2/5/2003 7:50:39 PM]

The java.lang.ref Package (Java in a Nutshell)

SoftReference and WeakReference objects; for these classes, the get() method returns null
if the referent object is no longer adequately reachable.

public class ReferenceQueue {

// Public Constructors

public ReferenceQueue ();

// Public Instance Methods

public java.lang.ref.Reference poll ();

public java.lang.ref.Reference remove () throws InterruptedException;

public java.lang.ref.Reference remove (long timeout) throws
IllegalArgumentExceptionInterruptedException;

}

Passed To: PhantomReference.PhantomReference(),
SoftReference.SoftReference(), WeakReference.WeakReference()

SoftReference Java 1.2

java.lang.ref

This class represents a soft reference to an object. A SoftReference is not cleared while there are
any remaining hard (direct) references to the referent. Once the referent is no longer in use (i.e., there are
no remaining hard references to it), the garbage collector may clear the SoftReference to the
referent at any time. However, the garbage collector does not clear a SoftReference until it
determines that system memory is running low. In particular, the Java VM never throws an
OutOfMemoryError without first clearing all soft references and reclaiming the memory of the
referents. The VM may (but is not required to) clear soft references according to a least-recently-used
ordering.

If a SoftReference has an associated ReferenceQueue, the garbage collector enqueues the
SoftReference at some time after it clears the reference.

SoftReference is particularly useful for implementing object-caching systems that do not have a
fixed size, but grow and shrink as available memory allows.

public class SoftReference extends java.lang.ref.Reference {

// Public Constructors

file:///C|/orielly/jnut/ch13_01.htm (4 of 6) [2/5/2003 7:50:39 PM]

The java.lang.ref Package (Java in a Nutshell)

public SoftReference (Object referent);

public SoftReference (Object referent, ReferenceQueue q);

// Public Methods Overriding Reference

public Object get ();

}

Hierarchy: Object-->java.lang.ref.Reference-->SoftReference

WeakReference Java 1.2

java.lang.ref

This class refers to an object in a way that does not prevent that referent object from being finalized and
reclaimed by the garbage collector. When the garbage collector determines that there are no more hard
(direct) references to the object, and that there are no SoftReference objects that refer to the object,
it clears the WeakReference and marks the referent object for finalization. At some point after this, it
also enqueues the WeakReference on its associated ReferenceQueue, if there is one, in order to
provide notification that the referent has been reclaimed.

WeakReference is used by java.util.WeakHashMap to implement a hashtable that does not
prevent the hashtable key object from being garbage-collected. WeakHashMap is useful when you want
to associate auxiliary information with an object but do not want to prevent the object from being
reclaimed.

public class WeakReference extends java.lang.ref.Reference {

// Public Constructors

public WeakReference (Object referent);

public WeakReference (Object referent, ReferenceQueue q);

}

Hierarchy: Object-->java.lang.ref.Reference-->WeakReference

12.1. The java.lang Package 14. The java.lang.reflect
Package

file:///C|/orielly/jnut/ch13_01.htm (5 of 6) [2/5/2003 7:50:39 PM]

The java.lang.ref Package (Java in a Nutshell)

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch13_01.htm (6 of 6) [2/5/2003 7:50:39 PM]

file:///C|/orielly/jnut/copyrght.htm

The java.lang.reflect Package (Java in a Nutshell)

Part 2: API Quick Reference

Chapter 14. The java.lang.reflect Package
The java.lang.reflect package contains the classes and interfaces that, along with
java.lang.Class, comprise the Java Reflection API. This package is new as of Java 1.1. Figure 14-1
shows the class hierarchy.

The Constructor, Field, and Method classes represent the constructors, fields, and methods of a class.
Because these types all represent members of a class, they each implement the Member interface, which
defines a simple set of methods that can be invoked for any class member. These classes allow information
about the class members to be obtained, methods and constructors to be invoked, and fields to be queried and
set.

Class member modifiers are represented as integers that specify a number of bit flags. The Modifer class
defines static methods that help interpret the meanings of these flags. The Array class defines static methods
for creating arrays, and reading and writing array elements.

In Java 1.3, the Proxy class allows the dynamic creation of new Java classes that implement a specified set of
interfaces. When an interface method is invoked on an instance of such a proxy class, the invocation is
delegated to an InvocationHandler object.

file:///C|/orielly/jnut/ch14_01.htm (1 of 14) [2/5/2003 7:50:45 PM]

The java.lang.reflect Package (Java in a Nutshell)

Figure 14-1. The java.lang.reflect package

AccessibleObject Java 1.2

java.lang.reflect

This class is the superclass of the Method, Constructor, and Field classes; its methods provide a
mechanism for trusted applications to work with private, protected, and default visibility members that
would otherwise not be accessible through the Reflection API. This class is new as of Java 1.2; in Java 1.1, the
Method, Constructor, and Field classes extended Object directly.

To use the java.lang.reflect package to access a member to which your code would not normally
have access, pass true to the setAccessible() method. If your code has an appropriate
ReflectPermission ("suppressAccessChecks"), this allows access to the member as if it were declared
public. The static version of setAccessible() is a convenience method that sets the accessible flag for
an array of members, but performs only a single security check.

public class AccessibleObject {

// Protected Constructors

protected AccessibleObject ();

file:///C|/orielly/jnut/ch14_01.htm (2 of 14) [2/5/2003 7:50:45 PM]

The java.lang.reflect Package (Java in a Nutshell)

// Public Class Methods

public static void setAccessible (AccessibleObject[] array, boolean flag) throws SecurityException;

// Public Instance Methods

public boolean isAccessible ();

public void setAccessible (boolean flag) throws SecurityException;

}

Subclasses: Constructor, Field, Method

Passed To: AccessibleObject.setAccessible()

Array Java 1.1

java.lang.reflect PJ1.1

This class contains methods that allow you to set and query the values of array elements, to determine the
length of an array, and to create new instances of arrays. Note that the Array class can manipulate only array
values, not array types; Java data types, including array types, are represented by java.lang.Class. Since
the Array class represents a Java value, unlike the Field, Method, and Constructor classes, which
represent class members, the Array class is significantly different (despite some surface similarities) from
those other classes in this package. Most notably, all the methods of Array are static and apply to all array
values, not just a specific field, method, or constructor.

The get() method returns the value of the specified element of the specified array as an Object. If the
array elements are of a primitive type, the value is converted to a wrapper object before being returned. You
can also use getInt() and related methods to query array elements and return them as specific primitive
types. The set() method and its primitive type variants perform the opposite operation. Also, the
getLength() method returns the length of the array.

The newInstance() methods create new arrays. One version of this method is passed the number of
elements in the array and the type of those elements. The other version of this method creates
multidimensional arrays. Besides specifying the component type of the array, it is passed an array of numbers.
The length of this array specifies the number of dimensions for the array to be created, and the values of each
of the array elements specify the size of each dimension of the created array.

public final class Array {

// No Constructor

// Public Class Methods

file:///C|/orielly/jnut/ch14_01.htm (3 of 14) [2/5/2003 7:50:45 PM]

The java.lang.reflect Package (Java in a Nutshell)

public static Object get (Object array, int index) throws
IllegalArgumentExceptionArrayIndexOutOfBoundsException;

native

public static boolean getBoolean (Object array, int index) throws
IllegalArgumentExceptionArrayIndexOutOfBoundsException;

native

public static byte getByte (Object array, int index) throws
IllegalArgumentExceptionArrayIndexOutOfBoundsException;

native

public static char getChar (Object array, int index) throws
IllegalArgumentExceptionArrayIndexOutOfBoundsException;

native

public static double getDouble (Object array, int index) throws
IllegalArgumentExceptionArrayIndexOutOfBoundsException;

native

public static float getFloat (Object array, int index) throws
IllegalArgumentExceptionArrayIndexOutOfBoundsException;

native

public static int getInt (Object array, int index) throws
IllegalArgumentExceptionArrayIndexOutOfBoundsException;

native

public static int getLength (Object array) throws IllegalArgumentException; native

public static long getLong (Object array, int index) throws
IllegalArgumentExceptionArrayIndexOutOfBoundsException;

native

public static short getShort (Object array, int index) throws
IllegalArgumentExceptionArrayIndexOutOfBoundsException;

native

public static Object newInstance (Class componentType, int length) throws
NegativeArraySizeException;

public static Object newInstance (Class componentType, int[] dimensions) throws
IllegalArgumentExceptionNegativeArraySizeException;

public static void set (Object array, int index, Object value) throws
IllegalArgumentExceptionArrayIndexOutOfBoundsException;

native

public static void setBoolean (Object array, int index, boolean z) throws
IllegalArgumentExceptionArrayIndexOutOfBoundsException;

native

public static void setByte (Object array, int index, byte b) throws
IllegalArgumentExceptionArrayIndexOutOfBoundsException;

native

public static void setChar (Object array, int index, char c) throws
IllegalArgumentExceptionArrayIndexOutOfBoundsException;

native

public static void setDouble (Object array, int index, double d) throws
IllegalArgumentExceptionArrayIndexOutOfBoundsException;

native

public static void setFloat (Object array, int index, float f) throws
IllegalArgumentExceptionArrayIndexOutOfBoundsException;

native

public static void setInt (Object array, int index, int i) throws
IllegalArgumentExceptionArrayIndexOutOfBoundsException;

native

public static void setLong (Object array, int index, long l) throws
IllegalArgumentExceptionArrayIndexOutOfBoundsException;

native

file:///C|/orielly/jnut/ch14_01.htm (4 of 14) [2/5/2003 7:50:45 PM]

The java.lang.reflect Package (Java in a Nutshell)

public static void setShort (Object array, int index, short s) throws
IllegalArgumentExceptionArrayIndexOutOfBoundsException;

native

}

Constructor Java 1.1

java.lang.reflect PJ1.1

This class represents a constructor method of a class. Instances of Constructor are obtained by calling
getConstructor() and related methods of java.lang.Class. Constructor implements the
Member interface, so you can use the methods of that interface to obtain the constructor name, modifiers, and
declaring class. In addition, getParameterTypes() and getExceptionTypes() also return
important information about the represented constructor.

In addition to these methods that return information about the constructor, the newInstance() method
allows the constructor to be invoked with an array of arguments in order to create a new instance of the class
that declares the constructor. If any of the arguments to the constructor are of primitive types, they must be
converted to their corresponding wrapper object types to be passed to newInstance(). If the constructor
causes an exception, the Throwable object it throws is wrapped within the
InvocationTargetException that is thrown by newInstance(). Note that newInstance() is
much more useful than the newInstance() method of java.lang.Class because it can pass
arguments to the constructor.

public final class Constructor extends AccessibleObject implements Member {

// No Constructor

// Public Instance Methods

public Class[] getExceptionTypes ();

public Class[] getParameterTypes ();

public Object newInstance (Object[] initargs) throws
InstantiationExceptionIllegalAccessExceptionIllegalArgumentExceptionInvocationTargetException;

native

// Methods Implementing Member

public Class getDeclaringClass ();

public int getModifiers ();

public String getName ();

// Public Methods Overriding Object

public boolean equals (Object obj);

public int hashCode ();

public String toString ();

}

file:///C|/orielly/jnut/ch14_01.htm (5 of 14) [2/5/2003 7:50:45 PM]

The java.lang.reflect Package (Java in a Nutshell)

Hierarchy: Object-->AccessibleObject-->Constructor(Member)

Returned By: Class.{getConstructor(), getConstructors(),
getDeclaredConstructor(), getDeclaredConstructors()}

Field Java 1.1

java.lang.reflect PJ1.1

This class represents a field of a class. Instances of Field are obtained by calling the getField() and
related methods of java.lang.Class. Field implements the Member interface, so once you have
obtained a Field object, you can use getName(), getModifiers(), and getDeclaringClass()
to determine the name, modifiers, and class of the field. Additionally, getType() returns the type of the
field.

The set() method sets the value of the represented field for a specified object. (If the represented field is
static, no object need be specified, of course.) If the field is of a primitive type, its value can be specified
using a wrapper object of type Boolean, Integer, and so on, or it can be set using the setBoolean(),
setInt(), and related methods. Similarly, the get() method queries the value of the represented field for
a specified object and returns the field value as an Object. Various other methods query the field value and
return it as various primitive types.

public final class Field extends AccessibleObject implements Member {

// No Constructor

// Public Instance Methods

public Object get (Object obj) throws IllegalArgumentExceptionIllegalAccessException; native

public boolean getBoolean (Object obj) throws IllegalArgumentExceptionIllegalAccessException; native

public byte getByte (Object obj) throws IllegalArgumentExceptionIllegalAccessException; native

public char getChar (Object obj) throws IllegalArgumentExceptionIllegalAccessException; native

public double getDouble (Object obj) throws IllegalArgumentExceptionIllegalAccessException; native

public float getFloat (Object obj) throws IllegalArgumentExceptionIllegalAccessException; native

public int getInt (Object obj) throws IllegalArgumentExceptionIllegalAccessException; native

public long getLong (Object obj) throws IllegalArgumentExceptionIllegalAccessException; native

public short getShort (Object obj) throws IllegalArgumentExceptionIllegalAccessException; native

public Class getType ();

public void set (Object obj, Object value) throws
IllegalArgumentExceptionIllegalAccessException;

native

file:///C|/orielly/jnut/ch14_01.htm (6 of 14) [2/5/2003 7:50:45 PM]

The java.lang.reflect Package (Java in a Nutshell)

public void setBoolean (Object obj, boolean z) throws
IllegalArgumentExceptionIllegalAccessException;

native

public void setByte (Object obj, byte b) throws IllegalArgumentExceptionIllegalAccessException; native

public void setChar (Object obj, char c) throws IllegalArgumentExceptionIllegalAccessException; native

public void setDouble (Object obj, double d) throws
IllegalArgumentExceptionIllegalAccessException;

native

public void setFloat (Object obj, float f) throws IllegalArgumentExceptionIllegalAccessException; native

public void setInt (Object obj, int i) throws IllegalArgumentExceptionIllegalAccessException; native

public void setLong (Object obj, long l) throws IllegalArgumentExceptionIllegalAccessException; native

public void setShort (Object obj, short s) throws IllegalArgumentExceptionIllegalAccessException; native

// Methods Implementing Member

public Class getDeclaringClass ();

public int getModifiers ();

public String getName ();

// Public Methods Overriding Object

public boolean equals (Object obj);

public int hashCode ();

public String toString ();

}

Hierarchy: Object-->AccessibleObject-->Field(Member)

Passed To: javax.ejb.deployment.EntityDescriptor.setContainerManagedFields()

Returned By: Class.{getDeclaredField(), getDeclaredFields(), getField(),
getFields()},
javax.ejb.deployment.EntityDescriptor.getContainerManagedFields()

InvocationHandler Java 1.3 Beta

java.lang.reflect

This interface defines a single invoke() method that is called whenever a method is invoked on a
dynamically created Proxy object. Every Proxy object has an associated InvocationHandler object
that is specified when the Proxy is instantiated. All method invocations on the proxy object are translated
into calls to the invoke() method of the InvocationHandler.

The first argument to invoke() is the Proxy object through which the method was invoked. The second

file:///C|/orielly/jnut/ch14_01.htm (7 of 14) [2/5/2003 7:50:45 PM]

The java.lang.reflect Package (Java in a Nutshell)

argument is a Method object that represents the method that was invoked. Call the
getDeclaringClass() method of this Method object to determine the interface in which the method
was declared. This may be a superinterface of one of the specified interfaces or even java.lang.Object
when the method invoked is toString(), hashCode(), or one of the other Object methods. The third
argument to invoke() is the array of method arguments. Any primitive type arguments are wrapped in their
corresponding object wrappers (e.g., Boolean, Integer, Double).

The value returned by invoke() becomes the return value of the proxy object method invocation and must
be of an appropriate type. If the proxy object method returns a primitive type, invoke() should return an
instance of the corresponding wrapper class. invoke() can throw any unchecked (i.e., runtime) exceptions
or any checked exceptions declared by the proxy object method. If invoke() throws a checked exception
that is not declared by the proxy object, that exception is wrapped within an unchecked
UndeclaredThrowableException that is thrown in its place.

public interface InvocationHandler {

// Public Instance Methods

public abstract Object invoke (Object proxy, Method method, Object[] args) throws Throwable;

}

Passed To: Proxy.{newProxyInstance(), Proxy()}

Returned By: Proxy.getInvocationHandler()

Type Of: Proxy.h

InvocationTargetException Java 1.1

java.lang.reflect serializable checked PJ1.1

An object of this class is thrown by Method.invoke() and Constructor.newInstance() when an
exception is thrown by the method or constructor invoked through those methods. The
InvocationTargetException class serves as a wrapper around the object that was thrown; that object
can be retrieved with the getTargetException() method.

public class InvocationTargetException extends Exception {

// Public Constructors

public InvocationTargetException (Throwable target);

public InvocationTargetException (Throwable target, String s);

// Protected Constructors

file:///C|/orielly/jnut/ch14_01.htm (8 of 14) [2/5/2003 7:50:45 PM]

The java.lang.reflect Package (Java in a Nutshell)

protected InvocationTargetException ();

// Public Instance Methods

public Throwable getTargetException ();

// Public Methods Overriding Throwable

1.2 public void printStackTrace ();

1.2 public void printStackTrace (java.io.PrintWriter pw);

1.2 public void printStackTrace (java.io.PrintStream ps);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception--
>InvocationTargetException

Thrown By: java.awt.EventQueue.invokeAndWait(), Constructor.newInstance(),
Method.invoke(), javax.swing.SwingUtilities.invokeAndWait()

Member Java 1.1

java.lang.reflect PJ1.1

This interface defines the methods shared by all members (fields, methods, and constructors) of a class.
getName() returns the name of the member, getModifiers() returns its modifiers, and
getDeclaringClass() returns the Class object that represents the class of which the member is a part.

public interface Member {

// Public Constants

public static final int DECLARED ; =1

public static final int PUBLIC ; =0

// Public Instance Methods

public abstract Class getDeclaringClass ();

public abstract int getModifiers ();

public abstract String getName ();

}

Implementations: Constructor, Field, Method

Method Java 1.1

file:///C|/orielly/jnut/ch14_01.htm (9 of 14) [2/5/2003 7:50:45 PM]

The java.lang.reflect Package (Java in a Nutshell)

java.lang.reflect PJ1.1

This class represents a method. Instances of Method are obtained by calling the getMethod() and related
methods of java.lang.Class. Method implements the Member interface, so you can use the methods of
that interface to obtain the method name, modifiers, and declaring class. In addition, getReturnType(),
getParameterTypes(), and getExceptionTypes() also return important information about the
represented method.

Perhaps most importantly, the invoke() method allows the method represented by the Method object to be
invoked with a specified array of argument values. If any of the arguments are of primitive types, they must be
converted to their corresponding wrapper object types in order to be passed to invoke(). If the represented
method is an instance method (i.e., if it is not static), the instance on which it should be invoked must also
be passed to invoke(). The return value of the represented method is returned by invoke(). If the return
value is a primitive value, it is first converted to the corresponding wrapper type. If the invoked method causes
an exception, the Throwable object it throws is wrapped within the InvocationTargetException
that is thrown by invoke().

public final class Method extends AccessibleObject implements Member {

// No Constructor

// Property Accessor Methods (by property name)

public Class getDeclaringClass (); Implements:Member

public Class[] getExceptionTypes ();

public int getModifiers (); Implements:Member

public String getName (); Implements:Member

public Class[] getParameterTypes ();

public Class getReturnType ();

// Public Instance Methods

public Object invoke (Object obj, Object[] args) throws
IllegalAccessExceptionIllegalArgumentExceptionInvocationTargetException;

native

// Methods Implementing Member

public Class getDeclaringClass ();

public int getModifiers ();

public String getName ();

// Public Methods Overriding Object

public boolean equals (Object obj);

public int hashCode ();

public String toString ();

}

file:///C|/orielly/jnut/ch14_01.htm (10 of 14) [2/5/2003 7:50:45 PM]

The java.lang.reflect Package (Java in a Nutshell)

Hierarchy: Object-->AccessibleObject-->Method(Member)

Passed To: Too many methods to list.

Returned By: java.beans.EventSetDescriptor.{getAddListenerMethod(),
getListenerMethods(), getRemoveListenerMethod()},
java.beans.IndexedPropertyDescriptor.{getIndexedReadMethod(),
getIndexedWriteMethod()}, java.beans.MethodDescriptor.getMethod(),
java.beans.PropertyDescriptor.{getReadMethod(), getWriteMethod()},
Class.{getDeclaredMethod(), getDeclaredMethods(), getMethod(),
getMethods()}, javax.ejb.deployment.AccessControlEntry.getMethod(),
javax.ejb.deployment.ControlDescriptor.getMethod()

Modifier Java 1.1

java.lang.reflect PJ1.1

This class defines a number of constants and static methods that can interpret the integer values returned by
the getModifiers() methods of the Field, Method, and Constructor classes. The isPublic(),
isAbstract(), and related methods return true if the modifier value includes the specified modifier;
otherwise, they return false. The constants defined by this class specify the various bit flags used in the
modifiers value. You can use these constants to test for modifiers if you want to perform your own boolean
algebra.

public class Modifier {

// Public Constructors

public Modifier ();

// Public Constants

public static final int ABSTRACT ; =1024

public static final int FINAL ; =16

public static final int INTERFACE ; =512

public static final int NATIVE ; =256

public static final int PRIVATE ; =2

public static final int PROTECTED ; =4

public static final int PUBLIC ; =1

public static final int STATIC ; =8

1.2 public static final int STRICT ; =2048

public static final int SYNCHRONIZED ; =32

file:///C|/orielly/jnut/ch14_01.htm (11 of 14) [2/5/2003 7:50:45 PM]

The java.lang.reflect Package (Java in a Nutshell)

public static final int TRANSIENT ; =128

public static final int VOLATILE ; =64

// Public Class Methods

public static boolean isAbstract (int mod);

public static boolean isFinal (int mod);

public static boolean isInterface (int mod);

public static boolean isNative (int mod);

public static boolean isPrivate (int mod);

public static boolean isProtected (int mod);

public static boolean isPublic (int mod);

public static boolean isStatic (int mod);

1.2 public static boolean isStrict (int mod);

public static boolean isSynchronized (int mod);

public static boolean isTransient (int mod);

public static boolean isVolatile (int mod);

public static String toString (int mod);

}

Proxy Java 1.3 Beta

java.lang.reflect serializable

This class defines a simple but powerful API for dynamically generating a proxy class. A proxy class
implements a specified list of interfaces and delegates invocations of the methods defined by those interfaces
to a separate invocation handler object.

The static getProxyClass() method dynamically creates a new Class object that implements each of
the interfaces specified in the supplied Class[] array. The newly created class is defined in the context of
the specified ClassLoader. The Class returned by getProxyClass() is a subclass of Proxy. Every
class that is dynamically generated by getProxyClass() has a single public constructor, which expects a
single argument of type InvocationHandler. You can create an instance of the dynamic proxy class by
using the Constructor class to invoke this constructor. Or, more simply, you can combine the call to
getProxyClass() with the constructor call by calling the static newProxyInstance() method, which
both defines and instantiates a proxy class.

Every instance of a dynamic proxy class has an associated InvocationHandler object. All method calls
made on a proxy class are translated into calls to the invoke() method of this InvocationHandler
object, which can handle the call in any way it sees fit. The static getInvocationHandler() method
returns the InvocationHandler object for a given proxy object. The static isProxyClass() method

file:///C|/orielly/jnut/ch14_01.htm (12 of 14) [2/5/2003 7:50:45 PM]

The java.lang.reflect Package (Java in a Nutshell)

returns true if a specified Class object is a dynamically generated proxy class.

public class Proxy implements Serializable {

// Protected Constructors

protected Proxy (InvocationHandler h);

// Public Class Methods

public static InvocationHandler getInvocationHandler (Object proxy) throws IllegalArgumentException;

public static Class getProxyClass (ClassLoader loader, Class[] interfaces) throws
IllegalArgumentException;

public static boolean isProxyClass (Class cl);

public static Object newProxyInstance (ClassLoader loader, Class[] interfaces, InvocationHandler h)
throws IllegalArgumentException;

// Protected Instance Fields

protected InvocationHandler h ;

}

Hierarchy: Object-->Proxy(Serializable)

ReflectPermission Java 1.2

java.lang.reflect serializable permission

This class is a java.security.Permission that governs access to private, protected, and
default-visibility methods, constructors, and fields through the Java Reflection API. In Java 1.2, the only
defined name, or target, for ReflectPermission is "suppressAccessChecks". This permission is required
to call the setAccessible() method of AccessibleObject. Unlike some Permission subclasses,
ReflectPermission does not use a list of actions. See also AccessibleObject.

System administrators configuring security policies should be familiar with this class, but application
programmers should never need to use it directly.

public final class ReflectPermission extends java.security.BasicPermission {

// Public Constructors

public ReflectPermission (String name);

public ReflectPermission (String name, String actions);

}

Hierarchy: Object--

file:///C|/orielly/jnut/ch14_01.htm (13 of 14) [2/5/2003 7:50:45 PM]

The java.lang.reflect Package (Java in a Nutshell)

>java.security.Permission(java.security.Guard,Serializable)--
>java.security.BasicPermission(Serializable)-->ReflectPermission

UndeclaredThrowableException Java 1.3 Beta

java.lang.reflect serializable unchecked

Thrown by a method of a Proxy object if the invoke() method of the proxy's InvocationHandler
throws a checked exception not declared by the original method. This class serves as an unchecked exception
wrapper around the checked exception. Use getUndeclaredThrowable() to obtain the checked
exception thrown by invoke().

public class UndeclaredThrowableException extends RuntimeException {

// Public Constructors

public UndeclaredThrowableException (Throwable undeclaredThrowable);

public UndeclaredThrowableException (Throwable undeclaredThrowable, String s);

// Public Instance Methods

public Throwable getUndeclaredThrowable ();

// Public Methods Overriding Throwable

public void printStackTrace ();

public void printStackTrace (java.io.PrintStream ps);

public void printStackTrace (java.io.PrintWriter pw);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->RuntimeException--
>UndeclaredThrowableException

13.1. The java.lang.ref
Package

15. The java.math Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch14_01.htm (14 of 14) [2/5/2003 7:50:45 PM]

file:///C|/orielly/jnut/copyrght.htm

The java.math Package (Java in a Nutshell)

Part 2: API Quick Reference

Chapter 15. The java.math Package
The java.math package, new as of Java 1.1, contains classes for arbitrary-precision integer and
floating-point arithmetic. Arbitrary-length integers are required for cryptography, and arbitrary-precision
floating-point values are useful for financial applications that need to be careful about rounding errors.
The class hierarchy of this extremely small package is shown in Figure 15-1.

Figure 15-1. The java.math package

BigDecimal Java 1.1

java.math serializable comparable PJ1.1(opt)

This subclass of java.lang.Number represents a floating-point number of arbitrary size and
precision. Its methods duplicate the functionality of the standard Java arithmetic operators. The
compareTo() method compares the value of two BigDecimal objects and returns -1, 0, or 1 to
indicate the result of the comparison.

A BigDecimal object is represented as an integer of arbitrary size and an integer scale that specifies
the number of decimal places in the value. When working with BigDecimal values, you can explicitly
specify the amount of precision (i.e., the number of decimal places) you are interested in. Also, whenever
a BigDecimal method can discard precision (e.g., in a division operation), you are required to specify

file:///C|/orielly/jnut/ch15_01.htm (1 of 6) [2/5/2003 7:50:50 PM]

The java.math Package (Java in a Nutshell)

what sort of rounding should be performed on the digit to the left of the discarded digit or digits. The
eight constants defined by this class specify the available rounding modes. Because the BigDecimal
class provides arbitrary precision and gives you explicit control over rounding and the number of decimal
places you are interested in, it can be useful when dealing with quantities that represent money or in
other circumstances where the tolerance for rounding errors is low.

public class BigDecimal extends Number implements Comparable {

// Public Constructors

public BigDecimal (BigInteger val);

public BigDecimal (String val);

public BigDecimal (double val);

public BigDecimal (BigInteger unscaledVal, int scale);

// Public Constants

public static final int ROUND_CEILING ; =2

public static final int ROUND_DOWN ; =1

public static final int ROUND_FLOOR ; =3

public static final int ROUND_HALF_DOWN ; =5

public static final int ROUND_HALF_EVEN ; =6

public static final int ROUND_HALF_UP ; =4

public static final int ROUND_UNNECESSARY ; =7

public static final int ROUND_UP ; =0

// Public Class Methods

public static BigDecimal valueOf (long val);

public static BigDecimal valueOf (long unscaledVal, int scale);

// Public Instance Methods

public BigDecimal abs ();

public BigDecimal add (BigDecimal val);

public int compareTo (BigDecimal val);

public BigDecimal divide (BigDecimal val, int roundingMode);

public BigDecimal divide (BigDecimal val, int scale, int roundingMode);

public BigDecimal max (BigDecimal val);

public BigDecimal min (BigDecimal val);

public BigDecimal movePointLeft (int n);

public BigDecimal movePointRight (int n);

public BigDecimal multiply (BigDecimal val);

public BigDecimal negate ();

file:///C|/orielly/jnut/ch15_01.htm (2 of 6) [2/5/2003 7:50:50 PM]

The java.math Package (Java in a Nutshell)

public int scale ();

public BigDecimal setScale (int scale);

public BigDecimal setScale (int scale, int roundingMode);

public int signum ();

public BigDecimal subtract (BigDecimal val);

public BigInteger toBigInteger ();

1.2 public BigInteger unscaledValue ();

// Methods Implementing Comparable

1.2 public int compareTo (Object o);

// Public Methods Overriding Number

public double doubleValue ();

public float floatValue ();

public int intValue ();

public long longValue ();

// Public Methods Overriding Object

public boolean equals (Object x);

public int hashCode ();

public String toString ();

}

Hierarchy: Object-->Number(Serializable)-->BigDecimal(Comparable)

Passed To: Too many methods to list.

Returned By: Too many methods to list.

Type Of: org.omg.CORBA.FixedHolder.value

BigInteger Java 1.1

java.math serializable comparable PJ1.1(opt)

This subclass of java.lang.Number represents integers that can be arbitrarily large (i.e., integers
that are not limited to the 64 bits available with the long data type). BigInteger defines methods
that duplicate the functionality of the standard Java arithmetic and bit-manipulation operators. The

file:///C|/orielly/jnut/ch15_01.htm (3 of 6) [2/5/2003 7:50:50 PM]

The java.math Package (Java in a Nutshell)

compareTo() method compares two BigInteger objects and returns -1, 0, or 1 to indicate the
result of the comparison. The gcd(), modPow(), modInverse(), and isProbablePrime()
methods perform advanced operations and are used primarily in cryptographic and related algorithms.

public class BigInteger extends Number implements Comparable {

// Public Constructors

public BigInteger (String val);

public BigInteger (byte[] val);

public BigInteger (String val, int radix);

public BigInteger (int signum, byte[] magnitude);

public BigInteger (int numBits, java.util.Random rnd);

public BigInteger (int bitLength, int certainty, java.util.Random rnd);

// Public Constants

public static final BigInteger ONE ;

public static final BigInteger ZERO ;

// Public Class Methods

public static BigInteger valueOf (long val);

// Public Instance Methods

public BigInteger abs ();

public BigInteger add (BigInteger val);

public BigInteger and (BigInteger val);

public BigInteger andNot (BigInteger val);

public int bitCount ();

public int bitLength ();

public BigInteger clearBit (int n);

public int compareTo (BigInteger val);

public BigInteger divide (BigInteger val);

public BigInteger[] divideAndRemainder (BigInteger val);

public BigInteger flipBit (int n);

public BigInteger gcd (BigInteger val);

public int getLowestSetBit ();

public boolean isProbablePrime (int certainty);

public BigInteger max (BigInteger val);

public BigInteger min (BigInteger val);

public BigInteger mod (BigInteger m);

file:///C|/orielly/jnut/ch15_01.htm (4 of 6) [2/5/2003 7:50:50 PM]

The java.math Package (Java in a Nutshell)

public BigInteger modInverse (BigInteger m);

public BigInteger modPow (BigInteger exponent, BigInteger m);

public BigInteger multiply (BigInteger val);

public BigInteger negate ();

public BigInteger not ();

public BigInteger or (BigInteger val);

public BigInteger pow (int exponent);

public BigInteger remainder (BigInteger val);

public BigInteger setBit (int n);

public BigInteger shiftLeft (int n);

public BigInteger shiftRight (int n);

public int signum ();

public BigInteger subtract (BigInteger val);

public boolean testBit (int n);

public byte[] toByteArray ();

public String toString (int radix);

public BigInteger xor (BigInteger val);

// Methods Implementing Comparable

1.2 public int compareTo (Object o);

// Public Methods Overriding Number

public double doubleValue ();

public float floatValue ();

public int intValue ();

public long longValue ();

// Public Methods Overriding Object

public boolean equals (Object x);

public int hashCode ();

public String toString ();

}

Hierarchy: Object-->Number(Serializable)-->BigInteger(Comparable)

Passed To: Too many methods to list.

Returned By: Too many methods to list.

file:///C|/orielly/jnut/ch15_01.htm (5 of 6) [2/5/2003 7:50:50 PM]

The java.math Package (Java in a Nutshell)

Type Of: BigInteger.{ONE, ZERO},
java.security.spec.RSAKeyGenParameterSpec.{F0, F4}

14.1. The java.lang.reflect
Package

16. The java.net Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch15_01.htm (6 of 6) [2/5/2003 7:50:50 PM]

file:///C|/orielly/jnut/copyrght.htm

The java.net Package (Java in a Nutshell)

Part 2: API Quick Reference

Chapter 16. The java.net Package
The java.net package provides a powerful and flexible infrastructure for networking. Figure 16-1 and Figure 16-2 show the class
hierarchy for this package. Many of the classes in this package are part of the networking infrastructure and are not used by normal
applications; these complicated classes can make the package a difficult one to understand. In this overview, I describe only the
classes an application might normally use.

Figure 16-1. The classes of the java.net package

file:///C|/orielly/jnut/ch16_01.htm (1 of 27) [2/5/2003 7:50:59 PM]

The java.net Package (Java in a Nutshell)

Figure 16-2. The exceptions of the java.net package

The URL class represents an Internet uniform resource locator (URL). It provides a very simple interface to networking: the object
referred to by the URL can be downloaded with a single call, or streams may be opened to read from or write to the object. At a
slightly more complex level, a URLConnection object can be obtained from a given URL object. The URLConnection class
provides additional methods that allow you to work with URLs in more sophisticated ways.

If you want to do more than simply download an object referenced by a URL, you can do your own networking with the Socket
class. This class allows you to connect to a specified port on a specified Internet host and read and write data using the
InputStream and OutputStream classes of the java.io package. If you want to implement a server to accept connections
from clients, you can use the related ServerSocket class. Both Socket and ServerSocket use the InetAddress address
class, which represents an Internet address.

The java.net package allows you to do low-level networking with DatagramPacket objects, which may be sent and received
over the network through a DatagramSocket object. As of Java 1.1, the package has been extended to include a
MulticastSocket class that supports multicast networking.

Authenticator Java 1.2

java.net

This abstract class defines a customizable mechanism for requesting and performing password authentication. The static
setDefault() method establishes the systemwide Authenticator object to use when password authentication is requested.
The implementation can obtain the required authentication information from the user however it wants (e.g., through a text- or a GUI-
based interface). setDefault() can be called only once; subsequent calls are ignored. Calling setDefault() requires an
appropriate NetPermission.

When an application or the Java runtime system requires password authentication (to read the contents of a specified URL, for
example), it calls the static requestPasswordAuthentication() method, passing arguments that specify the host and port
for which the password is required and a prompt that may be displayed to the user. This method looks up the default
Authenticator for the system and calls its getPasswordAuthentication() method. Calling
requestPasswordAuthentication() requires an appropriate NetPermission.

Authenticator is an abstract class; its default implementation of getPasswordAuthentication() always returns null.
To create an Authenticator, you must override this method so that it prompts the user to enter a username and password and
returns that information in the form of a PasswordAuthentication object. Your implementation of
getPasswordAuthentication() may call the various getRequesting() methods to find who is requesting the password
and what the recommended user prompt is.

file:///C|/orielly/jnut/ch16_01.htm (2 of 27) [2/5/2003 7:50:59 PM]

The java.net Package (Java in a Nutshell)

public abstract class Authenticator {

// Public Constructors

public Authenticator ();

// Public Class Methods

public static PasswordAuthentication requestPasswordAuthentication (InetAddress addr, int port, String protocol,
String prompt, String scheme);

public static void setDefault (Authenticator a); synchronized

// Protected Instance Methods

protected PasswordAuthentication getPasswordAuthentication (); constant

protected final int getRequestingPort ();

protected final String getRequestingPrompt ();

protected final String getRequestingProtocol ();

protected final String getRequestingScheme ();

protected final InetAddress getRequestingSite ();

}

Passed To: Authenticator.setDefault()

BindException Java 1.1

java.net serializable checked PJ1.1

Signals that a socket cannot be bound to a local address and port. This often means that the port is already in use.

public class BindException extends SocketException {

// Public Constructors

public BindException ();

public BindException (String msg);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->java.io.IOException--
>SocketException-->BindException

ConnectException Java 1.1

java.net serializable checked PJ1.1

Signals that a socket cannot be connected to a remote address and port. This means that the remote host can be reached, but is not
responding, perhaps because there is no process on that host that is listening on the specified port.

public class ConnectException extends SocketException {

// Public Constructors

public ConnectException ();

file:///C|/orielly/jnut/ch16_01.htm (3 of 27) [2/5/2003 7:50:59 PM]

The java.net Package (Java in a Nutshell)

public ConnectException (String msg);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->java.io.IOException--
>SocketException-->java.net.ConnectException

ContentHandler Java 1.0

java.net PJ1.1

This abstract class defines a method that reads data from a URLConnection and returns an object that represents that data. Each
subclass that implements this method is responsible for handling a different type of content (i.e., a different MIME type). Applications
never create ContentHandler objects directly; they are created, when necessary, by the registered ContentHandlerFactory
object. Applications should also never call ContentHandler methods directly; they should call URL.getContent() or
URLConnection.getContent() instead. You need to subclass ContentHandler only if you are writing a web browser or
similar application that needs to parse and understand some new content type.

public abstract class ContentHandler {

// Public Constructors

public ContentHandler ();

// Public Instance Methods

public abstract Object getContent (URLConnection urlc) throws java.io.IOException;

1.3 public Object getContent (URLConnection urlc, Class[] classes) throws java.io.IOException;

}

Returned By: ContentHandlerFactory.createContentHandler()

ContentHandlerFactory Java 1.0

java.net PJ1.1

This interface defines a method that creates and returns an appropriate ContentHandler object for a specified MIME type. A
systemwide ContentHandlerFactory interface may be specified using the
URLConnection.setContentHandlerFactory() method. Normal applications never need to use or implement this
interface.

public interface ContentHandlerFactory {

// Public Instance Methods

public abstract ContentHandler createContentHandler (String mimetype);

}

Passed To: URLConnection.setContentHandlerFactory()

DatagramPacket Java 1.0

file:///C|/orielly/jnut/ch16_01.htm (4 of 27) [2/5/2003 7:50:59 PM]

The java.net Package (Java in a Nutshell)

java.net PJ1.1

This class implements a packet of data that may be sent or received over the network through a DatagramSocket. One of the
DatagramPacket constructors specifies an array of binary data to be sent with its destination address and port. A packet created
with this constructor can then be sent with the send() method of a DatagramSocket. The other DatagramPacket constructor
specifies an array of bytes into which data should be received. The receive() method of DatagramSocket waits for data and
stores it in a DatagramPacket created in this way. The contents and sender of a received packet can be queried with the
DatagramPacket instance methods.

public final class DatagramPacket {

// Public Constructors

public DatagramPacket (byte[] buf, int length);

1.2 public DatagramPacket (byte[] buf, int offset, int length);

public DatagramPacket (byte[] buf, int length, InetAddress address, int port);

1.2 public DatagramPacket (byte[] buf, int offset, int length, InetAddress address, int port);

// Property Accessor Methods (by property name)

public InetAddress getAddress (); synchronized

1.1 public void setAddress (InetAddress iaddr); synchronized

public byte[] getData (); synchronized

1.1 public void setData (byte[] buf); synchronized

1.2 public void setData (byte[] buf, int offset, int length); synchronized

public int getLength (); synchronized

1.1 public void setLength (int length); synchronized

1.2 public int getOffset (); synchronized

public int getPort (); synchronized

1.1 public void setPort (int iport); synchronized

}

Passed To: DatagramSocket.{receive(), send()}, DatagramSocketImpl.{receive(), send()},
MulticastSocket.send()

DatagramSocket Java 1.0

java.net PJ1.1

This class defines a socket that can receive and send unreliable datagram packets over the network using the UDP protocol. A
datagram is a very low-level networking interface: it is simply an array of bytes sent over the network. A datagram does not
implement any kind of stream-based communication protocol, and there is no connection established between the sender and the
receiver. Datagram packets are called "unreliable" because the protocol does not make any attempt to ensure they arrive or to resend
them if they don't. Thus, packets sent through a DatagramSocket are not guaranteed to arrive in the order sent or even to arrive at
all. On the other hand, this low-overhead protocol makes datagram transmission very fast. See Socket and URL for higher-level
interfaces to networking.

If a port is specified when the DatagramSocket is created, that port is used for sending and receiving datagrams; otherwise, the
system assigns a port. getLocalPort() returns the port number in use. send() sends a DatagramPacket through the socket.

file:///C|/orielly/jnut/ch16_01.htm (5 of 27) [2/5/2003 7:50:59 PM]

The java.net Package (Java in a Nutshell)

The packet must contain the destination address to which it should be sent. receive() waits for data to arrive at the socket and
stores it, along with the address of the sender, in the specified DatagramPacket. close() closes the socket and frees the port for
reuse. Once close() has been called, the DatagramSocket should not be used again.

Each time a packet is sent or received, the system must perform a security check to ensure that the calling code has permission to send
data to or receive data from the specified host. In Java 1.2 and later, if you are sending multiple packets to or receiving multiple
packets from a single host, use connect() to specify the host with which you are communicating. This causes the security check to
be done a single time, but does not allow the socket to communicate with any other host until disconnect() is called. Use
getInetAddress() and getPort() to obtain the host and port, if any, the socket is connected to.

setSoTimeout() specifies the number of milliseconds that receive() waits for a packet to arrive before throwing an
InterruptedIOException. Specify 0 milliseconds to wait forever. setSendBufferSize() and
setReceiveBufferSize() set hints as to the underlying size of the networking buffers.

public class DatagramSocket {

// Public Constructors

public DatagramSocket () throws SocketException;

public DatagramSocket (int port) throws SocketException;

1.1 public DatagramSocket (int port, InetAddress laddr) throws SocketException;

// Public Class Methods

1.3
public static void setDatagramSocketImplFactory (DatagramSocketImplFactory fac) throws
java.io.IOException;

synchronized

// Property Accessor Methods (by property name)

1.2 public InetAddress getInetAddress (); default:null

1.1 public InetAddress getLocalAddress ();

public int getLocalPort (); default:1029

1.2 public int getPort (); default:-1

1.2 public int getReceiveBufferSize () throws SocketException; synchronized default:8192

1.2 public void setReceiveBufferSize (int size) throws SocketException; synchronized

1.2 public int getSendBufferSize () throws SocketException; synchronized default:8192

1.2 public void setSendBufferSize (int size) throws SocketException; synchronized

1.1 public int getSoTimeout () throws SocketException; synchronized default:0

1.1 public void setSoTimeout (int timeout) throws SocketException; synchronized

// Public Instance Methods

public void close ();

1.2 public void connect (InetAddress address, int port);

1.2 public void disconnect ();

public void receive (DatagramPacket p) throws java.io.IOException; synchronized

public void send (DatagramPacket p) throws java.io.IOException;

}

Subclasses: MulticastSocket

DatagramSocketImpl Java 1.1

java.net PJ1.1

file:///C|/orielly/jnut/ch16_01.htm (6 of 27) [2/5/2003 7:50:59 PM]

The java.net Package (Java in a Nutshell)

This abstract class defines the methods necessary to implement communication through datagram and multicast sockets. System
programmers may create subclasses of this class when they need to implement datagram or multicast sockets in a nonstandard
network environment, such as behind a firewall or on a network that uses a nonstandard transport protocol. Normal applications never
need to use or subclass this class.

public abstract class DatagramSocketImpl implements SocketOptions {

// Public Constructors

public DatagramSocketImpl ();

// Methods Implementing SocketOptions

public abstract Object getOption (int optID) throws SocketException;

public abstract void setOption (int optID, Object value) throws SocketException;

// Protected Instance Methods

protected abstract void bind (int lport, InetAddress laddr) throws SocketException;

protected abstract void close ();

protected abstract void create () throws SocketException;

protected java.io.FileDescriptor getFileDescriptor ();

protected int getLocalPort ();

1.2 protected abstract int getTimeToLive () throws java.io.IOException;

protected abstract void join (InetAddress inetaddr) throws java.io.IOException;

protected abstract void leave (InetAddress inetaddr) throws java.io.IOException;

protected abstract int peek (InetAddress i) throws java.io.IOException;

protected abstract void receive (DatagramPacket p) throws java.io.IOException;

protected abstract void send (DatagramPacket p) throws java.io.IOException;

1.2 protected abstract void setTimeToLive (int ttl) throws java.io.IOException;

// Protected Instance Fields

protected java.io.FileDescriptor fd ;

protected int localPort ;

// Deprecated Protected Methods

protected abstract byte getTTL () throws java.io.IOException;

protected abstract void setTTL (byte ttl) throws java.io.IOException;

}

Hierarchy: Object-->DatagramSocketImpl(SocketOptions)

Returned By: DatagramSocketImplFactory.createDatagramSocketImpl()

DatagramSocketImplFactory Java 1.3 Beta

java.net

This interface defines a method that creates DatagramSocketImpl objects. You can register an instance of this factory interface
with the static setDatagramSocketImplFactory() method of DatagramSocket. Application-level code never needs to
use or implement this interface.

file:///C|/orielly/jnut/ch16_01.htm (7 of 27) [2/5/2003 7:50:59 PM]

The java.net Package (Java in a Nutshell)

public interface DatagramSocketImplFactory {

// Public Instance Methods

public abstract DatagramSocketImpl createDatagramSocketImpl ();

}

Passed To: DatagramSocket.setDatagramSocketImplFactory()

FileNameMap Java 1.1

java.net PJ1.1

This interface defines a single method that is called to obtain the MIME type of a file based on the name of the file. The
fileNameMap field of the URLConnection class refers to an object that implements this interface. The filename-to-file-type map
it implements is used by the static URLConnection.guessContentTypeFromName() method.

public interface FileNameMap {

// Public Instance Methods

public abstract String getContentTypeFor (String fileName);

}

Passed To: URLConnection.setFileNameMap()

Returned By: URLConnection.getFileNameMap()

HttpURLConnection Java 1.1

java.net PJ1.1

This class is a specialization of URLConnection. An instance of this class is returned when the openConnection() method is
called for a URL object that uses the HTTP protocol. The many constants defined by this class are the status codes returned by HTTP
servers. setRequestMethod() specifies what kind of HTTP request is made. The contents of this request must be sent through
the OutputStream returned by the getOutputStream() method of the superclass. Once an HTTP request has been sent,
getResponseCode() returns the HTTP server's response code as an integer, and getResponseMessage() returns the server's
response message. The disconnect() method closes the connection. The static setFollowRedirects() specifies whether
URL connections that use the HTTP protocol should automatically follow redirect responses sent by HTTP servers. In order to
successfully use this class, you need to understand the details of the HTTP protocol.

public abstract class HttpURLConnection extends URLConnection {

// Protected Constructors

protected HttpURLConnection (URL u);

// Public Constants

public static final int HTTP_ACCEPTED ; =202

public static final int HTTP_BAD_GATEWAY ; =502

public static final int HTTP_BAD_METHOD ; =405

public static final int HTTP_BAD_REQUEST ; =400

file:///C|/orielly/jnut/ch16_01.htm (8 of 27) [2/5/2003 7:50:59 PM]

The java.net Package (Java in a Nutshell)

public static final int HTTP_CLIENT_TIMEOUT ; =408

public static final int HTTP_CONFLICT ; =409

public static final int HTTP_CREATED ; =201

public static final int HTTP_ENTITY_TOO_LARGE ; =413

public static final int HTTP_FORBIDDEN ; =403

public static final int HTTP_GATEWAY_TIMEOUT ; =504

public static final int HTTP_GONE ; =410

public static final int HTTP_INTERNAL_ERROR ; =500

public static final int HTTP_LENGTH_REQUIRED ; =411

public static final int HTTP_MOVED_PERM ; =301

public static final int HTTP_MOVED_TEMP ; =302

public static final int HTTP_MULT_CHOICE ; =300

public static final int HTTP_NO_CONTENT ; =204

public static final int HTTP_NOT_ACCEPTABLE ; =406

public static final int HTTP_NOT_AUTHORITATIVE ; =203

public static final int HTTP_NOT_FOUND ; =404

1.3 public static final int HTTP_NOT_IMPLEMENTED ; =501

public static final int HTTP_NOT_MODIFIED ; =304

public static final int HTTP_OK ; =200

public static final int HTTP_PARTIAL ; =206

public static final int HTTP_PAYMENT_REQUIRED ; =402

public static final int HTTP_PRECON_FAILED ; =412

public static final int HTTP_PROXY_AUTH ; =407

public static final int HTTP_REQ_TOO_LONG ; =414

public static final int HTTP_RESET ; =205

public static final int HTTP_SEE_OTHER ; =303

public static final int HTTP_UNAUTHORIZED ; =401

public static final int HTTP_UNAVAILABLE ; =503

public static final int HTTP_UNSUPPORTED_TYPE ; =415

public static final int HTTP_USE_PROXY ; =305

public static final int HTTP_VERSION ; =505

// Public Class Methods

public static boolean getFollowRedirects ();

public static void setFollowRedirects (boolean set);

// Public Instance Methods

public abstract void disconnect ();

1.2 public java.io.InputStream getErrorStream (); constant

public String getRequestMethod ();

public int getResponseCode () throws java.io.IOException;

public String getResponseMessage () throws java.io.IOException;

public void setRequestMethod (String method) throws ProtocolException;

public abstract boolean usingProxy ();

// Public Methods Overriding URLConnection

1.3 public long getHeaderFieldDate (String name, long Default);

file:///C|/orielly/jnut/ch16_01.htm (9 of 27) [2/5/2003 7:50:59 PM]

The java.net Package (Java in a Nutshell)

1.2 public java.security.Permission getPermission () throws java.io.IOException;

// Protected Instance Fields

protected String method ;

protected int responseCode ;

protected String responseMessage ;

// Deprecated Public Fields

public static final int HTTP_SERVER_ERROR ; =500

}

Hierarchy: Object-->URLConnection-->HttpURLConnection

InetAddress Java 1.0

java.net serializable PJ1.1

This class represents an Internet address and is used when creating DatagramPacket or Socket objects. The class does not have
a public constructor function, but instead supports three static methods that return one or more instances of InetAddress.
getLocalHost() returns an InetAddress for the local host. getByName() returns the InetAddress of a host specified by
name. getAllByName() returns an array of InetAddress objects that represents all the available addresses for a host specified
by name. Instance methods are getHostName(), which returns the hostname of an InetAddress, and getAddress(), which
returns the Internet IP address as an array of bytes, with the highest-order byte as the first element of the array.

public final class InetAddress implements Serializable {

// No Constructor

// Public Class Methods

public static InetAddress[] getAllByName (String host) throws java.net.UnknownHostException;

public static InetAddress getByName (String host) throws java.net.UnknownHostException;

public static InetAddress getLocalHost () throws java.net.UnknownHostException; synchronized

// Property Accessor Methods (by property name)

public byte[] getAddress ();

public String getHostAddress ();

public String getHostName ();

1.1 public boolean isMulticastAddress ();

// Public Methods Overriding Object

public boolean equals (Object obj);

public int hashCode ();

public String toString ();

}

Hierarchy: Object-->InetAddress(Serializable)

Passed To: Too many methods to list.

Returned By: Authenticator.getRequestingSite(), DatagramPacket.getAddress(),
DatagramSocket.{getInetAddress(), getLocalAddress()}, InetAddress.{getAllByName(),
getByName(), getLocalHost()}, MulticastSocket.getInterface(),

file:///C|/orielly/jnut/ch16_01.htm (10 of 27) [2/5/2003 7:50:59 PM]

The java.net Package (Java in a Nutshell)

ServerSocket.getInetAddress(), Socket.{getInetAddress(), getLocalAddress()},
SocketImpl.getInetAddress(), URLStreamHandler.getHostAddress()

Type Of: SocketImpl.address

JarURLConnection Java 1.2

java.net

This class is a specialized URLConnection that represents a connection to a jar: URL. A jar: URL is a compound URL that
includes the URL of a JAR archive and, optionally, a reference to a file or directory within the JAR archive. The jar: URL syntax
uses the ! character to separate the pathname of the JAR archive from the filename within the JAR archive. Note that a jar: URL
contains a subprotocol that specifies the protocol that retrieves the JAR file itself. For example:

jar:http://my.jar.com/my.jar!/ // The whole archive
jar:file:/usr/java/lib/my.jar!/com/jar/ // A directory of the
archive
jar:ftp://ftp.jar.com/pub/my.jar!/com/jar/Jar.class // A file in the archive

To obtain a JarURLConnection, define a URL object for a jar: URL, open a connection to it with openConnection(), and
cast the returned URLConnection object to a JarURLConnection. The various methods defined by JarURLConnection
allow you to read the manifest file of the JAR archive and look up attributes from that manifest for the archive as a whole or for
individual entries in the archive. These methods make use of various classes from the java.util.jar package.

public abstract class JarURLConnection extends URLConnection {

// Protected Constructors

protected JarURLConnection (URL url) throws MalformedURLException;

// Property Accessor Methods (by property name)

public java.util.jar.Attributes getAttributes () throws java.io.IOException;

public java.security.cert.Certificate[] getCertificates () throws java.io.IOException;

public String getEntryName ();

public java.util.jar.JarEntry getJarEntry () throws java.io.IOException;

public abstract java.util.jar.JarFile getJarFile () throws java.io.IOException;

public URL getJarFileURL ();

public java.util.jar.Attributes getMainAttributes () throws java.io.IOException;

public java.util.jar.Manifest getManifest () throws java.io.IOException;

// Protected Instance Fields

protected URLConnection jarFileURLConnection ;

}

Hierarchy: Object-->URLConnection-->JarURLConnection

MalformedURLException Java 1.0

java.net serializable checked PJ1.1

file:///C|/orielly/jnut/ch16_01.htm (11 of 27) [2/5/2003 7:50:59 PM]

The java.net Package (Java in a Nutshell)

Signals that an unparseable URL specification has been passed to a method.

public class MalformedURLException extends java.io.IOException {

// Public Constructors

public MalformedURLException ();

public MalformedURLException (String msg);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->java.io.IOException--
>MalformedURLException

Thrown By: Too many methods to list.

MulticastSocket Java 1.1

java.net PJ1.1

This subclass of DatagramSocket can send and receive multicast UDP packets. It extends DatagramSocket by adding
joinGroup() and leaveGroup() methods to join and leave multicast groups. The IP address specified to these methods should
be a valid multicast address in the range of 224.0.0.1 to 239.255.255.255. Note that you do not have to join a group to send a packet to
a multicast address, but you must join the group to receive packets sent to that address. Note that untrusted code is not allowed to use
multicast sockets.

MulticastSocket defines a variant send() method that allows you to specify a time-to-live (TTL) value for the packet you
send. This value specifies the number of network hops the packet can travel before it expires. You can also set a default TTL for all
packets sent though a MulticastSocket with setTimeToLive(), or, prior to Java 1.2, with setTTL().

public class MulticastSocket extends DatagramSocket {

// Public Constructors

public MulticastSocket () throws java.io.IOException;

public MulticastSocket (int port) throws java.io.IOException;

// Property Accessor Methods (by property name)

public InetAddress getInterface () throws SocketException;

public void setInterface (InetAddress inf) throws SocketException;

1.2 public int getTimeToLive () throws java.io.IOException; default:1

1.2 public void setTimeToLive (int ttl) throws java.io.IOException;

// Public Instance Methods

public void joinGroup (InetAddress mcastaddr) throws java.io.IOException;

public void leaveGroup (InetAddress mcastaddr) throws java.io.IOException;

public void send (DatagramPacket p, byte ttl) throws java.io.IOException;

// Deprecated Public Methods

public byte getTTL () throws java.io.IOException; default:1

public void setTTL (byte ttl) throws java.io.IOException;

}

Hierarchy: Object-->DatagramSocket-->MulticastSocket

file:///C|/orielly/jnut/ch16_01.htm (12 of 27) [2/5/2003 7:50:59 PM]

The java.net Package (Java in a Nutshell)

NetPermission Java 1.2

java.net serializable permission

This class is a java.security.Permission that represents various permissions required for Java's URL-based networking
system. See also SocketPermission, which represents permissions to perform lower-level networking operations. A
NetPermission is defined solely by its name; no actions list is required or supported. As of Java 1.2, there are three
NetPermission targets defined: "setDefaultAuthenticator" is required to call Authenticator.setDefault();
"requestPasswordAuthentication" to call Authenticator.requestPasswordAuthentication(); and
"specifyStreamHandler" to explicitly pass a URLStreamHandler object to the URL() constructor. The target "*" is a wildcard that
represents all defined NetPermission targets.

System administrators configuring security policies must be familiar with this class and the permissions it represents. System
programmers may use this class, but application programmers never need to use it explicitly.

public final class NetPermission extends java.security.BasicPermission {

// Public Constructors

public NetPermission (String name);

public NetPermission (String name, String actions);

}

Hierarchy: Object-->java.security.Permission(java.security.Guard,Serializable)--
>java.security.BasicPermission(Serializable)-->NetPermission

NoRouteToHostException Java 1.1

java.net serializable checked PJ1.1

This exception signals that a socket cannot be connected to a remote host because the host cannot be contacted. Typically, this means
that some link in the network between the local machine and the remote host is down or that the host is behind a firewall.

public class NoRouteToHostException extends SocketException {

// Public Constructors

public NoRouteToHostException ();

public NoRouteToHostException (String msg);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->java.io.IOException--
>SocketException-->NoRouteToHostException

PasswordAuthentication Java 1.2

java.net

file:///C|/orielly/jnut/ch16_01.htm (13 of 27) [2/5/2003 7:50:59 PM]

The java.net Package (Java in a Nutshell)

This simple immutable class encapsulates a username and a password. The password is stored as a character array rather than as a
String object so that the caller can erase the contents of the array after use for increased security. Note that the
PasswordAuthentication() constructor clones the specified password character array, but getPassword() returns a
reference to the object's internal array. Obtain a PasswordAuthentication object by calling
Authenticator.requestPasswordAuthentication().

public final class PasswordAuthentication {

// Public Constructors

public PasswordAuthentication (String userName, char[] password);

// Public Instance Methods

public char[] getPassword ();

public String getUserName ();

}

Returned By: Authenticator.{getPasswordAuthentication(), requestPasswordAuthentication()}

ProtocolException Java 1.0

java.net serializable checked PJ1.1

Signals a protocol error in the Socket class.

public class ProtocolException extends java.io.IOException {

// Public Constructors

public ProtocolException ();

public ProtocolException (String host);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->java.io.IOException--
>ProtocolException

Thrown By: HttpURLConnection.setRequestMethod()

ServerSocket Java 1.0

java.net PJ1.1

This class is used by servers to listen for connection requests from clients. When you create a ServerSocket, you specify the port
to listen on. The accept() method begins listening on that port and blocks until a client requests a connection on the port. At that
point, accept() accepts the connection, creating and returning a Socket the server can use to communicate with the client. A
typical server starts a new thread to handle the communication with the client and calls accept() again to listen for another
connection. If you do not want accept() to block for an indefinite amount of time, call setSoTimeout() to specify the number
of milliseconds accept() should wait for a connection before throwing an InterruptedIOException.

public class ServerSocket {

file:///C|/orielly/jnut/ch16_01.htm (14 of 27) [2/5/2003 7:50:59 PM]

The java.net Package (Java in a Nutshell)

// Public Constructors

public ServerSocket (int port) throws java.io.IOException;

public ServerSocket (int port, int backlog) throws java.io.IOException;

1.1 public ServerSocket (int port, int backlog, InetAddress bindAddr) throws java.io.IOException;

// Public Class Methods

public static void setSocketFactory (SocketImplFactory fac) throws java.io.IOException; synchronized

// Property Accessor Methods (by property name)

public InetAddress getInetAddress ();

public int getLocalPort ();

1.1 public int getSoTimeout () throws java.io.IOException; synchronized

1.1 public void setSoTimeout (int timeout) throws SocketException; synchronized

// Public Instance Methods

public Socket accept () throws java.io.IOException;

public void close () throws java.io.IOException;

// Public Methods Overriding Object

public String toString ();

// Protected Instance Methods

1.1 protected final void implAccept (Socket s) throws java.io.IOException;

}

Returned By: java.rmi.server.RMIServerSocketFactory.createServerSocket(),
java.rmi.server.RMISocketFactory.createServerSocket()

Socket Java 1.0

java.net PJ1.1

This class implements a socket for stream-based interprocess communication over the network. See URL for a higher-level interface
to networking and DatagramSocket for a lower-level interface.

Use the Socket() constructor to create a socket and connect it to the specified host and port. Once the socket is created,
getInputStream() and getOutputStream() return InputStream and OutputStream objects you can use to
communicate with the remote host, just as you would use them for file input and output. getInetAddress() and getPort()
return the address and port to which the socket is connected. getLocalPort() returns the local port the socket is using. See
ServerSocket for information about how a server can listen for and accept connections of this type. When you are done with a
Socket, use close() to close it. In Java 1.3, you can also use shutdownInput() and shutdownOutput() to close the
input and output communication channels individually.

There are several options you can specify for a Socket object to alter its behavior. setSendBufferSize() and
setReceiveBufferSize() provide hints to the underlying networking system as to what buffer size is best to use with this
socket. setSoTimeout() specifies the number of milliseconds a read() call on the input stream returned by
getInputStream() waits for data before throwing an InterruptedIOException. The default value of 0 specifies that the
stream blocks indefinitely. setSoLinger() specifies what to do when a socket is closed while there is still data waiting to be
transmitted. If lingering is turned on, the close() call blocks for up to the specified number of seconds while attempting to transmit
the remaining data. Calling setTcpNoDelay() with an argument of true causes data to be sent through the socket as soon as it is
available, instead of waiting for the TCP packet to become more full before sending it. In Java 1.3, use setKeepAlive() to enable
or disable the periodic exchange of control messages across an idle socket connection. The keepalive protocol enables a client to

file:///C|/orielly/jnut/ch16_01.htm (15 of 27) [2/5/2003 7:50:59 PM]

The java.net Package (Java in a Nutshell)

determine if its server has crashed without closing the socket and vice versa.

public class Socket {

// Public Constructors

public Socket (String host, int port) throws java.net.UnknownHostExceptionjava.io.IOException;

public Socket (InetAddress address, int port) throws java.io.IOException;

public Socket (String host, int port, boolean stream) throws java.io.IOException;

public Socket (InetAddress host, int port, boolean stream) throws java.io.IOException;

1.1 public Socket (String host, int port, InetAddress localAddr, int localPort) throws java.io.IOException;

1.1 public Socket (InetAddress address, int port, InetAddress localAddr, int localPort) throws java.io.IOException;

// Protected Constructors

protected Socket ();

1.1 protected Socket (SocketImpl impl) throws SocketException;

// Public Class Methods

public static void setSocketImplFactory (SocketImplFactory fac) throws java.io.IOException; synchronized

// Property Accessor Methods (by property name)

public InetAddress getInetAddress ();

public java.io.InputStream getInputStream () throws java.io.IOException;

1.3 public boolean getKeepAlive () throws SocketException;

1.3 public void setKeepAlive (boolean on) throws SocketException;

1.1 public InetAddress getLocalAddress ();

public int getLocalPort ();

public java.io.OutputStream getOutputStream () throws java.io.IOException;

public int getPort ();

1.2 public int getReceiveBufferSize () throws SocketException; synchronized

1.2 public void setReceiveBufferSize (int size) throws SocketException; synchronized

1.2 public int getSendBufferSize () throws SocketException; synchronized

1.2 public void setSendBufferSize (int size) throws SocketException; synchronized

1.1 public int getSoLinger () throws SocketException;

1.1 public int getSoTimeout () throws SocketException; synchronized

1.1 public void setSoTimeout (int timeout) throws SocketException; synchronized

1.1 public boolean getTcpNoDelay () throws SocketException;

1.1 public void setTcpNoDelay (boolean on) throws SocketException;

// Public Instance Methods

public void close () throws java.io.IOException; synchronized

1.1 public void setSoLinger (boolean on, int linger) throws SocketException;

1.3 public void shutdownInput () throws java.io.IOException;

1.3 public void shutdownOutput () throws java.io.IOException;

// Public Methods Overriding Object

public String toString ();

}

Passed To: ServerSocket.implAccept()

Returned By: ServerSocket.accept(), java.rmi.server.RMIClientSocketFactory.createSocket(),

file:///C|/orielly/jnut/ch16_01.htm (16 of 27) [2/5/2003 7:50:59 PM]

The java.net Package (Java in a Nutshell)

java.rmi.server.RMISocketFactory.createSocket()

SocketException Java 1.0

java.net serializable checked PJ1.1

Signals an exceptional condition while using a socket.

public class SocketException extends java.io.IOException {

// Public Constructors

public SocketException ();

public SocketException (String msg);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->java.io.IOException--
>SocketException

Subclasses: BindException, java.net.ConnectException, NoRouteToHostException

Thrown By: Too many methods to list.

SocketImpl Java 1.0

java.net PJ1.1

This abstract class defines the methods necessary to implement communication through sockets. Different subclasses of this class may
provide different implementations suitable in different environments (such as behind firewalls). These socket implementations are
used by the Socket and ServerSocket classes. Normal applications never need to use or subclass this class.

public abstract class SocketImpl implements SocketOptions {

// Public Constructors

public SocketImpl ();

// Methods Implementing SocketOptions

1.1 public abstract Object getOption (int optID) throws SocketException;

1.1 public abstract void setOption (int optID, Object value) throws SocketException;

// Public Methods Overriding Object

public String toString ();

// Protected Instance Methods

protected abstract void accept (SocketImpl s) throws java.io.IOException;

protected abstract int available () throws java.io.IOException;

protected abstract void bind (InetAddress host, int port) throws java.io.IOException;

protected abstract void close () throws java.io.IOException;

protected abstract void connect (String host, int port) throws java.io.IOException;

protected abstract void connect (InetAddress address, int port) throws java.io.IOException;

file:///C|/orielly/jnut/ch16_01.htm (17 of 27) [2/5/2003 7:50:59 PM]

The java.net Package (Java in a Nutshell)

protected abstract void create (boolean stream) throws java.io.IOException;

protected java.io.FileDescriptor getFileDescriptor ();

protected InetAddress getInetAddress ();

protected abstract java.io.InputStream getInputStream () throws java.io.IOException;

protected int getLocalPort ();

protected abstract java.io.OutputStream getOutputStream () throws java.io.IOException;

protected int getPort ();

protected abstract void listen (int backlog) throws java.io.IOException;

1.3 protected void shutdownInput () throws java.io.IOException;

1.3 protected void shutdownOutput () throws java.io.IOException;

// Protected Instance Fields

protected InetAddress address ;

protected java.io.FileDescriptor fd ;

protected int localport ;

protected int port ;

}

Hierarchy: Object-->SocketImpl(SocketOptions)

Passed To: Socket.Socket(), SocketImpl.accept()

Returned By: SocketImplFactory.createSocketImpl()

SocketImplFactory Java 1.0

java.net PJ1.1

This interface defines a method that creates SocketImpl objects. SocketImplFactory objects may be registered to create
SocketImpl objects for the Socket and ServerSocket classes. Normal applications never need to use or implement this
interface.

public interface SocketImplFactory {

// Public Instance Methods

public abstract SocketImpl createSocketImpl ();

}

Passed To: ServerSocket.setSocketFactory(), Socket.setSocketImplFactory()

SocketOptions Java 1.2

java.net

This interface defines constants that represent low-level BSD Unix-style socket options and methods that set and query the value of
those options. In Java 1.2, SocketImpl and DatagramSocketImpl implement this interface. Any custom socket

file:///C|/orielly/jnut/ch16_01.htm (18 of 27) [2/5/2003 7:50:59 PM]

The java.net Package (Java in a Nutshell)

implementations you define should also provide meaningful implementations for the getOption() and setOption() methods.
Your implementation may support options other than those defined here. Only custom socket implementations need to use this
interface. All other code can use methods defined by Socket, ServerSocket, DatagramSocket, and MulticastSocket to
set specific socket options for those socket types.

public interface SocketOptions {

// Public Constants

public static final int IP_MULTICAST_IF ; =16

public static final int SO_BINDADDR ; =15

1.3 public static final int SO_KEEPALIVE ; =8

public static final int SO_LINGER ; =128

public static final int SO_RCVBUF ; =4098

public static final int SO_REUSEADDR ; =4

public static final int SO_SNDBUF ; =4097

public static final int SO_TIMEOUT ; =4102

public static final int TCP_NODELAY ; =1

// Public Instance Methods

public abstract Object getOption (int optID) throws SocketException;

public abstract void setOption (int optID, Object value) throws SocketException;

}

Implementations: DatagramSocketImpl, SocketImpl

SocketPermission Java 1.2

java.net serializable permission

This class is a java.security.Permission that governs all networking operations performed with sockets. Like all
permissions, a SocketPermission consists of a name, or target, and a list of actions that may be performed on that target. The
target of a SocketPermission is the host and, optionally, the port or ports for which permission is being granted or requested.
The target consists of a hostname optionally followed by a colon and a port specification. The host may be a DNS domain name, a
numerical IP address, or the string "localhost". If you specify a host domain name, you may use * as a wildcard as the leftmost
portion of the hostname. The port specification, if present, must be a single port number or a range of port numbers in the form n1-
n2. If n1 is omitted, it is taken to be 0, and if n2 is omitted, it is taken to be 65535. If no port is specified, the socket permission
applies to all ports of the specified host. Here are some legal SocketPermission targets:

java.sun.com:80
*.sun.com:1024-2000
*:1024-
localhost:-1023

In addition to a target, each SocketPermission must have a comma-separated list of actions, which specify the operations that
may be performed on the specified host(s) and port(s). The available actions are "connect", "accept", "listen", and "resolve". "connect"
represents permission to connect to the specified target. "accept" indicates permission to accept connections from the specified target.
"listen" represents permission to listen on the specified ports for connection requests. This action is only valid when used for ports on
"localhost". Finally, the "resolve" action indicates permission to use the DNS name service to resolve domain names into IP
addresses. This action is required for and implied by all other actions.

file:///C|/orielly/jnut/ch16_01.htm (19 of 27) [2/5/2003 7:50:59 PM]

The java.net Package (Java in a Nutshell)

System administrators configuring security policies must be familiar with this class and understand the risks of granting the various
permissions it represents. System programmers writing new low-level networking libraries or connecting to native code that performs
networking may need to use this class. Application programmers, however, should never need to use it directly.

public final class SocketPermission extends java.security.Permission implements Serializable {

// Public Constructors

public SocketPermission (String host, String action);

// Public Methods Overriding Permission

public boolean equals (Object obj);

public String getActions ();

public int hashCode ();

public boolean implies (java.security.Permission p);

public java.security.PermissionCollection newPermissionCollection ();

}

Hierarchy: Object-->java.security.Permission(java.security.Guard,Serializable)--
>SocketPermission(Serializable)

UnknownHostException Java 1.0

java.net serializable checked PJ1.1

Signals that the name of a specified host could not be resolved.

public class UnknownHostException extends java.io.IOException {

// Public Constructors

public UnknownHostException ();

public UnknownHostException (String host);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->java.io.IOException--
>java.net.UnknownHostException

Thrown By: InetAddress.{getAllByName(), getByName(), getLocalHost()}, Socket.Socket()

UnknownServiceException Java 1.0

java.net serializable checked PJ1.1

Signals an attempt to use an unsupported service of a network connection.

public class UnknownServiceException extends java.io.IOException {

// Public Constructors

public UnknownServiceException ();

file:///C|/orielly/jnut/ch16_01.htm (20 of 27) [2/5/2003 7:50:59 PM]

The java.net Package (Java in a Nutshell)

public UnknownServiceException (String msg);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->java.io.IOException--
>UnknownServiceException

URL Java 1.0

java.net serializable PJ1.1

This class represents a uniform resource locator and allows the data referred to by the URL to be downloaded. A URL can be
specified as a single string or with separate protocol, host, port, and file specifications. Relative URLs can also be specified with a
String and the URL object to which it is relative. getFile(), getHost(), getPort(), getProtocol(), and getRef()
return the various portions of the URL specified by a URL object. sameFile() determines whether a URL object refers to the same
file as this one. The data or object referred to by a URL can be downloaded from the Internet in three ways: with a URLConnection
created with openConnection(), with an InputStream created by openStream(), or with getContent(), which returns
the URL contents directly if an appropriate ContentHandler can be found.

public final class URL implements Serializable {

// Public Constructors

public URL (String spec) throws MalformedURLException;

public URL (URL context, String spec) throws MalformedURLException;

1.2 public URL (URL context, String spec, URLStreamHandler handler) throws MalformedURLException;

public URL (String protocol, String host, String file) throws MalformedURLException;

public URL (String protocol, String host, int port, String file) throws MalformedURLException;

1.2
public URL (String protocol, String host, int port, String file, URLStreamHandler handler) throws
MalformedURLException;

// Public Class Methods

public static void setURLStreamHandlerFactory (URLStreamHandlerFactory fac); synchronized

// Property Accessor Methods (by property name)

1.3 public String getAuthority ();

public final Object getContent () throws java.io.IOException;

1.3 public final Object getContent (Class[] classes) throws java.io.IOException;

public String getFile ();

public String getHost ();

1.3 public String getPath ();

public int getPort ();

public String getProtocol ();

1.3 public String getQuery ();

public String getRef ();

1.3 public String getUserInfo ();

// Public Instance Methods

public URLConnection openConnection () throws java.io.IOException;

public final java.io.InputStream openStream () throws java.io.IOException;

public boolean sameFile (URL other);

file:///C|/orielly/jnut/ch16_01.htm (21 of 27) [2/5/2003 7:50:59 PM]

The java.net Package (Java in a Nutshell)

public String toExternalForm ();

// Public Methods Overriding Object

public boolean equals (Object obj);

public int hashCode (); synchronized

public String toString ();

// Protected Instance Methods

protected void set (String protocol, String host, int port, String file, String ref);

1.3
protected void set (String protocol, String host, int port, String authority, String userInfo, String path, String query,
String ref);

}

Hierarchy: Object-->URL(Serializable)

Passed To: Too many methods to list.

Returned By: Too many methods to list.

Type Of: URLConnection.url

URLClassLoader Java 1.2

java.net

This ClassLoader provides a useful way to load untrusted Java code from a search path of arbitrary URLs, where each URL
represents a directory or JAR file to search. Use the inherited loadClass() method to load a named class with a
URLClassLoader. Classes loaded by a URLClassLoader have whatever permissions are granted to their
java.security.CodeSource by the system java.security.Policy, plus they have one additional permission that
allows the class loader to read any resource files associated with the class. If the class is loaded from a local file: URL that
represents a directory, the class is given permission to read all files and directories below that directory. If the class is loaded from a
local file: URL that represents a JAR file, the class is given permission to read that JAR file. If the class is loaded from a URL that
represents a resource on another host, that class is given permission to connect to and accept network connections from that host.
Note, however, that loaded classes are not granted this additional permission if the code that created the URLClassLoader in the
first place would not have had that permission.

You can obtain a URLClassLoader by calling one of the URLClassLoader() constructors or one of the static
newInstance() methods. If you call newInstance(), the loadClass() method of the returned URLClassLoader
performs an additional check to ensure that the caller has permission to access the specified package.

public class URLClassLoader extends java.security.SecureClassLoader {

// Public Constructors

public URLClassLoader (URL[] urls);

public URLClassLoader (URL[] urls, ClassLoader parent);

public URLClassLoader (URL[] urls, ClassLoader parent, URLStreamHandlerFactory factory);

// Public Class Methods

public static URLClassLoader newInstance (URL[] urls);

public static URLClassLoader newInstance (URL[] urls, ClassLoader parent);

// Public Instance Methods

file:///C|/orielly/jnut/ch16_01.htm (22 of 27) [2/5/2003 7:50:59 PM]

The java.net Package (Java in a Nutshell)

public URL[] getURLs ();

// Protected Methods Overriding SecureClassLoader

protected java.security.PermissionCollection getPermissions (java.security.CodeSource codesource);

// Public Methods Overriding ClassLoader

public URL findResource (String name);

public java.util.Enumeration findResources (String name) throws java.io.IOException;

// Protected Methods Overriding ClassLoader

protected Class findClass (String name) throws ClassNotFoundException;

// Protected Instance Methods

protected void addURL (URL url);

protected Package definePackage (String name, java.util.jar.Manifest man, URL url) throws IllegalArgumentException;

}

Hierarchy: Object-->ClassLoader-->java.security.SecureClassLoader-->URLClassLoader

Returned By: URLClassLoader.newInstance()

URLConnection Java 1.0

java.net PJ1.1

This abstract class defines a network connection to an object specified by a URL. URL.openConnection() returns a
URLConnection instance. You should use a URLConnection object when you want more control over the downloading of data
than is available through the simpler URL methods. connect() actually makes the network connection. Other methods that depend
on being connected call this method. getContent() returns the data referred to by the URL, parsed into an appropriate type of
Object. If the URL protocol supports read and write operations, getInputStream() and getOutputStream() return input
and output streams to the object referred to by the URL, respectively. getContentLength(), getContentType(),
getContentEncoding(), getExpiration(), getDate(), and getLastModified() return the appropriate information
about the object referred to by the URL, if that information can be determined (e.g., from HTTP header fields).
getHeaderField() returns an HTTP header field specified by name or by number. getHeaderFieldInt() and
getHeaderFieldDate() return the value of a named header field parsed as an integer or a date.

There are a number of options you can specify to control how the URLConnection behaves. These options are set with the various
set() methods and may be queried with corresponding get() methods. The options must be set before the connect() method is
called. setDoInput() and setDoOutput() allow you to specify whether you are using the URLConnection for input and/or
output (input-only by default). setAllowUserInteraction() specifies whether user interaction (such as typing a password) is
allowed during the data transfer (false by default). setDefaultAllowUserInteraction() is a class method that allows
you to change the default value for user interaction. setUseCaches() allows you to specify whether a cached version of the URL
can be used. You can set this to false to force a URL to be reloaded. setDefaultUseCaches() sets the default value for
setUseCaches(). setIfModifiedSince() allows you to specify that a URL should not be fetched unless it has been
modified since a specified time (if it is possible to determine its modification date).

public abstract class URLConnection {

// Protected Constructors

protected URLConnection (URL url);

// Public Class Methods

public static boolean getDefaultAllowUserInteraction ();

file:///C|/orielly/jnut/ch16_01.htm (23 of 27) [2/5/2003 7:50:59 PM]

The java.net Package (Java in a Nutshell)

1.1 public static FileNameMap getFileNameMap (); synchronized

public static String guessContentTypeFromStream (java.io.InputStream is) throws java.io.IOException;

public static void setContentHandlerFactory (ContentHandlerFactory fac); synchronized

public static void setDefaultAllowUserInteraction (boolean defaultallowuserinteraction);

1.1 public static void setFileNameMap (FileNameMap map);

// Protected Class Methods

protected static String guessContentTypeFromName (String fname);

// Property Accessor Methods (by property name)

public boolean getAllowUserInteraction ();

public void setAllowUserInteraction (boolean allowuserinteraction);

public Object getContent () throws java.io.IOException;

1.3 public Object getContent (Class[] classes) throws java.io.IOException;

public String getContentEncoding ();

public int getContentLength ();

public String getContentType ();

public long getDate ();

public boolean getDefaultUseCaches ();

public void setDefaultUseCaches (boolean defaultusecaches);

public boolean getDoInput ();

public void setDoInput (boolean doinput);

public boolean getDoOutput ();

public void setDoOutput (boolean dooutput);

public long getExpiration ();

public long getIfModifiedSince ();

public void setIfModifiedSince (long ifmodifiedsince);

public java.io.InputStream getInputStream () throws java.io.IOException;

public long getLastModified ();

public java.io.OutputStream getOutputStream () throws java.io.IOException;

1.2 public java.security.Permission getPermission () throws java.io.IOException;

public URL getURL ();

public boolean getUseCaches ();

public void setUseCaches (boolean usecaches);

// Public Instance Methods

public abstract void connect () throws java.io.IOException;

public String getHeaderField (int n); constant

public String getHeaderField (String name); constant

public long getHeaderFieldDate (String name, long Default);

public int getHeaderFieldInt (String name, int Default);

public String getHeaderFieldKey (int n); constant

public String getRequestProperty (String key);

public void setRequestProperty (String key, String value);

// Public Methods Overriding Object

public String toString ();

// Protected Instance Fields

file:///C|/orielly/jnut/ch16_01.htm (24 of 27) [2/5/2003 7:50:59 PM]

The java.net Package (Java in a Nutshell)

protected boolean allowUserInteraction ;

protected boolean connected ;

protected boolean doInput ;

protected boolean doOutput ;

protected long ifModifiedSince ;

protected URL url ;

protected boolean useCaches ;

// Deprecated Public Methods

public static String getDefaultRequestProperty (String key); constant

public static void setDefaultRequestProperty (String key, String value); empty

}

Subclasses: HttpURLConnection, JarURLConnection

Passed To: ContentHandler.getContent()

Returned By: URL.openConnection(), URLStreamHandler.openConnection()

Type Of: JarURLConnection.jarFileURLConnection

URLDecoder Java 1.2

java.net

This class defines a static decode() method that reverses the encoding performed by URLEncoder.encode(). It decodes 8-bit
text with the MIME type "x-www-form-urlencoded", which is a standard encoding used by web browsers to submit form contents to
CGI scripts and other server-side programs.

public class URLDecoder {

// Public Constructors

public URLDecoder ();

// Public Class Methods

public static String decode (String s);

}

URLEncoder Java 1.0

java.net PJ1.1

This class defines a single static method that converts a string to its URL-encoded form. That is, spaces are converted to +, and
nonalphanumeric characters other than underscore are output as two hexadecimal digits following a percent sign. Note that this
technique works only for 8-bit characters. This method canonicalizes a URL specification so that it uses only characters from an
extremely portable subset of ASCII that can be correctly handled by computers around the world.

public class URLEncoder {

file:///C|/orielly/jnut/ch16_01.htm (25 of 27) [2/5/2003 7:50:59 PM]

The java.net Package (Java in a Nutshell)

// No Constructor

// Public Class Methods

public static String encode (String s);

}

URLStreamHandler Java 1.0

java.net PJ1.1

This abstract class defines the openConnection() method that creates a URLConnection for a given URL. A separate subclass
of this class may be defined for various URL protocol types. A URLStreamHandler is created by a
URLStreamHandlerFactory. Normal applications never need to use or subclass this class.

public abstract class URLStreamHandler {

// Public Constructors

public URLStreamHandler ();

// Protected Instance Methods

1.3 protected boolean equals (URL u1, URL u2);

1.3 protected int getDefaultPort (); constant

1.3 protected InetAddress getHostAddress (URL u); synchronized

1.3 protected int hashCode (URL u);

1.3 protected boolean hostsEqual (URL u1, URL u2);

protected abstract URLConnection openConnection (URL u) throws java.io.IOException;

protected void parseURL (URL u, String spec, int start, int limit);

1.3 protected boolean sameFile (URL u1, URL u2);

1.3
protected void setURL (URL u, String protocol, String host, int port, String authority, String userInfo, String path,
String query, String ref);

protected String toExternalForm (URL u);

// Deprecated Protected Methods

protected void setURL (URL u, String protocol, String host, int port, String file, String ref);

}

Passed To: URL.URL()

Returned By: URLStreamHandlerFactory.createURLStreamHandler()

URLStreamHandlerFactory Java 1.0

java.net PJ1.1

This interface defines a method that creates a URLStreamHandler object for a specified protocol. Normal applications never need
to use or implement this interface.

public interface URLStreamHandlerFactory {

// Public Instance Methods

file:///C|/orielly/jnut/ch16_01.htm (26 of 27) [2/5/2003 7:50:59 PM]

The java.net Package (Java in a Nutshell)

public abstract URLStreamHandler createURLStreamHandler (String protocol);

}

Passed To: URL.setURLStreamHandlerFactory(), URLClassLoader.URLClassLoader()

15.1. The java.math Package 17. The java.security
Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch16_01.htm (27 of 27) [2/5/2003 7:50:59 PM]

file:///C|/orielly/jnut/copyrght.htm

The java.security Package (Java in a Nutshell)

Part 2: API Quick Reference

Chapter 17. The java.security Package
The java.security package contains the classes and interfaces that implement the Java security
architecture. These classes can be divided into two broad categories. First, there are classes that implement
access control and prevent untrusted code from performing sensitive operations. Second, there are
authentication classes that implement message digests and digital signatures and can authenticate Java classes
and other objects.

The central access control class is AccessController; it uses the currently installed Policy object to
decide whether a given class has Permission to access a given system resource. The Permissions and
ProtectionDomain classes are also important pieces of the Java access control architecture. Figure 17-1
shows the access control classes of this package.

Figure 17-1. The access control classes of the java.security package

The key classes for authentication are MessageDigest and Signature; they compute and verify
cryptographic message digests and digital signatures. These classes use public-key cryptography techniques
and rely on the PublicKey and PrivateKey classes. They also rely on an infrastructure of related classes,

file:///C|/orielly/jnut/ch17_01.htm (1 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

such as SecureRandom for producing cryptographic-strength pseudo-random numbers,
KeyPairGenerator for generating pairs of public and private keys, and KeyStore for managing a
collection of keys and certificates. (This package defines a Certificate interface, but it is deprecated; see
the java.security.cert package for the preferred Certificate class.) Figure 17-2 shows the
authentication classes of java.security, while Figure 17-3 shows the exceptions.

file:///C|/orielly/jnut/ch17_01.htm (2 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

Figure 17-2. The authentication classes of the java.security package

Figure 17-3. The exception classes of the java.security package

The CodeSource class unites the authentication classes with the access control classes. It represents the
source of a Java class as a URL and a set of java.security.cert.Certificate objects that contain
the digital signatures of the code. The AccessController and Policy classes look at the CodeSource
of a class when making access control decisions.

All the cryptographic-authentication features of this package are provider-based, which means they are
implemented by security provider modules that can be plugged easily into any Java 1.2 (or later) installation.
Thus, in addition to defining a security API, this package also defines a service provider interface (SPI).
Various classes with names that end in "Spi" are part of this SPI. Security provider implementations must
subclass these Spi classes, but applications never need to use them. Each security provider is represented by a
Provider class, and the Security class allows new providers to be dynamically installed.

The java.security package contains several useful utility classes. For example, DigestInputStream
and DigestOutputStream make it easy to compute message digests. GuardedObject provides

file:///C|/orielly/jnut/ch17_01.htm (3 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

customizable access control for an individual object. SignedObject protects the integrity of an arbitrary
Java object by attaching a digital signature, making it easy to detect any tampering with the object. Although
the java.security package contains cryptographic classes for authentication, it does not contain classes
for encryption or decryption. U.S. export control laws prevent Sun from including encryption and decryption
functionality in the core Java platform. Instead, this functionality is part of the Java Cryptography Extension,
or JCE. The JCE builds upon the cryptographic infrastructure of java.security; see Chapter 26, "The
javax.crypto Package".

AccessControlContext Java 1.2

java.security

This class encapsulates the state of a call stack. The checkPermission() method can make access-control
decisions based on the saved state of the call stack. Access-control checks are usually performed by the
AccessController.checkPermission() method, which checks that the current call stack has the
required permissions. Sometimes, however, it is necessary to make access-control decisions based on a
previous state of the call stack. Call AccessController.getContext() to create an
AccessControlContext for a particular call stack. In Java 1.3, this class has constructors that specify a
custom context in the form of an array of ProtectionDomain objects and that associate a
DomainCombiner object with an existing AccessControlContext. This class is used only by system-
level code; typical applications rarely need to use it.

public final class AccessControlContext {

// Public Constructors

public AccessControlContext (ProtectionDomain[] context);

1.3 public AccessControlContext (AccessControlContext acc, DomainCombiner combiner);

// Public Instance Methods

public void checkPermission (java.security.Permission perm) throws AccessControlException;

1.3 public DomainCombiner getDomainCombiner ();

// Public Methods Overriding Object

public boolean equals (Object obj);

public int hashCode ();

}

Passed To: AccessControlContext.AccessControlContext(),
AccessController.doPrivileged()

Returned By: AccessController.getContext()

file:///C|/orielly/jnut/ch17_01.htm (4 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

AccessControlException Java 1.2

java.security serializable unchecked

Thrown by AccessController to signal that an access request has been denied. getPermission()
returns the Permission object, if any, that was involved in the denied request.

public class AccessControlException extends SecurityException {

// Public Constructors

public AccessControlException (String s);

public AccessControlException (String s, java.security.Permission p);

// Public Instance Methods

public java.security.Permission getPermission ();

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->RuntimeException--
>SecurityException-->AccessControlException

Thrown By: AccessControlContext.checkPermission(),
AccessController.checkPermission()

AccessController Java 1.2

java.security

The static methods of this class implement the default access-control mechanism as of Java 1.2.
checkPermission() traverses the call stack of the current thread and checks whether all classes in the call
stack have the requested permission. If so, checkPermission() returns, and the operation can proceed. If
not, checkPermission() throws an AccessControlException. As of Java 1.2, the
checkPermission() method of the default java.lang.SecurityManager calls
AccessController.checkPermission(). System-level code that needs to perform an access check
should invoke the SecurityManager method rather than calling the AccessController method
directly. Unless you are writing system-level code that must control access to system resources, you never
need to use this class or the SecurityManager.checkPermission() method.

The various doPrivileged() methods run blocks of privileged code encapsulated in a
PrivilegedAction or PrivilegedExceptionAction object. When checkPermission() is
traversing the call stack of a thread, it stops if it reaches a privileged block that was executed with

file:///C|/orielly/jnut/ch17_01.htm (5 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

doPrivileged(). This means that privileged code can run with a full set of privileges, even if it was
invoked by untrusted or lower-privileged code. See PrivilegedAction for more details.

The getContext() method returns an AccessControlContext that represents the current security
context of the caller. Such a context might be saved and passed to a future call (perhaps a call made from a
different thread). Use the two-argument version of doPrivileged() to force permission checks to check
the AccessControlContext as well.

public final class AccessController {

// No Constructor

// Public Class Methods

public static void checkPermission (java.security.Permission perm) throws
AccessControlException;

public static Object doPrivileged (PrivilegedExceptionAction action) throws
PrivilegedActionException;

native

public static Object doPrivileged (PrivilegedAction action); native

public static Object doPrivileged (PrivilegedExceptionAction action, AccessControlContext
context) throws PrivilegedActionException;

native

public static Object doPrivileged (PrivilegedAction action, AccessControlContext context); native

public static AccessControlContext getContext ();

}

AlgorithmParameterGenerator Java 1.2

java.security

This class defines a generic API for generating parameters for a cryptographic algorithm, typically a
Signature or a javax.crypto.Cipher. Create an AlgorithmParameterGenerator by calling
one of the static getInstance() factory methods and specifying the name of the algorithm and, optionally,
the name of the desired provider. The default "SUN" provider supports the "DSA" algorithm. The "SunJCE"
provider shipped with the JCE supports "DiffieHellman". Once you have obtained a generator, initialize it by
calling the init() method and specifying an algorithm-independent parameter size (in bits) or an algorithm-
dependent AlgorithmParameterSpec object. You may also specify a SecureRandom source of
randomness when you call init(). Once you have created and initialized the
AlgorithmParameterGenerator, call generateParameters() to generate an
AlgorithmParameters object.

public class AlgorithmParameterGenerator {

// Protected Constructors

file:///C|/orielly/jnut/ch17_01.htm (6 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

protected AlgorithmParameterGenerator (AlgorithmParameterGeneratorSpi paramGenSpi, Provider
provider, String algorithm);

// Public Class Methods

public static AlgorithmParameterGenerator getInstance (String algorithm) throws
NoSuchAlgorithmException;

public static AlgorithmParameterGenerator getInstance (String algorithm, String provider) throws
NoSuchAlgorithmExceptionNoSuchProviderException;

// Public Instance Methods

public final AlgorithmParameters generateParameters ();

public final String getAlgorithm ();

public final Provider getProvider ();

public final void init (java.security.spec.AlgorithmParameterSpec genParamSpec) throws
InvalidAlgorithmParameterException;

public final void init (int size);

public final void init (java.security.spec.AlgorithmParameterSpec genParamSpec, SecureRandom
random) throws InvalidAlgorithmParameterException;

public final void init (int size, SecureRandom random);

}

Returned By: AlgorithmParameterGenerator.getInstance()

AlgorithmParameterGeneratorSpi Java 1.2

java.security

This abstract class defines the service-provider interface for algorithm-parameter generation. A security
provider must implement a concrete subclass of this class for each algorithm it supports. Applications never
need to use or subclass this class.

public abstract class AlgorithmParameterGeneratorSpi {

// Public Constructors

public AlgorithmParameterGeneratorSpi ();

// Protected Instance Methods

protected abstract AlgorithmParameters engineGenerateParameters ();

protected abstract void engineInit (java.security.spec.AlgorithmParameterSpec genParamSpec,
SecureRandom random) throws InvalidAlgorithmParameterException;

protected abstract void engineInit (int size, SecureRandom random);

file:///C|/orielly/jnut/ch17_01.htm (7 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

}

Passed To: AlgorithmParameterGenerator.AlgorithmParameterGenerator()

AlgorithmParameters Java 1.2

java.security

This class is a generic, opaque representation of the parameters used by some cryptographic algorithm. You
can create an instance of the class with one of the static getInstance() factory methods, specifying the
desired algorithm and, optionally, the desired provider. The default "SUN" provider supports the "DSA"
algorithm. The "SunJCE" provider shipped with the JCE supports "DES", "DESede", "PBE", "Blowfish", and
"DiffieHellman". Once you have obtained an AlgorithmParameters object, initialize it by passing an
algorithm-specific java.security.spec.AlgorithmParameterSpec object or the encoded
parameter values as a byte array to the init() method. You can also create an AlgorithmParameters
object with an AlgorithmParameterGenerator. getEncoded() returns the initialized algorithm
parameters as a byte array, using either the algorithm-specific default encoding or the named encoding format
you specified.

public class AlgorithmParameters {

// Protected Constructors

protected AlgorithmParameters (AlgorithmParametersSpi paramSpi, Provider provider, String
algorithm);

// Public Class Methods

public static AlgorithmParameters getInstance (String algorithm) throws NoSuchAlgorithmException;

public static AlgorithmParameters getInstance (String algorithm, String provider) throws
NoSuchAlgorithmExceptionNoSuchProviderException;

// Public Instance Methods

public final String getAlgorithm ();

public final byte[] getEncoded () throws java.io.IOException;

public final byte[] getEncoded (String format) throws java.io.IOException;

public final java.security.spec.AlgorithmParameterSpec getParameterSpec (Class paramSpec) throws
java.security.spec.InvalidParameterSpecException;

public final Provider getProvider ();

public final void init (java.security.spec.AlgorithmParameterSpec paramSpec) throws
java.security.spec.InvalidParameterSpecException;

public final void init (byte[] params) throws java.io.IOException;

public final void init (byte[] params, String format) throws java.io.IOException;

file:///C|/orielly/jnut/ch17_01.htm (8 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

// Public Methods Overriding Object

public final String toString ();

}

Passed To: javax.crypto.Cipher.init(), javax.crypto.CipherSpi.engineInit()

Returned By: AlgorithmParameterGenerator.generateParameters(),
AlgorithmParameterGeneratorSpi.engineGenerateParameters(),
AlgorithmParameters.getInstance(), javax.crypto.Cipher.getParameters(),
javax.crypto.CipherSpi.engineGetParameters()

AlgorithmParametersSpi Java 1.2

java.security

This abstract class defines the service-provider interface for AlgorithmParameters. A security provider
must implement a concrete subclass of this class for each cryptographic algorithm it supports. Applications
never need to use or subclass this class.

public abstract class AlgorithmParametersSpi {

// Public Constructors

public AlgorithmParametersSpi ();

// Protected Instance Methods

protected abstract byte[] engineGetEncoded () throws java.io.IOException;

protected abstract byte[] engineGetEncoded (String format) throws java.io.IOException;

protected abstract java.security.spec.AlgorithmParameterSpec engineGetParameterSpec (Class
paramSpec) throws java.security.spec.InvalidParameterSpecException;

protected abstract void engineInit (java.security.spec.AlgorithmParameterSpec paramSpec) throws
java.security.spec.InvalidParameterSpecException;

protected abstract void engineInit (byte[] params) throws java.io.IOException;

protected abstract void engineInit (byte[] params, String format) throws java.io.IOException;

protected abstract String engineToString ();

}

Passed To: AlgorithmParameters.AlgorithmParameters()

AllPermission Java 1.2

file:///C|/orielly/jnut/ch17_01.htm (9 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

java.security serializable permission

This class is a Permission subclass whose implies() method always returns true. This means that
code that has been granted AllPermission is granted all other possible permissions. This class exists to
provide a convenient way to grant all permissions to completely trusted code. It should be used with care.
Applications typically do not need to work directly with Permission objects.

public final class AllPermission extends java.security.Permission {

// Public Constructors

public AllPermission ();

public AllPermission (String name, String actions);

// Public Methods Overriding Permission

public boolean equals (Object obj);

public String getActions (); default:"<all actions>"

public int hashCode (); constant

public boolean implies (java.security.Permission p); constant

public PermissionCollection newPermissionCollection ();

}

Hierarchy: Object-->java.security.Permission(Guard,Serializable)--
>AllPermission

BasicPermission Java 1.2

java.security serializable permission

This Permission class is the abstract superclass for a number of simple permission types.
BasicPermission is typically subclassed to implement named permissions that have a name, or target,
string, but do not support actions. The implies() method of BasicPermission defines a simple
wildcarding capability. The target "*" implies permission for any target. The target "x.*" implies permission
for any target that begins with "x.". Applications typically do not need to work directly with Permission
objects.

public abstract class BasicPermission extends java.security.Permission implements Serializable {

// Public Constructors

public BasicPermission (String name);

file:///C|/orielly/jnut/ch17_01.htm (10 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

public BasicPermission (String name, String actions);

// Public Methods Overriding Permission

public boolean equals (Object obj);

public String getActions ();

public int hashCode ();

public boolean implies (java.security.Permission p);

public PermissionCollection newPermissionCollection ();

}

Hierarchy: Object-->java.security.Permission(Guard,Serializable)--
>BasicPermission(Serializable)

Subclasses: java.awt.AWTPermission, java.io.SerializablePermission,
RuntimePermission, java.lang.reflect.ReflectPermission,
java.net.NetPermission, SecurityPermission, java.sql.SQLPermission,
java.util.PropertyPermission

Certificate Java 1.1; Deprecated in Java 1.2

java.security PJ1.1(opt)

This interface was used in Java 1.1 to represent an identity certificate. It has been deprecated as of Java 1.2 in
favor of the java.security.cert package (see Chapter 19, The java.security.cert Package.) See also
java.security.cert.Certificate.

public interface Certificate {

// Public Instance Methods

public abstract void decode (java.io.InputStream stream) throws KeyExceptionjava.io.IOException;

public abstract void encode (java.io.OutputStream stream) throws KeyExceptionjava.io.IOException;

public abstract String getFormat ();

public abstract java.security.Principal getGuarantor ();

public abstract java.security.Principal getPrincipal ();

public abstract PublicKey getPublicKey ();

public abstract String toString (boolean detailed);

}

Passed To: Identity.{addCertificate(), removeCertificate()}

file:///C|/orielly/jnut/ch17_01.htm (11 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

Returned By: Identity.certificates()

CodeSource Java 1.2

java.security serializable

This class represents the source of a Java class, as defined by the URL from which the class was loaded and
the set of digital signatures attached to the class. A CodeSource object is created by specifying a
java.net.URL and an array of java.security.cert.Certificate objects. Only applications that
create custom ClassLoader objects should ever need to use or subclass this class.

When a CodeSource represents a specific piece of Java code, it includes a fully qualified URL and the
actual set of certificates used to sign the code. When a CodeSource object defines a
ProtectionDomain, however, the URL may include wildcards, and the array of certificates is a minimum
required set of signatures. The implies() method of such a CodeSource tests whether a particular Java
class comes from a matching URL and has the required set of signatures.

public class CodeSource implements Serializable {

// Public Constructors

public CodeSource (java.net.URL url, java.security.cert.Certificate[] certs);

// Public Instance Methods

public final java.security.cert.Certificate[] getCertificates ();

public final java.net.URL getLocation ();

public boolean implies (CodeSource codesource);

// Public Methods Overriding Object

public boolean equals (Object obj);

public int hashCode ();

public String toString ();

}

Hierarchy: Object-->CodeSource(Serializable)

Passed To: java.net.URLClassLoader.getPermissions(), CodeSource.implies(),
java.security.Policy.getPermissions(),
ProtectionDomain.ProtectionDomain(), SecureClassLoader.{defineClass(),
getPermissions()}

Returned By: ProtectionDomain.getCodeSource()

file:///C|/orielly/jnut/ch17_01.htm (12 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

DigestException Java 1.1

java.security serializable checked PJ1.1(opt)

Signals a problem creating a message digest.

public class DigestException extends GeneralSecurityException {

// Public Constructors

public DigestException ();

public DigestException (String msg);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception--
>GeneralSecurityException-->DigestException

Thrown By: MessageDigest.digest(), MessageDigestSpi.engineDigest()

DigestInputStream Java 1.1

java.security PJ1.1(opt)

This class is a byte input stream with an associated MessageDigest object. When bytes are read with any
of the read() methods, those bytes are automatically passed to the update() method of the
MessageDigest. When you have finished reading bytes, you can call the digest() method of the
MessageDigest to obtain a message digest. If you want to compute a digest just for some of the bytes read
from the stream, use on() to turn the digesting function on and off. Digesting is on by default; call
on(false) to turn it off. See also DigestOutputStream and MessageDigest.

public class DigestInputStream extends java.io.FilterInputStream {

// Public Constructors

public DigestInputStream (java.io.InputStream stream, MessageDigest digest);

// Public Instance Methods

public MessageDigest getMessageDigest ();

public void on (boolean on);

public void setMessageDigest (MessageDigest digest);

// Public Methods Overriding FilterInputStream

file:///C|/orielly/jnut/ch17_01.htm (13 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

public int read () throws java.io.IOException;

public int read (byte[] b, int off, int len) throws java.io.IOException;

// Public Methods Overriding Object

public String toString ();

// Protected Instance Fields

protected MessageDigest digest ;

}

Hierarchy: Object-->java.io.InputStream-->java.io.FilterInputStream--
>DigestInputStream

DigestOutputStream Java 1.1

java.security PJ1.1(opt)

This class is a byte output stream with an associated MessageDigest object. When bytes are written to the
stream with any of the write() methods, those bytes are automatically passed to the update() method of
the MessageDigest. When you have finished writing bytes, you can call the digest() method of the
MessageDigest to obtain a message digest. If you want to compute a digest just for some of the bytes
written to the stream, use on() to turn the digesting function on and off. Digesting is on by default; call
on(false) to turn it off. See also DigestInputStream and MessageDigest.

public class DigestOutputStream extends java.io.FilterOutputStream {

// Public Constructors

public DigestOutputStream (java.io.OutputStream stream, MessageDigest digest);

// Public Instance Methods

public MessageDigest getMessageDigest ();

public void on (boolean on);

public void setMessageDigest (MessageDigest digest);

// Public Methods Overriding FilterOutputStream

public void write (int b) throws java.io.IOException;

public void write (byte[] b, int off, int len) throws java.io.IOException;

// Public Methods Overriding Object

public String toString ();

// Protected Instance Fields

protected MessageDigest digest ;

}

file:///C|/orielly/jnut/ch17_01.htm (14 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

Hierarchy: Object-->java.io.OutputStream-->java.io.FilterOutputStream--
>DigestOutputStream

DomainCombiner Java 1.3 Beta

java.security

This interface defines a single combine() method that combines two arrays of ProtectionDomain
objects into a single equivalent (and perhaps optimized) array. You can associate a DomainCombiner with
an existing AccessControlContext by calling the two-argument AccessControlContext()
constructor. Then, when the checkPermission() method of the AccessControlContext is called or
when the AccessControlContext is passed to a doPrivileged() method of
AccessController, the specified DomainCombiner merges the protection domains of the current stack
frame with the protection domains encapsulated in the AccessControlContext. This class is used only
by system-level code; typical applications rarely need to use it.

public interface DomainCombiner {

// Public Instance Methods

public abstract ProtectionDomain[] combine (ProtectionDomain[] currentDomains, ProtectionDomain[]
assignedDomains);

}

Passed To: AccessControlContext.AccessControlContext()

Returned By: AccessControlContext.getDomainCombiner()

GeneralSecurityException Java 1.2

java.security serializable checked

This class is the superclass of most of the exceptions defined by the java.security package.

public class GeneralSecurityException extends Exception {

// Public Constructors

public GeneralSecurityException ();

public GeneralSecurityException (String msg);

}

file:///C|/orielly/jnut/ch17_01.htm (15 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

Hierarchy: Object-->Throwable(Serializable)-->Exception--
>GeneralSecurityException

Subclasses: DigestException, InvalidAlgorithmParameterException, KeyException,
KeyStoreException, NoSuchAlgorithmException, NoSuchProviderException,
SignatureException, UnrecoverableKeyException,
java.security.cert.CertificateException, java.security.cert.CRLException,
java.security.spec.InvalidKeySpecException,
java.security.spec.InvalidParameterSpecException,
javax.crypto.BadPaddingException, javax.crypto.IllegalBlockSizeException,
javax.crypto.NoSuchPaddingException, javax.crypto.ShortBufferException

Guard Java 1.2

java.security

This interface guards access to an object. The checkGuard() method is passed an object to which access
has been requested. If access should be granted, checkGuard() should return silently. Otherwise, if access
is denied, checkGuard() should throw a java.lang.SecurityException. The Guard object is
used primarily by the GuardedObject class. Note that all Permission objects implement the Guard
interface.

public interface Guard {

// Public Instance Methods

public abstract void checkGuard (Object object) throws SecurityException;

}

Implementations: java.security.Permission

Passed To: GuardedObject.GuardedObject()

GuardedObject Java 1.2

java.security serializable

This class uses a Guard object to guard against unauthorized access to an arbitrary encapsulated object.
Create a GuardedObject by specifying an object and a Guard for it. The getObject() method calls the
checkGuard() method of the Guard to determine whether access to the object should be allowed. If access

file:///C|/orielly/jnut/ch17_01.htm (16 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

is allowed, getObject() returns the encapsulated object. Otherwise, it throws a
java.lang.SecurityException.

The Guard object used by a GuardedObject is often a Permission. In this case, access to the guarded
object is granted only if the calling code is granted the specified permission by the current security policy.

public class GuardedObject implements Serializable {

// Public Constructors

public GuardedObject (Object object, Guard guard);

// Public Instance Methods

public Object getObject () throws SecurityException;

}

Hierarchy: Object-->GuardedObject(Serializable)

Identity Java 1.1; Deprecated in Java 1.2

java.security serializable PJ1.1(opt)

This deprecated class was used in Java 1.1 to represent an entity or Principal with an associated
PublicKey object. In Java 1.1, the public key for a named entity could be retrieved from the system keystore
with a line like the following:

IdentityScope.getSystemScope().getIdentity(name).getPublicKey()

As of Java 1.2, the Identity class and the related IdentityScope and Signer classes have been
deprecated in favor of KeyStore and java.security.cert.Certificate.

public abstract class Identity implements java.security.PrincipalSerializable {

// Public Constructors

public Identity (String name);

public Identity (String name, IdentityScope scope) throws
KeyManagementException;

// Protected Constructors

protected Identity ();

// Property Accessor Methods (by property name)

public String getInfo ();

public void setInfo (String info);

file:///C|/orielly/jnut/ch17_01.htm (17 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

public final String getName (); Implements:Principal

public PublicKey getPublicKey ();

public void setPublicKey (PublicKey key) throws KeyManagementException;

public final IdentityScope getScope ();

// Public Instance Methods

public void addCertificate (java.security.Certificate certificate) throws
KeyManagementException;

public java.security.Certificate[] certificates ();

public void removeCertificate (java.security.Certificate certificate) throws
KeyManagementException;

public String toString (boolean detailed);

// Methods Implementing Principal

public final boolean equals (Object identity);

public final String getName ();

public int hashCode ();

public String toString ();

// Protected Instance Methods

protected boolean identityEquals (Identity identity);

}

Hierarchy: Object-->Identity(java.security.Principal,Serializable)

Subclasses: IdentityScope, Signer

Passed To: Identity.identityEquals(), IdentityScope.{addIdentity(),
removeIdentity()}, javax.ejb.EJBContext.isCallerInRole(),
javax.ejb.deployment.AccessControlEntry.{AccessControlEntry(),
setAllowedIdentities()},
javax.ejb.deployment.ControlDescriptor.setRunAsIdentity()

Returned By: IdentityScope.getIdentity(),
javax.ejb.EJBContext.getCallerIdentity(),
javax.ejb.deployment.AccessControlEntry.getAllowedIdentities(),
javax.ejb.deployment.ControlDescriptor.getRunAsIdentity()

IdentityScope Java 1.1; Deprecated in Java 1.2

java.security serializable PJ1.1(opt)

file:///C|/orielly/jnut/ch17_01.htm (18 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

This deprecated class was used in Java 1.1 to represent a group of Identity and Signer objects and their
associated PublicKey and PrivateKey objects. As of Java 1.2, it has been replaced by the KeyStore
class.

public abstract class IdentityScope extends Identity {

// Public Constructors

public IdentityScope (String name);

public IdentityScope (String name, IdentityScope scope) throws KeyManagementException;

// Protected Constructors

protected IdentityScope ();

// Public Class Methods

public static IdentityScope getSystemScope ();

// Protected Class Methods

protected static void setSystemScope (IdentityScope scope);

// Public Instance Methods

public abstract void addIdentity (Identity identity) throws KeyManagementException;

public abstract Identity getIdentity (String name);

public Identity getIdentity (java.security.Principal principal);

public abstract Identity getIdentity (PublicKey key);

public abstract java.util.Enumeration identities ();

public abstract void removeIdentity (Identity identity) throws KeyManagementException;

public abstract int size ();

// Public Methods Overriding Identity

public String toString ();

}

Hierarchy: Object-->Identity(java.security.Principal,Serializable)--
>IdentityScope

Passed To: Identity.Identity(), IdentityScope.{IdentityScope(),
setSystemScope()}, Signer.Signer()

Returned By: Identity.getScope(), IdentityScope.getSystemScope()

InvalidAlgorithmParameterException Java 1.2

java.security serializable checked

file:///C|/orielly/jnut/ch17_01.htm (19 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

Signals that one or more algorithm parameters (usually specified by a
java.security.spec.AlgorithmParameterSpec object) are not valid.

public class InvalidAlgorithmParameterException extends GeneralSecurityException {

// Public Constructors

public InvalidAlgorithmParameterException ();

public InvalidAlgorithmParameterException (String msg);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception--
>GeneralSecurityException-->InvalidAlgorithmParameterException

Thrown By: Too many methods to list.

InvalidKeyException Java 1.1

java.security serializable checked PJ1.1(opt)

Signals that a Key is not valid.

public class InvalidKeyException extends KeyException {

// Public Constructors

public InvalidKeyException ();

public InvalidKeyException (String msg);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception--
>GeneralSecurityException-->KeyException-->InvalidKeyException

Thrown By: Too many methods to list.

InvalidParameterException Java 1.1

java.security serializable unchecked PJ1.1(opt)

This subclass of java.lang.IllegalArgumentException signals that a parameter passed to a

file:///C|/orielly/jnut/ch17_01.htm (20 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

security method is not valid. This exception type is not widely used.

public class InvalidParameterException extends IllegalArgumentException {

// Public Constructors

public InvalidParameterException ();

public InvalidParameterException (String msg);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->RuntimeException--
>IllegalArgumentException-->InvalidParameterException

Thrown By: Signature.{getParameter(), setParameter()},
SignatureSpi.{engineGetParameter(), engineSetParameter()},
Signer.setKeyPair(),
java.security.interfaces.DSAKeyPairGenerator.initialize()

Key Java 1.1

java.security serializable PJ1.1(opt)

This interface defines the high-level characteristics of all cryptographic keys. getAlgorithm() returns the
name of the cryptographic algorithm (such as RSA) used with the key. getFormat() return the name of the
external encoding (such as X.509) used with the key. getEncoded() returns the key as an array of bytes,
encoded using the format specified by getFormat().

public interface Key extends Serializable {

// Public Constants

1.2 public static final long serialVersionUID ; =6603384152749567654

// Public Instance Methods

public abstract String getAlgorithm ();

public abstract byte[] getEncoded ();

public abstract String getFormat ();

}

Hierarchy: (Key(Serializable))

Implementations: PrivateKey, PublicKey, javax.crypto.SecretKey

Passed To: Too many methods to list.

file:///C|/orielly/jnut/ch17_01.htm (21 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

Returned By: KeyFactory.translateKey(), KeyFactorySpi.engineTranslateKey(),
KeyStore.getKey(), KeyStoreSpi.engineGetKey(),
javax.crypto.KeyAgreement.doPhase(),
javax.crypto.KeyAgreementSpi.engineDoPhase()

KeyException Java 1.1

java.security serializable checked PJ1.1(opt)

Signals that something is wrong with a key. See also the subclasses InvalidKeyException and
KeyManagementException.

public class KeyException extends GeneralSecurityException {

// Public Constructors

public KeyException ();

public KeyException (String msg);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception--
>GeneralSecurityException-->KeyException

Subclasses: InvalidKeyException, KeyManagementException

Thrown By: java.security.Certificate.{decode(), encode()},
Signer.setKeyPair()

KeyFactory Java 1.2

java.security

This class translates asymmetric cryptographic keys between the two representations used by the Java Security
API. java.security.Key is the opaque, algorithm-independent representation of a key used by most of
the Security API. java.security.spec.KeySpec is a marker interface implemented by transparent,
algorithm-specific representations of keys. KeyFactory is used with public and private keys; see
javax.crypto.SecretKeyFactory if you are working with symmetric or secret keys.

To convert a Key to a KeySpec or vice versa, create a KeyFactory by calling one of the static

file:///C|/orielly/jnut/ch17_01.htm (22 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

getInstance() factory methods and specifying the name of the key algorithm (e.g., DSA or RSA). Then,
use generatePublic() or generatePrivate() to create a PublicKey or PrivateKey object
from a corresponding KeySpec. Or use getKeySpec() to obtain a KeySpec for a given Key. Because
there can be more than one KeySpec implementation used by a particular cryptographic algorithm, you must
also specify the Class of the KeySpec you desire.

If you do not need to transport keys portably between applications and/or systems, you can use a KeyStore
to store and retrieve keys and certificates, avoiding KeySpec and KeyFactory altogether.

public class KeyFactory {

// Protected Constructors

protected KeyFactory (KeyFactorySpi keyFacSpi, Provider provider, String algorithm);

// Public Class Methods

public static KeyFactory getInstance (String algorithm) throws NoSuchAlgorithmException;

public static KeyFactory getInstance (String algorithm, String provider) throws
NoSuchAlgorithmExceptionNoSuchProviderException;

// Public Instance Methods

public final PrivateKey generatePrivate (java.security.spec.KeySpec keySpec) throws
java.security.spec.InvalidKeySpecException;

public final PublicKey generatePublic (java.security.spec.KeySpec keySpec) throws
java.security.spec.InvalidKeySpecException;

public final String getAlgorithm ();

public final java.security.spec.KeySpec getKeySpec (Key key, Class keySpec) throws
java.security.spec.InvalidKeySpecException;

public final Provider getProvider ();

public final Key translateKey (Key key) throws InvalidKeyException;

}

Returned By: KeyFactory.getInstance()

KeyFactorySpi Java 1.2

java.security

This abstract class defines the service-provider interface for KeyFactory. A security provider must
implement a concrete subclass of this class for each cryptographic algorithm it supports. Applications never
need to use or subclass this class.

file:///C|/orielly/jnut/ch17_01.htm (23 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

public abstract class KeyFactorySpi {

// Public Constructors

public KeyFactorySpi ();

// Protected Instance Methods

protected abstract PrivateKey engineGeneratePrivate (java.security.spec.KeySpec keySpec) throws
java.security.spec.InvalidKeySpecException;

protected abstract PublicKey engineGeneratePublic (java.security.spec.KeySpec keySpec) throws
java.security.spec.InvalidKeySpecException;

protected abstract java.security.spec.KeySpec engineGetKeySpec (Key key, Class keySpec) throws
java.security.spec.InvalidKeySpecException;

protected abstract Key engineTranslateKey (Key key) throws InvalidKeyException;

}

Passed To: KeyFactory.KeyFactory()

KeyManagementException Java 1.1

java.security serializable checked PJ1.1(opt)

Signals an exception in a key management operation. In Java 1.2, this exception is only thrown by deprecated
methods.

public class KeyManagementException extends KeyException {

// Public Constructors

public KeyManagementException ();

public KeyManagementException (String msg);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception--
>GeneralSecurityException-->KeyException-->KeyManagementException

Thrown By: Identity.{addCertificate(), Identity(), removeCertificate(),
setPublicKey()}, IdentityScope.{addIdentity(), IdentityScope(),
removeIdentity()}, Signer.Signer()

KeyPair Java 1.1

file:///C|/orielly/jnut/ch17_01.htm (24 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

java.security serializable PJ1.1(opt)

This class is a simple container for a PublicKey and a PrivateKey object. Because a KeyPair contains
an unprotected private key, it must be used with as much caution as a PrivateKey object.

public final class KeyPair implements Serializable {

// Public Constructors

public KeyPair (PublicKey publicKey, PrivateKey privateKey);

// Public Instance Methods

public PrivateKey getPrivate ();

public PublicKey getPublic ();

}

Hierarchy: Object-->KeyPair(Serializable)

Passed To: Signer.setKeyPair()

Returned By: KeyPairGenerator.{generateKeyPair(), genKeyPair()},
KeyPairGeneratorSpi.generateKeyPair()

KeyPairGenerator Java 1.1

java.security PJ1.1(opt)

This class generates a public/private key pair for a specified cryptographic algorithm. To create a
KeyPairGenerator, call one of the static getInstance() methods, specifying the name of the
algorithm and, optionally, the name of the security provider to use. The default "SUN" provider shipped with
Java 1.2 supports only the "DSA" algorithm. The "SunJCE" provider of the Java Cryptography Extension
(JCE) additionally supports the "DiffieHellman" algorithm.

Once you have created a KeyPairGenerator, initialize it by calling initialize(). You can perform
an algorithm-independent initialization by simply specifying the desired key size in bits. Alternatively, you can
do an algorithm-dependent initialization by providing an appropriate AlgorithmParameterSpec object
for the key-generation algorithm. In either case, you may optionally provide your own source of randomness in
the guise of a SecureRandom object. Once you have created and initialized a KeyPairGenerator, call
genKeyPair() to create a KeyPair object. Remember that the KeyPair contains a PrivateKey that
must be kept private.

For historical reasons, KeyPairGenerator extends KeyPairGeneratorSpi. Applications should not

file:///C|/orielly/jnut/ch17_01.htm (25 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

use any methods inherited from that class.

public abstract class KeyPairGenerator extends KeyPairGeneratorSpi {

// Protected Constructors

protected KeyPairGenerator (String algorithm);

// Public Class Methods

public static KeyPairGenerator getInstance (String algorithm) throws
NoSuchAlgorithmException;

public static KeyPairGenerator getInstance (String algorithm, String provider) throws
NoSuchAlgorithmExceptionNoSuchProviderException;

// Public Instance Methods

1.2 public final KeyPair genKeyPair ();

public String getAlgorithm ();

1.2 public final Provider getProvider ();

1.2
public void initialize (java.security.spec.AlgorithmParameterSpec params) throws
InvalidAlgorithmParameterException;

public void initialize (int keysize);

// Public Methods Overriding KeyPairGeneratorSpi

public KeyPair generateKeyPair (); constant

1.2
public void initialize (java.security.spec.AlgorithmParameterSpec params, SecureRandom
random) throws InvalidAlgorithmParameterException;

empty

public void initialize (int keysize, SecureRandom random); empty

}

Hierarchy: Object-->KeyPairGeneratorSpi-->KeyPairGenerator

Returned By: KeyPairGenerator.getInstance()

KeyPairGeneratorSpi Java 1.2

java.security

This abstract class defines the service-provider interface for KeyPairGenerator. A security provider must
implement a concrete subclass of this class for each cryptographic algorithm for which it can generate key
pairs. Applications never need to use or subclass this class.

public abstract class KeyPairGeneratorSpi {

// Public Constructors

file:///C|/orielly/jnut/ch17_01.htm (26 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

public KeyPairGeneratorSpi ();

// Public Instance Methods

public abstract KeyPair generateKeyPair ();

public void initialize (java.security.spec.AlgorithmParameterSpec params, SecureRandom random)
throws InvalidAlgorithmParameterException;

public abstract void initialize (int keysize, SecureRandom random);

}

Subclasses: KeyPairGenerator

KeyStore Java 1.2

java.security

This class represents a mapping of names, or aliases, to Key and java.security.cert.Certificate
objects. Obtain a KeyStore object by calling one of the static getInstance() methods, specifying the
desired key store type and, optionally, the desired provider. Use "JKS" to specify the "Java Key Store" type
defined by Sun. Because of U.S. export regulations, this default KeyStore supports only weak encryption of
private keys. If you have the Java Cryptography Extension installed, use the type "JCEKS" and provider
"SunJCE" to obtain a KeyStore implementation that offers much stronger password-based encryption of
keys. Once you have created a KeyStore, use load() to read its contents from a stream, supplying an
optional password that verifies the integrity of the stream data. Keystores are typically read from a file named
.keystore in the user's home directory.

A KeyStore may contain both public and private key entries. A public key entry is represented by a
Certificate object. Use getCertificate() to look up a named public key certificate and
setCertificateEntry() to add a new public key certificate to the keystore. A private key entry in the
keystore contains both a password-protected Key and an array of Certificate objects that represent the
certificate chain for the public key that corresponds to the private key. Use getKey() and
getCertificateChain() to look up the key and certificate chain. Use setKeyEntry() to create a
new private key entry. You must provide a password when reading or writing a private key from the keystore;
this password encrypts the key data, and each private key entry should have a different password. If you are
using the JCE, you may also store javax.crypto.SecretKey objects in a KeyStore. Secret keys are
stored like private keys, except that they do not have a certificate chain associated with them.

To delete an entry from a KeyStore, use deleteEntry(). If you modify the contents of a KeyStore,
use store() to save the keystore to a specified stream. You may specify a password that is used to validate
the integrity of the data, but it is not used to encrypt the keystore.

public class KeyStore {

file:///C|/orielly/jnut/ch17_01.htm (27 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

// Protected Constructors

protected KeyStore (KeyStoreSpi keyStoreSpi, Provider provider, String type);

// Public Class Methods

public static final String getDefaultType ();

public static KeyStore getInstance (String type) throws KeyStoreException;

public static KeyStore getInstance (String type, String provider) throws
KeyStoreExceptionNoSuchProviderException;

// Public Instance Methods

public final java.util.Enumeration aliases () throws KeyStoreException;

public final boolean containsAlias (String alias) throws KeyStoreException;

public final void deleteEntry (String alias) throws KeyStoreException;

public final java.security.cert.Certificate getCertificate (String alias) throws KeyStoreException;

public final String getCertificateAlias (java.security.cert.Certificate cert) throws KeyStoreException;

public final java.security.cert.Certificate[] getCertificateChain (String alias) throws KeyStoreException;

public final java.util.Date getCreationDate (String alias) throws KeyStoreException;

public final Key getKey (String alias, char[] password) throws
KeyStoreExceptionNoSuchAlgorithmExceptionUnrecoverableKeyException;

public final Provider getProvider ();

public final String getType ();

public final boolean isCertificateEntry (String alias) throws KeyStoreException;

public final boolean isKeyEntry (String alias) throws KeyStoreException;

public final void load (java.io.InputStream stream, char[] password) throws
java.io.IOExceptionNoSuchAlgorithmExceptionjava.security.cert.CertificateException;

public final void setCertificateEntry (String alias, java.security.cert.Certificate cert) throws
KeyStoreException;

public final void setKeyEntry (String alias, byte[] key, java.security.cert.Certificate[] chain) throws
KeyStoreException;

public final void setKeyEntry (String alias, Key key, char[] password, java.security.cert.Certificate[]
chain) throws KeyStoreException;

public final int size () throws KeyStoreException;

public final void store (java.io.OutputStream stream, char[] password) throws
KeyStoreExceptionjava.io.IOExceptionNoSuchAlgorithmExceptionjava.security.cert.CertificateException;

}

Returned By: KeyStore.getInstance()

KeyStoreException Java 1.2

file:///C|/orielly/jnut/ch17_01.htm (28 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

java.security serializable checked

Signals a problem with a KeyStore.

public class KeyStoreException extends GeneralSecurityException {

// Public Constructors

public KeyStoreException ();

public KeyStoreException (String msg);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception--
>GeneralSecurityException-->KeyStoreException

Thrown By: Too many methods to list.

KeyStoreSpi Java 1.2

java.security

This abstract class defines the service-provider interface for KeyStore. A security provider must implement
a concrete subclass of this class for each KeyStore type it supports. Applications never need to use or
subclass this class.

public abstract class KeyStoreSpi {

// Public Constructors

public KeyStoreSpi ();

// Public Instance Methods

public abstract java.util.Enumeration engineAliases ();

public abstract boolean engineContainsAlias (String alias);

public abstract void engineDeleteEntry (String alias) throws KeyStoreException;

public abstract java.security.cert.Certificate engineGetCertificate (String alias);

public abstract String engineGetCertificateAlias (java.security.cert.Certificate cert);

public abstract java.security.cert.Certificate[] engineGetCertificateChain (String alias);

public abstract java.util.Date engineGetCreationDate (String alias);

public abstract Key engineGetKey (String alias, char[] password) throws
NoSuchAlgorithmExceptionUnrecoverableKeyException;

public abstract boolean engineIsCertificateEntry (String alias);

file:///C|/orielly/jnut/ch17_01.htm (29 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

public abstract boolean engineIsKeyEntry (String alias);

public abstract void engineLoad (java.io.InputStream stream, char[] password) throws
java.io.IOExceptionNoSuchAlgorithmExceptionjava.security.cert.CertificateException;

public abstract void engineSetCertificateEntry (String alias, java.security.cert.Certificate cert) throws
KeyStoreException;

public abstract void engineSetKeyEntry (String alias, byte[] key, java.security.cert.Certificate[] chain)
throws KeyStoreException;

public abstract void engineSetKeyEntry (String alias, Key key, char[] password,
java.security.cert.Certificate[] chain) throws KeyStoreException;

public abstract int engineSize ();

public abstract void engineStore (java.io.OutputStream stream, char[] password) throws
java.io.IOExceptionNoSuchAlgorithmExceptionjava.security.cert.CertificateException;

}

Passed To: KeyStore.KeyStore()

MessageDigest Java 1.1

java.security PJ1.1(opt)

This class computes a message digest (also known as a cryptographic checksum) for an arbitrary sequence of
bytes. Obtain a MessageDigest object by calling one of the static getInstance() factory methods and
specifying the desired algorithm (e.g., SHA or MD5) and, optionally, the desired provider. Next, specify the
data to be digested by calling any of the update() methods one or more times. Finally, call digest(),
which computes the message digest and returns it as an array of bytes. If you have only one array of bytes to
be digested, you can pass it directly to digest() and skip the update() step. When you call digest(),
the MessageDigest() object is reset and is then ready to compute a new digest. You can also explicitly
reset a MessageDigest without computing the digest by calling reset(). To compute a digest for part of
a message without resetting the MessageDigest, clone the MessageDigest and call digest() on the
cloned copy. Note that not all implementations are cloneable, so the clone() method may throw an
exception.

The MessageDigest class is often used in conjunction with DigestInputStream and
DigestOutputStream, which automate the update() calls for you.

public abstract class MessageDigest extends MessageDigestSpi {

// Protected Constructors

protected MessageDigest (String algorithm);

// Public Class Methods

file:///C|/orielly/jnut/ch17_01.htm (30 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

public static MessageDigest getInstance (String algorithm) throws NoSuchAlgorithmException;

public static MessageDigest getInstance (String algorithm, String provider) throws
NoSuchAlgorithmExceptionNoSuchProviderException;

public static boolean isEqual (byte[] digesta, byte[] digestb);

// Public Instance Methods

public byte[] digest ();

public byte[] digest (byte[] input);

1.2 public int digest (byte[] buf, int offset, int len) throws DigestException;

public final String getAlgorithm ();

1.2 public final int getDigestLength ();

1.2 public final Provider getProvider ();

public void reset ();

public void update (byte input);

public void update (byte[] input);

public void update (byte[] input, int offset, int len);

// Public Methods Overriding MessageDigestSpi

public Object clone () throws CloneNotSupportedException;

// Public Methods Overriding Object

public String toString ();

}

Hierarchy: Object-->MessageDigestSpi-->MessageDigest

Passed To: DigestInputStream.{DigestInputStream(), setMessageDigest()},
DigestOutputStream.{DigestOutputStream(), setMessageDigest()}

Returned By: DigestInputStream.getMessageDigest(),
DigestOutputStream.getMessageDigest(), MessageDigest.getInstance()

Type Of: DigestInputStream.digest, DigestOutputStream.digest

MessageDigestSpi Java 1.2

java.security

This abstract class defines the service-provider interface for MessageDigest. A security provider must
implement a concrete subclass of this class for each message-digest algorithm it supports. Applications never
need to use or subclass this class.

file:///C|/orielly/jnut/ch17_01.htm (31 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

public abstract class MessageDigestSpi {

// Public Constructors

public MessageDigestSpi ();

// Public Methods Overriding Object

public Object clone () throws CloneNotSupportedException;

// Protected Instance Methods

protected abstract byte[] engineDigest ();

protected int engineDigest (byte[] buf, int offset, int len) throws DigestException;

protected int engineGetDigestLength (); constant

protected abstract void engineReset ();

protected abstract void engineUpdate (byte input);

protected abstract void engineUpdate (byte[] input, int offset, int len);

}

Subclasses: MessageDigest

NoSuchAlgorithmException Java 1.1

java.security serializable checked PJ1.1(opt)

Signals that a requested cryptographic algorithm is not available. Thrown by getInstance() factory
methods throughout the java.security package.

public class NoSuchAlgorithmException extends GeneralSecurityException {

// Public Constructors

public NoSuchAlgorithmException ();

public NoSuchAlgorithmException (String msg);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception--
>GeneralSecurityException-->NoSuchAlgorithmException

Thrown By: Too many methods to list.

NoSuchProviderException Java 1.1

file:///C|/orielly/jnut/ch17_01.htm (32 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

java.security serializable checked PJ1.1(opt)

Signals that a requested cryptographic service provider is not available. Thrown by getInstance() factory
methods throughout the java.security package.

public class NoSuchProviderException extends GeneralSecurityException {

// Public Constructors

public NoSuchProviderException ();

public NoSuchProviderException (String msg);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception--
>GeneralSecurityException-->NoSuchProviderException

Thrown By: Too many methods to list.

Permission Java 1.2

java.security serializable permission

This abstract class represents a system resource, such as a file in the filesystem, or a system capability, such as
the ability to accept network connections. Concrete subclasses of Permission, such as
java.io.FilePermission and java.net.SocketPermission, represent specific types of
resources. Permission objects are used by system code that is requesting access to a resource. They are also
used by Policy objects that grant access to resources. The
AccessController.checkPermission() method considers the source of the currently running Java
code, determines the set of permissions that are granted to that code by the current Policy, and then checks
to see whether a specified Permission object is included in that set. With the introduction of Java 1.2, this
is the fundamental Java access-control mechanism.

Each permission has a name (sometimes called the target) and, optionally, a comma-separated list of actions.
For example, the name of a FilePermission is the name of the file or directory for which permission is
being granted. The actions associated with this permission might be "read"; "write"; or "read,write". The
interpretation of the name and action strings is entirely up to the implementation of Permission. A number
of implementations support the use of wildcards; for example, a FilePermission can have a name of
"/tmp/*", which represents access to any files in a /tmp directory. Permission objects must be immutable, so an
implementation must never define a setName() or setActions() method.

file:///C|/orielly/jnut/ch17_01.htm (33 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

One of the most important abstract methods defined by Permission is implies(). This method must
return true if this Permission implies another Permission. For example, if an application requests a
FilePermission with name "/tmp/test" and action "read", and the current security Policy grants a
FilePermission with name "/tmp/*" and actions "read,write", the request is granted because the requested
permission is implied by the granted one.

In general, only system-level code needs to work directly with Permission and its concrete subclasses.
System administrators who are configuring security policies need to understand the various Permission
subclasses. Applications that want to extend the Java access-control mechanism to provide customized access
control to their own resources should subclass Permission to define custom permission types.

public abstract class Permission implements GuardSerializable {

// Public Constructors

public Permission (String name);

// Public Instance Methods

public abstract String getActions ();

public final String getName ();

public abstract boolean implies (java.security.Permission permission);

public PermissionCollection newPermissionCollection (); constant

// Methods Implementing Guard

public void checkGuard (Object object) throws SecurityException;

// Public Methods Overriding Object

public abstract boolean equals (Object obj);

public abstract int hashCode ();

public String toString ();

}

Hierarchy: Object-->java.security.Permission(Guard,Serializable)

Subclasses: java.io.FilePermission, java.net.SocketPermission, AllPermission,
BasicPermission, UnresolvedPermission

Passed To: Too many methods to list.

Returned By: java.net.HttpURLConnection.getPermission(),
java.net.URLConnection.getPermission(),
AccessControlException.getPermission()

PermissionCollection Java 1.2

file:///C|/orielly/jnut/ch17_01.htm (34 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

java.security serializable

This class is used by Permissions to store a collection of Permission objects that are all the same type.
Like the Permission class itself, PermissionCollection defines an implies() method that can
determine whether a requested Permission is implied by any of the Permission objects in the collection.
Some Permission types may require a custom PermissionCollection type in order to correctly
implement the implies() method. In this case, the Permission subclass should override
newPermissionCollection() to return a Permission of the appropriate type.
PermissionCollection is used by system code that manages security policies. Applications rarely need
to use it.

public abstract class PermissionCollection implements Serializable {

// Public Constructors

public PermissionCollection ();

// Public Instance Methods

public abstract void add (java.security.Permission permission);

public abstract java.util.Enumeration elements ();

public abstract boolean implies (java.security.Permission permission);

public boolean isReadOnly ();

public void setReadOnly ();

// Public Methods Overriding Object

public String toString ();

}

Hierarchy: Object-->PermissionCollection(Serializable)

Subclasses: Permissions

Passed To: ProtectionDomain.ProtectionDomain()

Returned By: java.io.FilePermission.newPermissionCollection(),
java.net.SocketPermission.newPermissionCollection(),
java.net.URLClassLoader.getPermissions(),
AllPermission.newPermissionCollection(),
BasicPermission.newPermissionCollection(),
java.security.Permission.newPermissionCollection(),
java.security.Policy.getPermissions(), ProtectionDomain.getPermissions(),
SecureClassLoader.getPermissions(),
UnresolvedPermission.newPermissionCollection(),

file:///C|/orielly/jnut/ch17_01.htm (35 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

java.util.PropertyPermission.newPermissionCollection()

Permissions Java 1.2

java.security serializable

This class stores an arbitrary collection of Permission objects. When Permission objects are added with
the add() method, they are grouped into an internal set of PermissionCollection objects that contain
only a single type of Permission. Use the elements() method to obtain an Enumeration of the
Permission objects in the collection. Use implies() to determine if a specified Permission is
implied by any of the Permission objects in the collection. Permissions is used by system code that
manages security policies. Applications rarely need to use it.

public final class Permissions extends PermissionCollection implements Serializable {

// Public Constructors

public Permissions ();

// Public Methods Overriding PermissionCollection

public void add (java.security.Permission permission);

public java.util.Enumeration elements ();

public boolean implies (java.security.Permission permission);

}

Hierarchy: Object-->PermissionCollection(Serializable)--
>Permissions(Serializable)

Policy Java 1.2

java.security

This class provides a mapping from CodeSource objects to PermissionCollection objects; it defines
a security policy by specifying what permissions are granted to what code. There is only a single Policy in
effect at any one time. Obtain the system policy by calling the static getPolicy() method. Code that has
appropriate permissions can specify a new system policy by calling setPolicy(). getPermissions()
is the central Policy method; it evaluates the Policy for a given CodeSource and returns an appropriate
PermissionCollection. The refresh() method is a request to a Policy object to update its state
(for example, by rereading its configuration file). The Policy class is used primarily by system-level code.
Applications should not need to use this class unless they implement some kind of custom access-control
mechanism.

file:///C|/orielly/jnut/ch17_01.htm (36 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

public abstract class Policy {

// Public Constructors

public Policy ();

// Public Class Methods

public static java.security.Policy getPolicy ();

public static void setPolicy (java.security.Policy policy);

// Public Instance Methods

public abstract PermissionCollection getPermissions (CodeSource codesource);

public abstract void refresh ();

}

Passed To: java.security.Policy.setPolicy()

Returned By: java.security.Policy.getPolicy()

Principal Java 1.1

java.security PJ1.1(opt)

This interface represents any entity that may serve as a principal in a cryptographic transaction of any kind. A
Principal may represent an individual, a computer, or an organization, for example.

public interface Principal {

// Public Instance Methods

public abstract boolean equals (Object another);

public abstract String getName ();

public abstract int hashCode ();

public abstract String toString ();

}

Implementations: Identity, java.security.acl.Group

Passed To: IdentityScope.getIdentity(), java.security.acl.Acl.{addEntry(),
checkPermission(), getPermissions(), removeEntry(), setName()},
java.security.acl.AclEntry.setPrincipal(),
java.security.acl.Group.{addMember(), isMember(), removeMember()},
java.security.acl.Owner.{addOwner(), deleteOwner(), isOwner()}

file:///C|/orielly/jnut/ch17_01.htm (37 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

Returned By: java.security.Certificate.{getGuarantor(), getPrincipal()},
java.security.acl.AclEntry.getPrincipal(),
java.security.cert.X509Certificate.{getIssuerDN(), getSubjectDN()},
java.security.cert.X509CRL.getIssuerDN()

PrivateKey Java 1.1

java.security serializable PJ1.1(opt)

This interface represents a private cryptographic key. It extends the Key interface, but does not add any new
methods. The interface exists in order to create a strong distinction between private and public keys. See also
PublicKey.

public interface PrivateKey extends Key {

// Public Constants

1.2 public static final long serialVersionUID ; =6034044314589513430

}

Hierarchy: (PrivateKey(Key(Serializable)))

Implementations: java.security.interfaces.DSAPrivateKey,
java.security.interfaces.RSAPrivateKey,
javax.crypto.interfaces.DHPrivateKey

Passed To: KeyPair.KeyPair(), Signature.initSign(),
SignatureSpi.engineInitSign(), SignedObject.SignedObject()

Returned By: KeyFactory.generatePrivate(),
KeyFactorySpi.engineGeneratePrivate(), KeyPair.getPrivate(),
Signer.getPrivateKey()

PrivilegedAction Java 1.2

java.security

This interface defines a block of code (the run() method) that is to be executed as privileged code by the
AccessController.doPrivileged() method. When privileged code is run in this way, the
AccessController looks only at the permissions of the immediate caller, not the permissions of the entire

file:///C|/orielly/jnut/ch17_01.htm (38 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

call stack. The immediate caller is typically fully trusted system code that has a full set of permissions, and
therefore the privileged code runs with that full set of permissions, even if the system code is invoked by
untrusted code with no permissions whatsoever.

Privileged code is typically required only when you are writing a trusted system library (such as a Java
extension package) that must read local files or perform other restricted actions, even when called by untrusted
code. For example, a class that must call System.loadLibrary() to load native methods should make
the call to loadLibrary() within the run() method of a PrivilegedAction. If your privileged code
may throw a checked exception, implement it in the run() method of a PrivilegedExceptionAction
instead.

Be very careful when implementing this interface. To minimize the possibility of security holes, keep the body
of the run() method as short as possible.

public interface PrivilegedAction {

// Public Instance Methods

public abstract Object run ();

}

Passed To: AccessController.doPrivileged()

PrivilegedActionException Java 1.2

java.security serializable checked

This exception class is a wrapper around an arbitrary Exception thrown by a
PrivilegedExceptionAction executed by the AccessController.doPrivileged() method.
Use getException() to obtain the wrapped Exception object.

public class PrivilegedActionException extends Exception {

// Public Constructors

public PrivilegedActionException (Exception exception);

// Public Instance Methods

public Exception getException ();

// Public Methods Overriding Throwable

public void printStackTrace ();

public void printStackTrace (java.io.PrintWriter pw);

public void printStackTrace (java.io.PrintStream ps);

1.3 public String toString ();

file:///C|/orielly/jnut/ch17_01.htm (39 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

}

Hierarchy: Object-->Throwable(Serializable)-->Exception--
>PrivilegedActionException

Thrown By: AccessController.doPrivileged()

PrivilegedExceptionAction Java 1.2

java.security

This interface is like PrivilegedAction, except that its run() method may throw an exception. See
PrivilegedAction for details.

public interface PrivilegedExceptionAction {

// Public Instance Methods

public abstract Object run () throws Exception;

}

Passed To: AccessController.doPrivileged()

ProtectionDomain Java 1.2

java.security

This class represents a CodeSource and the associated PermissionCollection granted to that
CodeSource by a Policy object. The implies() method checks to see whether the specified
Permission is implied by any of the permissions granted to this ProtectionDomain. In Java 1.2, every
class has an associated ProtectionDomain, which can be obtained with the
getProtectionDomain() method of the Class object. Only applications that implement a custom
ClassLoader should need to use this class.

public class ProtectionDomain {

// Public Constructors

public ProtectionDomain (CodeSource codesource, PermissionCollection permissions);

// Public Instance Methods

public final CodeSource getCodeSource ();

file:///C|/orielly/jnut/ch17_01.htm (40 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

public final PermissionCollection getPermissions ();

public boolean implies (java.security.Permission permission);

// Public Methods Overriding Object

public String toString ();

}

Passed To: ClassLoader.defineClass(),
AccessControlContext.AccessControlContext(), DomainCombiner.combine()

Returned By: Class.getProtectionDomain(), DomainCombiner.combine()

Provider Java 1.1

java.security cloneable serializable collection PJ1.1(opt)

This class represents a security provider. It specifies class names for implementations of one or more
algorithms for message digests, digital signatures, key generation, key conversion, key management, secure
random number generation, certificate conversion, and algorithm parameter management. The getName(),
getVersion(), and getInfo() methods return information about the provider. Provider inherits from
Properties and maintains a mapping of property names to property values. These name/value pairs specify
the capabilities of the Provider implementation. Each property name has the form:

service_type.algorithm_name

The corresponding property value is the name of the class that implements the named algorithm. For example,
say a Provider defines properties named "Signature.DSA", "MessageDigest.MD5", and "KeyStore.JKS".
The values of these properties are the class names of SignatureSpi, MessageDigestSpi, and
KeyStoreSpi implementations. Other properties defined by a Provider are used to provide aliases for
algorithm names. For example, the property Alg.Alias.MessageDigest.SHA1 might have the value
"SHA", meaning that the algorithm name "SHA1" is an alias for "SHA".

Security providers are installed for a Java system in an implementation-dependent way. For Sun's
implementation, the ${java.home}/lib/security/java.security file specifies the class names of all installed
Provider implementations. An application can also install its own custom Provider with the
addProvider() and insertProviderAt() methods of the Security class. Most applications do not
need to use the Provider class directly. Typically, only security-provider implementors need to use the
Provider class. Some applications may explicitly specify the name of a desired Provider when calling a
static getInstance() factory method, however. Only applications with the most demanding cryptographic
needs need to install custom providers.

file:///C|/orielly/jnut/ch17_01.htm (41 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

public abstract class Provider extends java.util.Properties {

// Protected Constructors

protected Provider (String name, double version, String info);

// Public Instance Methods

public String getInfo ();

public String getName ();

public double getVersion ();

// Public Methods Overriding Properties

1.2 public void load (java.io.InputStream inStream) throws java.io.IOException; synchronized

// Public Methods Overriding Hashtable

1.2 public void clear (); synchronized

1.2 public java.util.Set entrySet (); synchronized

1.2 public java.util.Set keySet ();

1.2 public Object put (Object key, Object value); synchronized

1.2 public void putAll (java.util.Map t); synchronized

1.2 public Object remove (Object key); synchronized

public String toString ();

1.2 public java.util.Collection values ();

}

Hierarchy: Object-->java.util.Dictionary--
>java.util.Hashtable(Cloneable,java.util.Map,Serializable)--
>java.util.Properties-->Provider

Passed To: AlgorithmParameterGenerator.AlgorithmParameterGenerator(),
AlgorithmParameters.AlgorithmParameters(), KeyFactory.KeyFactory(),
KeyStore.KeyStore(), SecureRandom.SecureRandom(), Security.{addProvider(),
insertProviderAt()},
java.security.cert.CertificateFactory.CertificateFactory(),
javax.crypto.Cipher.Cipher(), javax.crypto.KeyAgreement.KeyAgreement(),
javax.crypto.KeyGenerator.KeyGenerator(), javax.crypto.Mac.Mac(),
javax.crypto.SecretKeyFactory.SecretKeyFactory()

Returned By: Too many methods to list.

ProviderException Java 1.1

java.security serializable unchecked PJ1.1(opt)

file:///C|/orielly/jnut/ch17_01.htm (42 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

Signals that an exception has occurred inside a cryptographic service provider. Note that
ProviderException extends RuntimeException and is therefore an unchecked exception that may
be thrown from any method without being declared.

public class ProviderException extends RuntimeException {

// Public Constructors

public ProviderException ();

public ProviderException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->RuntimeException--
>ProviderException

PublicKey Java 1.1

java.security serializable PJ1.1(opt)

This interface represents a public cryptographic key. It extends the Key interface, but does not add any new
methods. The interface exists in order to create a strong distinction between public and private keys. See also
PrivateKey.

public interface PublicKey extends Key {

// Public Constants

1.2 public static final long serialVersionUID ; =7187392471159151072

}

Hierarchy: (PublicKey(Key(Serializable)))

Implementations: java.security.interfaces.DSAPublicKey,
java.security.interfaces.RSAPublicKey, javax.crypto.interfaces.DHPublicKey

Passed To: Identity.setPublicKey(), IdentityScope.getIdentity(),
KeyPair.KeyPair(), Signature.initVerify(),
SignatureSpi.engineInitVerify(), SignedObject.verify(),
java.security.cert.Certificate.verify(),
java.security.cert.X509CRL.verify()

Returned By: java.security.Certificate.getPublicKey(),
Identity.getPublicKey(), KeyFactory.generatePublic(),

file:///C|/orielly/jnut/ch17_01.htm (43 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

KeyFactorySpi.engineGeneratePublic(), KeyPair.getPublic(),
java.security.cert.Certificate.getPublicKey()

SecureClassLoader Java 1.2

java.security

This class adds two protected methods to those defined by ClassLoader. The defineClass() method is
passed a CodeSource object that represents the source of the class being loaded. It calls the
getPermissions() method to obtain a PermissionCollection for that CodeSource. It then uses
the CodeSource and PermissionCollection to create a ProtectionDomain, which is passed to
the defineClass() method of its superclass.

The default implementation of the getPermissions() method uses the default Policy to determine the
appropriate set of permissions for a given code source. The value of SecureClassLoader is that
subclasses can use its defineClass() method to load classes without having to work explicitly with the
ProtectionDomain and Policy classes. A subclass of SecureClassLoader can define its own
security policy by overriding getPermissions(). In Java 1.2 and later, any application that implements a
custom class loader should do so by extending SecureClassLoader, instead of subclassing
ClassLoader directly. Most applications can use java.net.URLClassLoader, however, and never
have to subclass this class.

public class SecureClassLoader extends ClassLoader {

// Protected Constructors

protected SecureClassLoader ();

protected SecureClassLoader (ClassLoader parent);

// Protected Instance Methods

protected final Class defineClass (String name, byte[] b, int off, int len, CodeSource cs);

protected PermissionCollection getPermissions (CodeSource codesource);

}

Hierarchy: Object-->ClassLoader-->SecureClassLoader

Subclasses: java.net.URLClassLoader

SecureRandom Java 1.1

java.security serializable PJ1.1(opt)

file:///C|/orielly/jnut/ch17_01.htm (44 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

This class generates cryptographic-quality pseudo-random bytes. Although SecureRandom defines public
constructors, the preferred technique for obtaining a SecureRandom object is to call one of the static
getInstance() factory methods, specifying the desired pseudo-random number-generation algorithm, and,
optionally, the desired provider of that algorithm. Sun's implementation of Java ships with an algorithm named
"SHA1PRNG" in the "SUN" provider.

Once you have obtained a SecureRandom object, call nextBytes() to fill an array with pseudo-random
bytes. You can also call any of the methods defined by the Random superclass to obtain random numbers. The
first time one of these methods is called, the SecureRandom() method uses its generateSeed()
method to seed itself. If you have a source of random or very high-quality pseudo-random bytes, you may
provide your own seed by calling setSeed(). Repeated calls to setSeed() augment the existing seed
instead of replacing it. You can also call generateSeed() to generate seeds for use with other pseudo-
random generators. generateSeed() may use a different algorithm than nextBytes() and may produce
higher-quality randomness, usually at the expense of increased computation time.

public class SecureRandom extends java.util.Random {

// Public Constructors

public SecureRandom ();

public SecureRandom (byte[] seed);

// Protected Constructors

1.2 protected SecureRandom (SecureRandomSpi secureRandomSpi, Provider provider);

// Public Class Methods

1.2
public static SecureRandom getInstance (String algorithm) throws
NoSuchAlgorithmException;

1.2
public static SecureRandom getInstance (String algorithm, String provider) throws
NoSuchAlgorithmExceptionNoSuchProviderException;

public static byte[] getSeed (int numBytes);

// Public Instance Methods

1.2 public byte[] generateSeed (int numBytes);

1.2 public final Provider getProvider (); default:Sun

public void setSeed (byte[] seed); synchronized

// Public Methods Overriding Random

public void nextBytes (byte[] bytes); synchronized

public void setSeed (long seed);

// Protected Methods Overriding Random

protected final int next (int numBits);

}

Hierarchy: Object-->java.util.Random(Serializable)-->SecureRandom

file:///C|/orielly/jnut/ch17_01.htm (45 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

Passed To: Too many methods to list.

Returned By: SecureRandom.getInstance()

Type Of: SignatureSpi.appRandom

SecureRandomSpi Java 1.2

java.security serializable

This abstract class defines the service-provider interface for SecureRandom. A security provider must
implement a concrete subclass of this class for each pseudo-random number-generation algorithm it supports.
Applications never need to use or subclass this class.

public abstract class SecureRandomSpi implements Serializable {

// Public Constructors

public SecureRandomSpi ();

// Protected Instance Methods

protected abstract byte[] engineGenerateSeed (int numBytes);

protected abstract void engineNextBytes (byte[] bytes);

protected abstract void engineSetSeed (byte[] seed);

}

Hierarchy: Object-->SecureRandomSpi(Serializable)

Passed To: SecureRandom.SecureRandom()

Security Java 1.1

java.security PJ1.1(opt)

This class defines static methods both for managing the list of installed security providers and for reading and
setting the values of various properties used by the Java 1.2 security system. It is essentially an interface to the
${java.home}/lib/security/java.security file that is included in Sun's implementation of Java.
getProviders() is the most generally useful method; it returns an array of installed Provider objects.
In Java 1.3, two new versions of getProviders() return an array of installed providers that implement the
algorithm or algorithms specified by the String or Map argument.

file:///C|/orielly/jnut/ch17_01.htm (46 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

public final class Security {

// No Constructor

// Public Class Methods

public static int addProvider (Provider provider);

public static String getProperty (String key);

public static Provider getProvider (String name); synchronized

public static Provider[] getProviders (); synchronized

1.3 public static Provider[] getProviders (String filter);

1.3 public static Provider[] getProviders (java.util.Map filter);

public static int insertProviderAt (Provider provider, int position); synchronized

public static void removeProvider (String name); synchronized

public static void setProperty (String key, String datum);

// Deprecated Public Methods

public static String getAlgorithmProperty (String algName, String propName);

}

SecurityPermission Java 1.2

java.security serializable permission

This class is a Permission subclass that represents access to various methods of the Policy, Security,
Provider, Signer, and Identity objects. SecurityPermission objects are defined by a name
only; they do not use a list of actions. Important SecurityPermission names are "getPolicy" and
"setPolicy", which represent the ability query and set the system security policy by invoking the
Policy.getPolicy() and Policy.setPolicy() methods. Applications do not typically need to use
this class.

public final class SecurityPermission extends BasicPermission {

// Public Constructors

public SecurityPermission (String name);

public SecurityPermission (String name, String actions);

}

Hierarchy: Object-->java.security.Permission(Guard,Serializable)--
>BasicPermission(Serializable)-->SecurityPermission

Signature Java 1.1

file:///C|/orielly/jnut/ch17_01.htm (47 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

java.security PJ1.1(opt)

This class computes or verifies a digital signature. Obtain a Signature object by calling one of the static
getInstance() factory methods and specifying the desired digital signature algorithm and, optionally, the
desired provider of that algorithm. A digital signature is essentially a message digest encrypted by a public-
key encryption algorithm. Thus, to specify a digital signature algorithm, you must specify both the digest
algorithm and the encryption algorithm. The only algorithm supported by the default "SUN" provider is
"SHA1withDSA".

Once you have obtained a Signature object, you must initialize it before you can create or verify a digital
signature. To initialize a digital signature for creation, call initSign() and specify the private key to be
used to create the signature. To initialize a signature for verification, call initVerify() and specify the
public key of the signer. Once the Signature object has been initialized, call update() one or more times
to specify the bytes to be signed or verified. Finally, to create a digital signature, call sign(), passing a byte
array into which the signature is stored. Or, pass the bytes of the digital signature to verify(), which returns
true if the signature is valid or false otherwise. After calling either sign() or verify(), the
Signature object is reset internally and can be used to create or verify another signature.

public abstract class Signature extends SignatureSpi {

// Protected Constructors

protected Signature (String algorithm);

// Protected Constants

protected static final int SIGN ; =2

protected static final int UNINITIALIZED ; =0

protected static final int VERIFY ; =3

// Public Class Methods

public static Signature getInstance (String algorithm) throws NoSuchAlgorithmException;

public static Signature getInstance (String algorithm, String provider) throws
NoSuchAlgorithmExceptionNoSuchProviderException;

// Public Instance Methods

public final String getAlgorithm ();

1.2 public final Provider getProvider ();

public final void initSign (PrivateKey privateKey) throws InvalidKeyException;

1.2
public final void initSign (PrivateKey privateKey, SecureRandom random) throws
InvalidKeyException;

public final void initVerify (PublicKey publicKey) throws InvalidKeyException;

1.3 public final void initVerify (java.security.cert.Certificate certificate) throws InvalidKeyException;

file:///C|/orielly/jnut/ch17_01.htm (48 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

1.2
public final void setParameter (java.security.spec.AlgorithmParameterSpec params) throws
InvalidAlgorithmParameterException;

public final byte[] sign () throws SignatureException;

1.2 public final int sign (byte[] outbuf, int offset, int len) throws SignatureException;

public final void update (byte b) throws SignatureException;

public final void update (byte[] data) throws SignatureException;

public final void update (byte[] data, int off, int len) throws SignatureException;

public final boolean verify (byte[] signature) throws SignatureException;

// Public Methods Overriding SignatureSpi

public Object clone () throws CloneNotSupportedException;

// Public Methods Overriding Object

public String toString ();

// Protected Instance Fields

protected int state ;

// Deprecated Public Methods

public final Object getParameter (String param) throws InvalidParameterException;

public final void setParameter (String param, Object value) throws InvalidParameterException;

}

Hierarchy: Object-->SignatureSpi-->Signature

Passed To: SignedObject.{SignedObject(), verify()}

Returned By: Signature.getInstance()

SignatureException Java 1.1

java.security serializable checked PJ1.1(opt)

Signals a problem while creating or verifying a digital signature.

public class SignatureException extends GeneralSecurityException {

// Public Constructors

public SignatureException ();

public SignatureException (String msg);

}

file:///C|/orielly/jnut/ch17_01.htm (49 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

Hierarchy: Object-->Throwable(Serializable)-->Exception--
>GeneralSecurityException-->SignatureException

Thrown By: Too many methods to list.

SignatureSpi Java 1.2

java.security

This abstract class defines the service-provider interface for Signature. A security provider must
implement a concrete subclass of this class for each digital signature algorithm it supports. Applications never
need to use or subclass this class.

public abstract class SignatureSpi {

// Public Constructors

public SignatureSpi ();

// Public Methods Overriding Object

public Object clone () throws CloneNotSupportedException;

// Protected Instance Methods

protected abstract void engineInitSign (PrivateKey privateKey) throws InvalidKeyException;

protected void engineInitSign (PrivateKey privateKey, SecureRandom random) throws
InvalidKeyException;

protected abstract void engineInitVerify (PublicKey publicKey) throws InvalidKeyException;

protected void engineSetParameter (java.security.spec.AlgorithmParameterSpec params) throws
InvalidAlgorithmParameterException;

protected abstract byte[] engineSign () throws SignatureException;

protected int engineSign (byte[] outbuf, int offset, int len) throws SignatureException;

protected abstract void engineUpdate (byte b) throws SignatureException;

protected abstract void engineUpdate (byte[] b, int off, int len) throws SignatureException;

protected abstract boolean engineVerify (byte[] sigBytes) throws SignatureException;

// Protected Instance Fields

protected SecureRandom appRandom ;

// Deprecated Protected Methods

protected abstract Object engineGetParameter (String param) throws InvalidParameterException;

#
protected abstract void engineSetParameter (String param, Object value) throws
InvalidParameterException;

}

file:///C|/orielly/jnut/ch17_01.htm (50 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

Subclasses: Signature

SignedObject Java 1.2

java.security serializable

This class applies a digital signature to any serializable Java object. Create a SignedObject by specifying
the object to be signed, the PrivateKey to use for the signature, and the Signature object to create the
signature. The SignedObject() constructor serializes the specified object into an array of bytes and
creates a digital signature for those bytes.

After creation, a SignedObject is itself typically serialized for storage or transmission to another Java
thread or process. Once the SignedObject is reconstituted, the integrity of the object it contains can be
verified by calling verify() and supplying the PublicKey of the signer and a Signature that performs
the verification. Whether or not verification is performed or is successful, getObject() can be called to
deserialize and return the wrapped object.

public final class SignedObject implements Serializable {

// Public Constructors

public SignedObject (Serializable object, PrivateKey signingKey, Signature signingEngine) throws
java.io.IOExceptionInvalidKeyExceptionSignatureException;

// Public Instance Methods

public String getAlgorithm ();

public Object getObject () throws java.io.IOExceptionClassNotFoundException;

public byte[] getSignature ();

public boolean verify (PublicKey verificationKey, Signature verificationEngine) throws
InvalidKeyExceptionSignatureException;

}

Hierarchy: Object-->SignedObject(Serializable)

Signer Java 1.1; Deprecated in Java 1.2

java.security serializable PJ1.1(opt)

This deprecated class was used in Java 1.1 to represent an entity or Principal that has an associated
PrivateKey that enables it to create digital signatures. As of Java 1.2, this class and the related Identity

file:///C|/orielly/jnut/ch17_01.htm (51 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

and IdentityScope classes have been replaced by KeyStore and
java.security.cert.Certificate. See also Identity.

public abstract class Signer extends Identity {

// Public Constructors

public Signer (String name);

public Signer (String name, IdentityScope scope) throws KeyManagementException;

// Protected Constructors

protected Signer ();

// Public Instance Methods

public PrivateKey getPrivateKey ();

public final void setKeyPair (KeyPair pair) throws InvalidParameterExceptionKeyException;

// Public Methods Overriding Identity

public String toString ();

}

Hierarchy: Object-->Identity(java.security.Principal,Serializable)-->Signer

UnrecoverableKeyException Java 1.2

java.security serializable checked

This exception is thrown if a Key cannot be retrieved from a KeyStore. This commonly occurs when an
incorrect password is used.

public class UnrecoverableKeyException extends GeneralSecurityException {

// Public Constructors

public UnrecoverableKeyException ();

public UnrecoverableKeyException (String msg);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception--
>GeneralSecurityException-->UnrecoverableKeyException

Thrown By: KeyStore.getKey(), KeyStoreSpi.engineGetKey()

UnresolvedPermission Java 1.2

file:///C|/orielly/jnut/ch17_01.htm (52 of 53) [2/5/2003 7:51:11 PM]

The java.security Package (Java in a Nutshell)

java.security serializable permission

This class is used internally to provide a mechanism for delayed resolution of permissions. An
UnresolvedPermission holds a textual representation of a Permission object that can later be used to
create the actual Permission object. Applications never need to use this class.

public final class UnresolvedPermission extends java.security.Permission implements Serializable {

// Public Constructors

public UnresolvedPermission (String type, String name, String actions,
java.security.cert.Certificate[] certs);

// Public Methods Overriding Permission

public boolean equals (Object obj);

public String getActions ();

public int hashCode ();

public boolean implies (java.security.Permission p); constant

public PermissionCollection newPermissionCollection ();

public String toString ();

}

Hierarchy: Object-->java.security.Permission(Guard,Serializable)--
>UnresolvedPermission(Serializable)

16.1. The java.net Package 18. The java.security.acl
Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch17_01.htm (53 of 53) [2/5/2003 7:51:11 PM]

file:///C|/orielly/jnut/copyrght.htm

The java.security.acl Package (Java in a Nutshell)

Part 2: API Quick Reference

Chapter 18. The java.security.acl
Package
The java.security.acl package defines, but does not implement, an incomplete framework for
working with access control lists (ACLs). This package was added in Java 1.1, but has been superseded
in Java 1.2 by the access-control mechanisms of the java.security package. In particular, see the
Permission and Policy classes of that package. The use of this package is not recommended.
Figure 18-1 shows the class hierarchy of this package.

Figure 18-1. The java.security.acl package

Acl Java 1.1

java.security.acl

This interface represents an access control list, or ACL. An ACL is a list of AclEntry objects; most of

file:///C|/orielly/jnut/ch18_01.htm (1 of 6) [2/5/2003 7:51:15 PM]

The java.security.acl Package (Java in a Nutshell)

the methods of this class manage that list. The exception is the checkPermission() method that
tests whether this ACL grants a specified java.security.acl.Permission to a specified
java.security.Principal. Note that Acl extends Owner. The methods of the Owner interface
maintain a list of ACL owners. Only owners are allowed to modify an ACL.

public interface Acl extends Owner {

// Public Instance Methods

public abstract boolean addEntry (java.security.Principal caller, AclEntry entry) throws
NotOwnerException;

public abstract boolean checkPermission (java.security.Principal principal,
java.security.acl.Permission permission);

public abstract java.util.Enumeration entries ();

public abstract String getName ();

public abstract java.util.Enumeration getPermissions (java.security.Principal user);

public abstract boolean removeEntry (java.security.Principal caller, AclEntry entry) throws
NotOwnerException;

public abstract void setName (java.security.Principal caller, String name) throws
NotOwnerException;

public abstract String toString ();

}

Hierarchy: (Acl(Owner))

AclEntry Java 1.1

java.security.acl cloneable

This interface defines a single entry of an ACL. Each AclEntry represents a set of
java.security.acl.Permission objects either granted or denied to a given
java.security.Principal. By default, an AclEntry represents permissions granted to the
principal. Call setNegativePermissions() if you want the AclEntry to represent a set of
permissions to be denied.

public interface AclEntry extends Cloneable {

// Public Instance Methods

public abstract boolean addPermission (java.security.acl.Permission permission);

file:///C|/orielly/jnut/ch18_01.htm (2 of 6) [2/5/2003 7:51:15 PM]

The java.security.acl Package (Java in a Nutshell)

public abstract boolean checkPermission (java.security.acl.Permission permission);

public abstract Object clone ();

public abstract java.security.Principal getPrincipal ();

public abstract boolean isNegative ();

public abstract java.util.Enumeration permissions ();

public abstract boolean removePermission (java.security.acl.Permission permission);

public abstract void setNegativePermissions ();

public abstract boolean setPrincipal (java.security.Principal user);

public abstract String toString ();

}

Hierarchy: (AclEntry(Cloneable))

Passed To: Acl.{addEntry(), removeEntry()}

AclNotFoundException Java 1.1

java.security.acl serializable checked

Signals that the specified Acl could not be found. Note that none of the interfaces in
java.security.acl throw this exception; it is provided for the benefit of Acl implementations.

public class AclNotFoundException extends Exception {

// Public Constructors

public AclNotFoundException ();

}

Hierarchy: Object-->Throwable(Serializable)-->Exception--
>AclNotFoundException

Group Java 1.1

java.security.acl

file:///C|/orielly/jnut/ch18_01.htm (3 of 6) [2/5/2003 7:51:15 PM]

The java.security.acl Package (Java in a Nutshell)

This interface represents a set, or group, of java.security.Principal objects. The methods of
the interface serve to manage the membership of the group. Note that Group extends the Principal
interface, and, therefore, you can use a Group object wherever you would use a Principal object in
this package.

public interface Group extends java.security.Principal {

// Public Instance Methods

public abstract boolean addMember (java.security.Principal user);

public abstract boolean isMember (java.security.Principal member);

public abstract java.util.Enumeration members ();

public abstract boolean removeMember (java.security.Principal user);

}

Hierarchy: (Group(java.security.Principal))

LastOwnerException Java 1.1

java.security.acl serializable checked

Signals that an Acl or Owner has only one Principal remaining in its ownership list and that this
single owner cannot be removed.

public class LastOwnerException extends Exception {

// Public Constructors

public LastOwnerException ();

}

Hierarchy: Object-->Throwable(Serializable)-->Exception--
>LastOwnerException

Thrown By: Owner.deleteOwner()

NotOwnerException Java 1.1

java.security.acl serializable checked

file:///C|/orielly/jnut/ch18_01.htm (4 of 6) [2/5/2003 7:51:15 PM]

The java.security.acl Package (Java in a Nutshell)

Thrown by various methods of Acl and Owner when they are called by a Principal that is not an
owner.

public class NotOwnerException extends Exception {

// Public Constructors

public NotOwnerException ();

}

Hierarchy: Object-->Throwable(Serializable)-->Exception--
>NotOwnerException

Thrown By: Acl.{addEntry(), removeEntry(), setName()},
Owner.{addOwner(), deleteOwner()}

Owner Java 1.1

java.security.acl

This interface represents the owner or owners of an ACL. The interface defines methods for managing
and checking membership in the list of owners.

public interface Owner {

// Public Instance Methods

public abstract boolean addOwner (java.security.Principal caller, java.security.Principal owner)
throws NotOwnerException;

public abstract boolean deleteOwner (java.security.Principal caller, java.security.Principal owner)
throws NotOwnerExceptionLastOwnerException;

public abstract boolean isOwner (java.security.Principal owner);

}

Implementations: Acl

Permission Java 1.1

file:///C|/orielly/jnut/ch18_01.htm (5 of 6) [2/5/2003 7:51:15 PM]

The java.security.acl Package (Java in a Nutshell)

java.security.acl

This interface represents a permission. The meaning of the permission is entirely up to the
implementation. Do not confuse this interface with the newer java.security.Permission class.
Also note that this interface does not have the implies() method of
java.security.Permission and is therefore significantly less versatile.

public interface Permission {

// Public Instance Methods

public abstract boolean equals (Object another);

public abstract String toString ();

}

Passed To: Acl.checkPermission(), AclEntry.{addPermission(),
checkPermission(), removePermission()}

17.1. The java.security
Package

19. The java.security.cert
Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch18_01.htm (6 of 6) [2/5/2003 7:51:15 PM]

file:///C|/orielly/jnut/copyrght.htm

The java.security.cert Package (Java in a Nutshell)

Part 2: API Quick Reference

Chapter 19. The java.security.cert Package
The java.security.cert package contains classes for working with identity certificates and certificate revocation lists (CRLs). It defines generic Certificate and CRL classes and
X509Certificate and X509CRL classes that provide full support for standard X.509 certificates and CRLs. The CertificateFactory class serves as a certificate parser, providing the
ability to convert a stream of bytes into a Certificate or CRL object. This package replaces the deprecated java.security.Certificate interface. Figure 19-1 shows the class
hierarchy of this package.

Figure 19-1. The java.security.cert package

Certificate Java 1.2

java.security.cert serializable

This abstract class represents an identity certificate. A certificate is an object that contains the name of an entity and a public key for that entity. Certificates are issued by, and bear the digital
signature of,x a (presumably trusted) third party, typically a certificate authority (CA). By issuing and signing the certificate, the CA is certifying that, based on their research, the entity named on
the certificate really is who they say they are and that the public key in the certificate really does belong to that entity.

file:///C|/orielly/jnut/ch19_01.htm (1 of 11) [2/5/2003 7:51:20 PM]

The java.security.cert Package (Java in a Nutshell)

Use a CertificateFactory to parse a stream of bytes into a Certificate object; getEncoded() reverses this process. Use verify() to verify the digital signature of the entity that
issued the certificate. If the signature cannot be verified, the certificate should not be trusted. Call getPublicKey() to obtain the java.security.PublicKey of the subject of the
certificate. Note that this class does not define a method for obtaining the Principal that is associated with the PublicKey. That functionality is dependent on the type of the certificate. See
X509Certificate.getSubjectDN(), for example.

Do not confuse this class with the java.security.Certificate interface that was defined in Java 1.1 and has been deprecated in Java 1.2.

public abstract class Certificate implements Serializable {

// Protected Constructors

protected Certificate (String type);

// Inner Classes

1.3 ;

// Public Instance Methods

public abstract byte[] getEncoded () throws CertificateEncodingException;

public abstract java.security.PublicKey getPublicKey ();

public final String getType ();

public abstract void verify (java.security.PublicKey key) throws
CertificateExceptionjava.security.NoSuchAlgorithmExceptionjava.security.InvalidKeyExceptionjava.security.NoSuchProviderExceptionjava.security.SignatureException;

public abstract void verify (java.security.PublicKey key, String sigProvider) throws
CertificateExceptionjava.security.NoSuchAlgorithmExceptionjava.security.InvalidKeyExceptionjava.security.NoSuchProviderExceptionjava.security.SignatureException;

// Public Methods Overriding Object

public boolean equals (Object other);

public int hashCode ();

public abstract String toString ();

// Protected Instance Methods

1.3 protected Object writeReplace () throws java.io.ObjectStreamException;

}

Hierarchy: Object-->java.security.cert.Certificate(Serializable)

Subclasses: X509Certificate

Passed To: java.security.CodeSource.CodeSource(), java.security.KeyStore.{getCertificateAlias(), setCertificateEntry(),
setKeyEntry()}, java.security.KeyStoreSpi.{engineGetCertificateAlias(), engineSetCertificateEntry(), engineSetKeyEntry()},
java.security.Signature.initVerify(), java.security.UnresolvedPermission.UnresolvedPermission(), CRL.isRevoked()

Returned By: java.net.JarURLConnection.getCertificates(), java.security.CodeSource.getCertificates(),
java.security.KeyStore.{getCertificate(), getCertificateChain()}, java.security.KeyStoreSpi.{engineGetCertificate(),
engineGetCertificateChain()}, CertificateFactory.generateCertificate(), CertificateFactorySpi.engineGenerateCertificate(),
java.util.jar.JarEntry.getCertificates()

Certificate.CertificateRep Java 1.3 Beta

file:///C|/orielly/jnut/ch19_01.htm (2 of 11) [2/5/2003 7:51:20 PM]

The java.security.cert Package (Java in a Nutshell)

java.security.cert serializable

This protected inner class provides an alternate representation of a certificate that can be used for serialization purposes by the writeReplace() method of some Certificate
implementations. Applications do not typically need this class.

protected static class Certificate.CertificateRep implements Serializable {

// Protected Constructors

protected CertificateRep (String type, byte[] data);

// Protected Instance Methods

protected Object readResolve () throws java.io.ObjectStreamException;

}

CertificateEncodingException Java 1.2

java.security.cert serializable checked

Signals an error while attempting to encode a certificate.

public class CertificateEncodingException extends CertificateException {

// Public Constructors

public CertificateEncodingException ();

public CertificateEncodingException (String message);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->java.security.GeneralSecurityException-->CertificateException--
>CertificateEncodingException

Thrown By: java.security.cert.Certificate.getEncoded(), X509Certificate.getTBSCertificate()

CertificateException Java 1.2

java.security.cert serializable checked

This class is the superclass of several more specific exception types that may be thrown when working with certificates.

public class CertificateException extends java.security.GeneralSecurityException {

// Public Constructors

public CertificateException ();

public CertificateException (String msg);

}

file:///C|/orielly/jnut/ch19_01.htm (3 of 11) [2/5/2003 7:51:20 PM]

The java.security.cert Package (Java in a Nutshell)

Hierarchy: Object-->Throwable(Serializable)-->Exception-->java.security.GeneralSecurityException-->CertificateException

Subclasses: CertificateEncodingException, CertificateExpiredException, CertificateNotYetValidException, CertificateParsingException

Thrown By: java.security.KeyStore.{load(), store()}, java.security.KeyStoreSpi.{engineLoad(), engineStore()},
java.security.cert.Certificate.verify(), CertificateFactory.{generateCertificate(), generateCertificates(), getInstance()},
CertificateFactorySpi.{engineGenerateCertificate(), engineGenerateCertificates()}

CertificateExpiredException Java 1.2

java.security.cert serializable checked

Signals that a certificate has expired or will have expired by a specified date.

public class CertificateExpiredException extends CertificateException {

// Public Constructors

public CertificateExpiredException ();

public CertificateExpiredException (String message);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->java.security.GeneralSecurityException-->CertificateException--
>CertificateExpiredException

Thrown By: X509Certificate.checkValidity()

CertificateFactory Java 1.2

java.security.cert

This class defines methods for parsing CRLs from byte streams. Obtain a CertificateFactory by calling one of the static getInstance() factory methods and specifying the type of
certificate or CRL to be parsed, and, optionally, the desired service provider to perform the parsing. The default "SUN" provider defines only a single "X.509" certificate type. Once you have
obtained a CertificateFactory for the desired type of certificate, call generateCertificate() or generateCRL() to parse a single certificate or CRL from a stream. Or call
generateCertificates() or generateCRLs() to parse a Collection of certificates or CRLs from the stream. These CertificateFactory methods read to the end of the
specified stream. If the stream supports mark() and reset(), however, the CertificateFactory resets the stream to the position after the end of the last certificate or CRL read.

If you specified a certificate type of "X.509", the Certificate and CRL objects returned by a CertificateFactory can be cast safely to X509Certificate and X509CRL. The X.509
certificate factory can parse certificates encoded in binary or printable hexadecimal form. If the certificate is in hexadecimal form, it must begin with the string "-----BEGIN CERTIFICATE-----"
and end with the string "-----END CERTIFICATE-----".

public class CertificateFactory {

// Protected Constructors

file:///C|/orielly/jnut/ch19_01.htm (4 of 11) [2/5/2003 7:51:20 PM]

The java.security.cert Package (Java in a Nutshell)

protected CertificateFactory (CertificateFactorySpi certFacSpi, java.security.Provider provider, String type);

// Public Class Methods

public static final CertificateFactory getInstance (String type) throws CertificateException;

public static final CertificateFactory getInstance (String type, String provider) throws CertificateExceptionjava.security.NoSuchProviderException;

// Public Instance Methods

public final java.security.cert.Certificate generateCertificate (java.io.InputStream inStream) throws CertificateException;

public final java.util.Collection generateCertificates (java.io.InputStream inStream) throws CertificateException;

public final CRL generateCRL (java.io.InputStream inStream) throws CRLException;

public final java.util.Collection generateCRLs (java.io.InputStream inStream) throws CRLException;

public final java.security.Provider getProvider ();

public final String getType ();

}

Returned By: CertificateFactory.getInstance()

CertificateFactorySpi Java 1.2

java.security.cert

This abstract class defines the service provider interface, or SPI, for the CertificateFactory class. A security provider must implement this class for each type of certificate it wishes to
support. Applications never need to use or subclass this class.

public abstract class CertificateFactorySpi {

// Public Constructors

public CertificateFactorySpi ();

// Public Instance Methods

public abstract java.security.cert.Certificate engineGenerateCertificate (java.io.InputStream inStream) throws CertificateException;

public abstract java.util.Collection engineGenerateCertificates (java.io.InputStream inStream) throws CertificateException;

public abstract CRL engineGenerateCRL (java.io.InputStream inStream) throws CRLException;

public abstract java.util.Collection engineGenerateCRLs (java.io.InputStream inStream) throws CRLException;

}

Passed To: CertificateFactory.CertificateFactory()

CertificateNotYetValidException Java 1.2

java.security.cert serializable checked

Signals that a certificate is not yet valid or will not yet be valid on a specified date.

file:///C|/orielly/jnut/ch19_01.htm (5 of 11) [2/5/2003 7:51:20 PM]

The java.security.cert Package (Java in a Nutshell)

public class CertificateNotYetValidException extends CertificateException {

// Public Constructors

public CertificateNotYetValidException ();

public CertificateNotYetValidException (String message);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->java.security.GeneralSecurityException-->CertificateException--
>CertificateNotYetValidException

Thrown By: X509Certificate.checkValidity()

CertificateParsingException Java 1.2

java.security.cert serializable checked

Signals an error or other problem while parsing a certificate.

public class CertificateParsingException extends CertificateException {

// Public Constructors

public CertificateParsingException ();

public CertificateParsingException (String message);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->java.security.GeneralSecurityException-->CertificateException--
>CertificateParsingException

CRL Java 1.2

java.security.cert

This abstract class represents a certificaterevocation list (CRL). A CRL is an object issued by a certificate authority (or other certificate signer) that lists certificates that have been revoked,
meaning that they are now invalid and should be rejected. Use a CertificateFactory to parse a CRL from a byte stream. Use the isRevoked() method to test whether a specified
Certificate is listed on the CRL. Note that type-specific CRL subclasses, such as X509CRL, may provide access to substantially more information about the revocation list.

public abstract class CRL {

// Protected Constructors

protected CRL (String type);

// Public Instance Methods

public final String getType ();

public abstract boolean isRevoked (java.security.cert.Certificate cert);

file:///C|/orielly/jnut/ch19_01.htm (6 of 11) [2/5/2003 7:51:20 PM]

The java.security.cert Package (Java in a Nutshell)

// Public Methods Overriding Object

public abstract String toString ();

}

Subclasses: X509CRL

Returned By: CertificateFactory.generateCRL(), CertificateFactorySpi.engineGenerateCRL()

CRLException Java 1.2

java.security.cert serializable checked

Signals an error or other problem while working with a CRL.

public class CRLException extends java.security.GeneralSecurityException {

// Public Constructors

public CRLException ();

public CRLException (String message);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->java.security.GeneralSecurityException-->CRLException

Thrown By: CertificateFactory.{generateCRL(), generateCRLs()}, CertificateFactorySpi.{engineGenerateCRL(), engineGenerateCRLs()},
X509CRL.{getEncoded(), getTBSCertList(), verify()}, X509CRLEntry.getEncoded()

X509Certificate Java 1.2

java.security.cert serializable

This class represents an X.509 certificate. Its various methods provide complete access to the contents of the certificate. For example, verify() checks the digital signature of the certificate to
verify that it is not a forged certificate, while checkValidity() checks whether the certificate has expired or has not yet gone into effect. getSubjectDN() returns the Principal to
whom this certificate applies, and getPublicKey() returns the PublicKey for that Principal. Note that verify() and getPublicKey() are inherited from Certificate.

Obtain an X509Certificate object by creating a CertificateFactory for certificate type "X.509" and then using generateCertificate() to parse an X.509 certificate from a
stream of bytes. Finally, cast the Certificate returned by this method to an X509Certificate.

public abstract class X509Certificate extends java.security.cert.Certificate implements X509Extension {

// Protected Constructors

protected X509Certificate ();

// Property Accessor Methods (by property name)

public abstract int getBasicConstraints ();

file:///C|/orielly/jnut/ch19_01.htm (7 of 11) [2/5/2003 7:51:20 PM]

The java.security.cert Package (Java in a Nutshell)

public abstract java.util.Set getCriticalExtensionOIDs (); Implements:X509Extension

public abstract java.security.Principal getIssuerDN ();

public abstract boolean[] getIssuerUniqueID ();

public abstract boolean[] getKeyUsage ();

public abstract java.util.Set getNonCriticalExtensionOIDs (); Implements:X509Extension

public abstract java.util.Date getNotAfter ();

public abstract java.util.Date getNotBefore ();

public abstract java.math.BigInteger getSerialNumber ();

public abstract String getSigAlgName ();

public abstract String getSigAlgOID ();

public abstract byte[] getSigAlgParams ();

public abstract byte[] getSignature ();

public abstract java.security.Principal getSubjectDN ();

public abstract boolean[] getSubjectUniqueID ();

public abstract byte[] getTBSCertificate () throws CertificateEncodingException;

public abstract int getVersion ();

// Public Instance Methods

public abstract void checkValidity () throws CertificateExpiredExceptionCertificateNotYetValidException;

public abstract void checkValidity (java.util.Date date) throws CertificateExpiredExceptionCertificateNotYetValidException;

// Methods Implementing X509Extension

public abstract java.util.Set getCriticalExtensionOIDs ();

public abstract byte[] getExtensionValue (String oid);

public abstract java.util.Set getNonCriticalExtensionOIDs ();

public abstract boolean hasUnsupportedCriticalExtension ();

}

Hierarchy: Object-->java.security.cert.Certificate(Serializable)-->X509Certificate(X509Extension)

X509CRL Java 1.2

java.security.cert

This class represents an X.509 CRL, which consists primarily of a set of X509CRLEntry objects. The various methods of this class provide access to all the details of the CRL. Use verify()
to check the digital signature of the CRL to ensure that it does indeed originate from the the source it specifies. Use the inherited isRevoked() method to determine whether a given certificate
has been revoked. If you are curious about the revocation date for a revoked certificate, obtain the X509CRLEntry for that certificate by calling getRevokedCertificate(). Call
getThisUpdate() to obtain the date this CRL was issued. Use getNextUpdate() to find if the CRL has been superseded by a newer version.

Obtain an X509CRL object by creating a CertificateFactory for certificate type "X.509" and then using the generateCRL() to parse an X.509 CRL from a stream of bytes. Finally, cast
the CRL returned by this method to an X509CRL.

public abstract class X509CRL extends CRL implements X509Extension {

file:///C|/orielly/jnut/ch19_01.htm (8 of 11) [2/5/2003 7:51:20 PM]

The java.security.cert Package (Java in a Nutshell)

// Protected Constructors

protected X509CRL ();

// Property Accessor Methods (by property name)

public abstract java.util.Set getCriticalExtensionOIDs (); Implements:X509Extension

public abstract byte[] getEncoded () throws CRLException;

public abstract java.security.Principal getIssuerDN ();

public abstract java.util.Date getNextUpdate ();

public abstract java.util.Set getNonCriticalExtensionOIDs (); Implements:X509Extension

public abstract java.util.Set getRevokedCertificates ();

public abstract String getSigAlgName ();

public abstract String getSigAlgOID ();

public abstract byte[] getSigAlgParams ();

public abstract byte[] getSignature ();

public abstract byte[] getTBSCertList () throws CRLException;

public abstract java.util.Date getThisUpdate ();

public abstract int getVersion ();

// Public Instance Methods

public abstract X509CRLEntry getRevokedCertificate (java.math.BigInteger serialNumber);

public abstract void verify (java.security.PublicKey key) throws
CRLExceptionjava.security.NoSuchAlgorithmExceptionjava.security.InvalidKeyExceptionjava.security.NoSuchProviderExceptionjava.security.SignatureException;

public abstract void verify (java.security.PublicKey key, String sigProvider) throws
CRLExceptionjava.security.NoSuchAlgorithmExceptionjava.security.InvalidKeyExceptionjava.security.NoSuchProviderExceptionjava.security.SignatureException;

// Methods Implementing X509Extension

public abstract java.util.Set getCriticalExtensionOIDs ();

public abstract byte[] getExtensionValue (String oid);

public abstract java.util.Set getNonCriticalExtensionOIDs ();

public abstract boolean hasUnsupportedCriticalExtension ();

// Public Methods Overriding Object

public boolean equals (Object other);

public int hashCode ();

}

Hierarchy: Object-->CRL-->X509CRL(X509Extension)

X509CRLEntry Java 1.2

java.security.cert

This class represents a single entry in an X509CRL. It contains the serial number and revocation date for a revoked certificate.

file:///C|/orielly/jnut/ch19_01.htm (9 of 11) [2/5/2003 7:51:20 PM]

The java.security.cert Package (Java in a Nutshell)

public abstract class X509CRLEntry implements X509Extension {

// Public Constructors

public X509CRLEntry ();

// Property Accessor Methods (by property name)

public abstract java.util.Set getCriticalExtensionOIDs (); Implements:X509Extension

public abstract byte[] getEncoded () throws CRLException;

public abstract java.util.Set getNonCriticalExtensionOIDs (); Implements:X509Extension

public abstract java.util.Date getRevocationDate ();

public abstract java.math.BigInteger getSerialNumber ();

// Public Instance Methods

public abstract boolean hasExtensions ();

// Methods Implementing X509Extension

public abstract java.util.Set getCriticalExtensionOIDs ();

public abstract byte[] getExtensionValue (String oid);

public abstract java.util.Set getNonCriticalExtensionOIDs ();

public abstract boolean hasUnsupportedCriticalExtension ();

// Public Methods Overriding Object

public boolean equals (Object other);

public int hashCode ();

public abstract String toString ();

}

Hierarchy: Object-->X509CRLEntry(X509Extension)

Returned By: X509CRL.getRevokedCertificate()

X509Extension Java 1.2

java.security.cert

This interface defines methods for handling a set of extensions to X.509 certificates and CRLs. Each extension has a name, or OID (object identifier), that identifies the type of the extension. An
extension may be marked critical or noncritical. Noncritical extensions whose OIDs are not recognized can safely be ignored. However, if a critical exception is not recognized, the
Certificate or CRL should be rejected. Each extension in the set has a byte array of data as its value. The interpretation of these bytes depends on the OID of the extension, of course.

public interface X509Extension {

// Public Instance Methods

public abstract java.util.Set getCriticalExtensionOIDs ();

public abstract byte[] getExtensionValue (String oid);

public abstract java.util.Set getNonCriticalExtensionOIDs ();

public abstract boolean hasUnsupportedCriticalExtension ();

file:///C|/orielly/jnut/ch19_01.htm (10 of 11) [2/5/2003 7:51:20 PM]

The java.security.cert Package (Java in a Nutshell)

}

Implementations: X509Certificate, X509CRL, X509CRLEntry

18.1. The java.security.acl
Package

20. The
java.security.interfaces

Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch19_01.htm (11 of 11) [2/5/2003 7:51:20 PM]

file:///C|/orielly/jnut/copyrght.htm

The java.security.interfaces Package (Java in a Nutshell)

Part 2: API Quick Reference

Chapter 20. The java.security.interfaces Package
As its name implies, the java.security.interfaces package contains only interfaces. These interfaces define methods that provide
algorithm-specific information (such as key values and initialization parameter values) about DSA and RSA public and private keys. If you are
using the RSA algorithm, for example, and working with a java.security.PublicKey object, you can cast that PublicKey to an
RSAPublicKey object and use the RSA-specific methods defined by RSAPublicKey to query the key value directly. Figure 20-1 shows the
class hierarchy of this package.

Figure 20-1. The java.security.interfaces package

The java.security.interfaces package was introduced in Java 1.1. In Java 1.2, the java.security.spec package is the preferred
way for obtaining algorithm-specific information about keys and algorithm parameters. This package remains useful in Java 1.2, however, for
identifying the type of a given PublicKey or PrivateKey object.

The interfaces in this package are typically of interest only to programmers who are implementing a security provider or who want to implement
cryptographic algorithms themselves. Use of this package typically requires some familiarity with the mathematics underlying DSA and RSA
public-key cryptography.

DSAKey Java 1.1

java.security.interfaces PJ1.1(opt)

This interface defines a method that must be implemented by both public and private DSA keys.

public interface DSAKey {

// Public Instance Methods

public abstract DSAParams getParams ();

}

Implementations: DSAPrivateKey, DSAPublicKey

DSAKeyPairGenerator Java 1.1

file:///C|/orielly/jnut/ch20_01.htm (1 of 4) [2/5/2003 7:51:24 PM]

The java.security.interfaces Package (Java in a Nutshell)

java.security.interfaces PJ1.1(opt)

This interface defines algorithm-specific KeyPairGenerator initialization methods for DSA keys. To generate a pair of DSA keys, use the
static getInstance() factory method of java.security.KeyPairGenerator and specify "DSA" as the desired algorithm name. If you
wish to perform DSA-specific initialization, cast the returned KeyPairGenerator to a DSAKeyPairGenerator and call one of the
initialize() methods defined by this interface. Finally, generate the keys by calling generateKeyPair() on the KeyPairGenerator.

public interface DSAKeyPairGenerator {

// Public Instance Methods

public abstract void initialize (DSAParams params, java.security.SecureRandom random) throws java.security.InvalidParameterException;

public abstract void initialize (int modlen, boolean genParams, java.security.SecureRandom random) throws
java.security.InvalidParameterException;

}

DSAParams Java 1.1

java.security.interfaces PJ1.1(opt)

This interface defines methods for obtaining the DSA parameters g, p, and q. These methods are useful only if you wish to perform cryptographic
computation yourself. Using these methods requires a detailed understanding of the mathematics underlying DSA public-key cryptography.

public interface DSAParams {

// Public Instance Methods

public abstract java.math.BigInteger getG ();

public abstract java.math.BigInteger getP ();

public abstract java.math.BigInteger getQ ();

}

Implementations: java.security.spec.DSAParameterSpec

Passed To: DSAKeyPairGenerator.initialize()

Returned By: DSAKey.getParams()

DSAPrivateKey Java 1.1

java.security.interfaces serializable PJ1.1(opt)

This interface represents a DSA private key and provides direct access to the underlying key value. If you are working with a private key you know
is a DSA key, you can cast the PrivateKey to a DSAPrivateKey.

public interface DSAPrivateKey extends DSAKey, java.security.PrivateKey {

// Public Constants

1.2 public static final long serialVersionUID ; =7776497482533790279

// Public Instance Methods

public abstract java.math.BigInteger getX ();

}

Hierarchy: (DSAPrivateKey(DSAKey,java.security.PrivateKey(java.security.Key(Serializable))))

file:///C|/orielly/jnut/ch20_01.htm (2 of 4) [2/5/2003 7:51:24 PM]

The java.security.interfaces Package (Java in a Nutshell)

DSAPublicKey Java 1.1

java.security.interfaces serializable PJ1.1(opt)

This interface represents a DSA public key and provides direct access to the underlying key value. If you are working with a public key you know
is a DSA key, you can cast the PublicKey to a DSAPublicKey.

public interface DSAPublicKey extends DSAKey, java.security.PublicKey {

// Public Constants

1.2 public static final long serialVersionUID ; =1234526332779022332

// Public Instance Methods

public abstract java.math.BigInteger getY ();

}

Hierarchy: (DSAPublicKey(DSAKey,java.security.PublicKey(java.security.Key(Serializable))))

RSAKey Java 1.3 Beta

java.security.interfaces

This is a superinterface for RSAPublicKey and RSAPrivateKey; it defines a method shared by both classes. Prior to Java 1.3, the
getModulus() method was defined independently by RSAPublicKey and RSAPrivateKey.

public interface RSAKey {

// Public Instance Methods

public abstract java.math.BigInteger getModulus ();

}

Implementations: RSAPrivateKey, RSAPublicKey

RSAPrivateCrtKey Java 1.2

java.security.interfaces serializable

This interface extends RSAPrivateKey and provides a decomposition (based on the Chinese remainder theorem) of the private-key value into the
various pieces that comprise it. This interface is useful only if you plan to implement your own cryptographic algorithms. To use this interface, you
must have a detailed understanding of the mathematics underlying RSA public-key cryptography. Given a java.security.PrivateKey
object, you can use the instanceof operator to determine whether you can safely cast it to an RSAPrivateCrtKey.

public interface RSAPrivateCrtKey extends RSAPrivateKey {

// Property Accessor Methods (by property name)

public abstract java.math.BigInteger getCrtCoefficient ();

public abstract java.math.BigInteger getPrimeExponentP ();

public abstract java.math.BigInteger getPrimeExponentQ ();

public abstract java.math.BigInteger getPrimeP ();

public abstract java.math.BigInteger getPrimeQ ();

public abstract java.math.BigInteger getPublicExponent ();

}

file:///C|/orielly/jnut/ch20_01.htm (3 of 4) [2/5/2003 7:51:24 PM]

The java.security.interfaces Package (Java in a Nutshell)

Hierarchy:
(RSAPrivateCrtKey(RSAPrivateKey(java.security.PrivateKey(java.security.Key(Serializable)),RSAKey)))

RSAPrivateKey Java 1.2

java.security.interfaces serializable

This interface represents an RSA private key and provides direct access to the underlying key values. If you are working with a private key you
know is an RSA key, you can cast the PrivateKey to an RSAPrivateKey.

public interface RSAPrivateKey extends java.security.PrivateKey, RSAKey {

// Public Instance Methods

public abstract java.math.BigInteger getPrivateExponent ();

}

Hierarchy: (RSAPrivateKey(java.security.PrivateKey(java.security.Key(Serializable)),RSAKey))

Implementations: RSAPrivateCrtKey

RSAPublicKey Java 1.2

java.security.interfaces serializable

This interface represents an RSA public key and provides direct access to the underlying key values. If you are working with a public key you know
is an RSA key, you can cast the PublicKey to an RSAPublicKey.

public interface RSAPublicKey extends java.security.PublicKey, RSAKey {

// Public Instance Methods

public abstract java.math.BigInteger getPublicExponent ();

}

Hierarchy: (RSAPublicKey(java.security.PublicKey(java.security.Key(Serializable)),RSAKey))

19.1. The java.security.cert
Package

21. The java.security.spec
Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch20_01.htm (4 of 4) [2/5/2003 7:51:24 PM]

file:///C|/orielly/jnut/copyrght.htm

The java.security.spec Package (Java in a Nutshell)

Part 2: API Quick Reference

Chapter 21. The java.security.spec Package
The java.security.spec package contains classes that define transparent representations for DSA and
RSA public and private keys and for X.509 and PKCS#8 encodings of those keys. It also defines a transparent
representation for DSA algorithm parameters. The classes in this package are used in conjunction with
java.security.KeyFactory and java.security.AlgorithmParameters for converting opaque
Key and AlgorithmParameters objects to and from transparent representations. Figure 21-1 shows the
class hierarchy of this package.

Figure 21-1. The java.security.spec package

This package is not frequently used. To make use of it, you must be somewhat familiar with the mathematics that
underlies DSA and RSA public-key encryption and the encoding standards that specify how keys are encoded as
byte streams.

AlgorithmParameterSpec Java 1.2

file:///C|/orielly/jnut/ch21_01.htm (1 of 9) [2/5/2003 7:51:29 PM]

The java.security.spec Package (Java in a Nutshell)

java.security.spec

This interface defines no methods; it marks classes that define a transparent representation of cryptographic
parameters. You can use an AlgorithmParameterSpec object to initialize an opaque
java.security.AlgorithmParameters object.

public interface AlgorithmParameterSpec {

}

Implementations: DSAParameterSpec, RSAKeyGenParameterSpec,
javax.crypto.spec.DHGenParameterSpec, javax.crypto.spec.DHParameterSpec,
javax.crypto.spec.IvParameterSpec, javax.crypto.spec.PBEParameterSpec,
javax.crypto.spec.RC2ParameterSpec, javax.crypto.spec.RC5ParameterSpec

Passed To: Too many methods to list.

Returned By: java.security.AlgorithmParameters.getParameterSpec(),
java.security.AlgorithmParametersSpi.engineGetParameterSpec()

DSAParameterSpec Java 1.2

java.security.spec

This class represents algorithm parameters used with DSA public-key cryptography.

public class DSAParameterSpec implements AlgorithmParameterSpecjava.security.interfaces.DSAParams {

// Public Constructors

public DSAParameterSpec (java.math.BigInteger p, java.math.BigInteger q, java.math.BigInteger g);

// Methods Implementing DSAParams

public java.math.BigInteger getG ();

public java.math.BigInteger getP ();

public java.math.BigInteger getQ ();

}

Hierarchy: Object--
>DSAParameterSpec(AlgorithmParameterSpec,java.security.interfaces.DSAParams)

file:///C|/orielly/jnut/ch21_01.htm (2 of 9) [2/5/2003 7:51:29 PM]

The java.security.spec Package (Java in a Nutshell)

DSAPrivateKeySpec Java 1.2

java.security.spec

This class is a transparent representation of a DSA private key.

public class DSAPrivateKeySpec implements KeySpec {

// Public Constructors

public DSAPrivateKeySpec (java.math.BigInteger x, java.math.BigInteger p, java.math.BigInteger q,
java.math.BigInteger g);

// Public Instance Methods

public java.math.BigInteger getG ();

public java.math.BigInteger getP ();

public java.math.BigInteger getQ ();

public java.math.BigInteger getX ();

}

Hierarchy: Object-->DSAPrivateKeySpec(KeySpec)

DSAPublicKeySpec Java 1.2

java.security.spec

This class is a transparent representation of a DSA public key.

public class DSAPublicKeySpec implements KeySpec {

// Public Constructors

public DSAPublicKeySpec (java.math.BigInteger y, java.math.BigInteger p, java.math.BigInteger q,
java.math.BigInteger g);

// Public Instance Methods

public java.math.BigInteger getG ();

public java.math.BigInteger getP ();

public java.math.BigInteger getQ ();

public java.math.BigInteger getY ();

}

Hierarchy: Object-->DSAPublicKeySpec(KeySpec)

file:///C|/orielly/jnut/ch21_01.htm (3 of 9) [2/5/2003 7:51:29 PM]

The java.security.spec Package (Java in a Nutshell)

EncodedKeySpec Java 1.2

java.security.spec

This abstract class represents a public or private key in an encoded format. It serves as the superclass for
encoding-specific classes.

public abstract class EncodedKeySpec implements KeySpec {

// Public Constructors

public EncodedKeySpec (byte[] encodedKey);

// Public Instance Methods

public byte[] getEncoded ();

public abstract String getFormat ();

}

Hierarchy: Object-->EncodedKeySpec(KeySpec)

Subclasses: PKCS8EncodedKeySpec, X509EncodedKeySpec

InvalidKeySpecException Java 1.2

java.security.spec serializable checked

Signals a problem with a KeySpec.

public class InvalidKeySpecException extends java.security.GeneralSecurityException {

// Public Constructors

public InvalidKeySpecException ();

public InvalidKeySpecException (String msg);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception--
>java.security.GeneralSecurityException-->InvalidKeySpecException

Thrown By: java.security.KeyFactory.{generatePrivate(), generatePublic(),
getKeySpec()}, java.security.KeyFactorySpi.{engineGeneratePrivate(),

file:///C|/orielly/jnut/ch21_01.htm (4 of 9) [2/5/2003 7:51:29 PM]

The java.security.spec Package (Java in a Nutshell)

engineGeneratePublic(), engineGetKeySpec()},
javax.crypto.SecretKeyFactory.{generateSecret(), getKeySpec()},
javax.crypto.SecretKeyFactorySpi.{engineGenerateSecret(),
engineGetKeySpec()}

InvalidParameterSpecException Java 1.2

java.security.spec serializable checked

Signals a problem with an AlgorithmParameterSpec.

public class InvalidParameterSpecException extends java.security.GeneralSecurityException {

// Public Constructors

public InvalidParameterSpecException ();

public InvalidParameterSpecException (String msg);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception--
>java.security.GeneralSecurityException-->InvalidParameterSpecException

Thrown By: java.security.AlgorithmParameters.{getParameterSpec(), init()},
java.security.AlgorithmParametersSpi.{engineGetParameterSpec(),
engineInit()}

KeySpec Java 1.2

java.security.spec

This interface defines no methods; it marks classes that define a transparent representation of a cryptographic
key. Use a java.security.KeyFactory to convert a KeySpec to and from an opaque
java.security.Key.

public interface KeySpec {

}

Implementations: DSAPrivateKeySpec, DSAPublicKeySpec, EncodedKeySpec,
RSAPrivateKeySpec, RSAPublicKeySpec, javax.crypto.spec.DESedeKeySpec,
javax.crypto.spec.DESKeySpec, javax.crypto.spec.DHPrivateKeySpec,
javax.crypto.spec.DHPublicKeySpec, javax.crypto.spec.PBEKeySpec,

file:///C|/orielly/jnut/ch21_01.htm (5 of 9) [2/5/2003 7:51:29 PM]

The java.security.spec Package (Java in a Nutshell)

javax.crypto.spec.SecretKeySpec

Passed To: java.security.KeyFactory.{generatePrivate(), generatePublic()},
java.security.KeyFactorySpi.{engineGeneratePrivate(),
engineGeneratePublic()}, javax.crypto.SecretKeyFactory.generateSecret(),
javax.crypto.SecretKeyFactorySpi.engineGenerateSecret()

Returned By: java.security.KeyFactory.getKeySpec(),
java.security.KeyFactorySpi.engineGetKeySpec(),
javax.crypto.SecretKeyFactory.getKeySpec(),
javax.crypto.SecretKeyFactorySpi.engineGetKeySpec()

PKCS8EncodedKeySpec Java 1.2

java.security.spec

This class represents a private key, encoded according to the PKCS#8 standard.

public class PKCS8EncodedKeySpec extends EncodedKeySpec {

// Public Constructors

public PKCS8EncodedKeySpec (byte[] encodedKey);

// Public Methods Overriding EncodedKeySpec

public byte[] getEncoded ();

public final String getFormat ();

}

Hierarchy: Object-->EncodedKeySpec(KeySpec)-->PKCS8EncodedKeySpec

RSAKeyGenParameterSpec Java 1.3 Beta

java.security.spec

This class represents parameters that generate public/private key pairs for RSA cryptography.

public class RSAKeyGenParameterSpec implements AlgorithmParameterSpec {

// Public Constructors

public RSAKeyGenParameterSpec (int keysize, java.math.BigInteger publicExponent);

// Public Constants

file:///C|/orielly/jnut/ch21_01.htm (6 of 9) [2/5/2003 7:51:29 PM]

The java.security.spec Package (Java in a Nutshell)

public static final java.math.BigInteger F0 ;

public static final java.math.BigInteger F4 ;

// Public Instance Methods

public int getKeysize ();

public java.math.BigInteger getPublicExponent ();

}

Hierarchy: Object-->RSAKeyGenParameterSpec(AlgorithmParameterSpec)

RSAPrivateCrtKeySpec Java 1.2

java.security.spec

This class is a transparent representation of an RSA private key including, for convenience, the Chinese
remainder theorem values associated with the key.

public class RSAPrivateCrtKeySpec extends RSAPrivateKeySpec {

// Public Constructors

public RSAPrivateCrtKeySpec (java.math.BigInteger modulus, java.math.BigInteger publicExponent,
java.math.BigInteger privateExponent, java.math.BigInteger primeP, java.math.BigInteger primeQ,
java.math.BigInteger primeExponentP, java.math.BigInteger primeExponentQ, java.math.BigInteger
crtCoefficient);

// Property Accessor Methods (by property name)

public java.math.BigInteger getCrtCoefficient ();

public java.math.BigInteger getPrimeExponentP ();

public java.math.BigInteger getPrimeExponentQ ();

public java.math.BigInteger getPrimeP ();

public java.math.BigInteger getPrimeQ ();

public java.math.BigInteger getPublicExponent ();

}

Hierarchy: Object-->RSAPrivateKeySpec(KeySpec)-->RSAPrivateCrtKeySpec

RSAPrivateKeySpec Java 1.2

java.security.spec

file:///C|/orielly/jnut/ch21_01.htm (7 of 9) [2/5/2003 7:51:29 PM]

The java.security.spec Package (Java in a Nutshell)

This class is a transparent representation of an RSA private key.

public class RSAPrivateKeySpec implements KeySpec {

// Public Constructors

public RSAPrivateKeySpec (java.math.BigInteger modulus, java.math.BigInteger privateExponent);

// Public Instance Methods

public java.math.BigInteger getModulus ();

public java.math.BigInteger getPrivateExponent ();

}

Hierarchy: Object-->RSAPrivateKeySpec(KeySpec)

Subclasses: RSAPrivateCrtKeySpec

RSAPublicKeySpec Java 1.2

java.security.spec

This class is a transparent representation of an RSA public key.

public class RSAPublicKeySpec implements KeySpec {

// Public Constructors

public RSAPublicKeySpec (java.math.BigInteger modulus, java.math.BigInteger publicExponent);

// Public Instance Methods

public java.math.BigInteger getModulus ();

public java.math.BigInteger getPublicExponent ();

}

Hierarchy: Object-->RSAPublicKeySpec(KeySpec)

X509EncodedKeySpec Java 1.2

java.security.spec

This class represents a public or private key encoded according to the X.509 standard.

public class X509EncodedKeySpec extends EncodedKeySpec {

file:///C|/orielly/jnut/ch21_01.htm (8 of 9) [2/5/2003 7:51:29 PM]

The java.security.spec Package (Java in a Nutshell)

// Public Constructors

public X509EncodedKeySpec (byte[] encodedKey);

// Public Methods Overriding EncodedKeySpec

public byte[] getEncoded ();

public final String getFormat ();

}

Hierarchy: Object-->EncodedKeySpec(KeySpec)-->X509EncodedKeySpec

20.1. The
java.security.interfaces
Package

22. The java.text Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch21_01.htm (9 of 9) [2/5/2003 7:51:29 PM]

file:///C|/orielly/jnut/copyrght.htm

The java.text Package (Java in a Nutshell)

Part 2: API Quick Reference

Chapter 22. The java.text Package
The java.text package consists of classes and interfaces that are useful for writing internationalized
programs that handle local customs, such as date and time formatting and string alphabetization,
correctly. This package is new as of Java 1.1. Figure 22-1 shows its class hierarchy.

The NumberFormat class formats numbers, monetary quantities, and percentages as appropriate for
the default or specified locale. DateFormat formats dates and times in a locale-specific way. The
concrete DecimalFormat and SimpleDateFormat subclasses of these classes can be used for
customized number, date, and time formatting. MessageFormat allows substitution of dynamic
values, including formatted numbers and dates, into static message strings. ChoiceFormat formats a
number using an enumerated set of string values. Collator compares strings according to the
customary sorting order for a locale. BreakIterator scans text to find word, line, and sentence
boundaries following locale-specific rules.

file:///C|/orielly/jnut/ch22_01.htm (1 of 33) [2/5/2003 7:51:37 PM]

The java.text Package (Java in a Nutshell)

Figure 22-1. The java.text package

Annotation Java 1.2

java.text

This class is a wrapper for a the value of a text attribute that represents an annotation. Annotations differ
from other types of text attributes in two ways. First, annotations are linked to the text they are applied
to, so changing the text invalidates or corrupts the meaning of the annotation. Second, annotations cannot
be merged with adjacent annotations, even if they have the same value. Putting an annotation value in an
Annotation wrapper serves to indicate these special characteristics. Note that two of the attribute keys
defined by AttributedCharaterIterator.Attribute, READING and
INPUT_METHOD_SEGMENT, must be used with Annotation objects.

file:///C|/orielly/jnut/ch22_01.htm (2 of 33) [2/5/2003 7:51:37 PM]

The java.text Package (Java in a Nutshell)

public class Annotation {

// Public Constructors

public Annotation (Object value);

// Public Instance Methods

public Object getValue ();

// Public Methods Overriding Object

public String toString ();

}

AttributedCharacterIterator Java 1.2

java.text cloneable

This interface extends CharacterIterator for working with text that is marked up with attributes in
some way. It defines an inner class, AttributedCharaterIterator.Attribute, that
represents attribute keys. AttributedCharacterIterator defines methods for querying the
attribute keys, values, and runs for the text being iterated over. getAllAttributeKeys() returns
the Set of all attribute keys that appear anywhere in the text. getAttributes() returns a Map that
contains the attribute keys and values that apply to the current character. getAttribute() returns the
value associated with the specified attribute key for the current character.

getRunStart() and getRunLimit() return the index of the first and last characters in a run. A
run is a string of adjacent characters for which an attribute has the same value or is undefined (i.e., has a
value of null). A run can also be defined for a set of attributes, in which case it is a set of adjacent
characters for which all attributes in the set hold a constant value (which may include null). Programs
that process or display attributed text must usually work with it one run at a time. The no-argument
versions of getRunStart() and getRunLimit() return the start and end of the run that includes
the current character and all attributes that are applied to the current character. The other versions of
these methods return the start and end of the run of the specified attribute or set of attributes that includes
the current character.

The AttributedString class provides a simple way to define short strings of attributed text and
obtain an AttributedCharacterIterator over them. Most applications that process attributed
text are working with attributed text from specialized data sources, stored in some specialized data
format, so they need to define a custom implementation of AttributedCharacterIterator.

public interface AttributedCharacterIterator extends CharacterIterator {

// Inner Classes

file:///C|/orielly/jnut/ch22_01.htm (3 of 33) [2/5/2003 7:51:37 PM]

The java.text Package (Java in a Nutshell)

;

// Public Instance Methods

public abstract java.util.Set getAllAttributeKeys ();

public abstract Object getAttribute (AttributedCharacterIterator.Attribute attribute);

public abstract java.util.Map getAttributes ();

public abstract int getRunLimit ();

public abstract int getRunLimit (java.util.Set attributes);

public abstract int getRunLimit (AttributedCharacterIterator.Attribute attribute);

public abstract int getRunStart ();

public abstract int getRunStart (AttributedCharacterIterator.Attribute attribute);

public abstract int getRunStart (java.util.Set attributes);

}

Hierarchy: (AttributedCharacterIterator(CharacterIterator(Cloneable)))

Passed To: Too many methods to list.

Returned By: java.awt.event.InputMethodEvent.getText(),
java.awt.im.InputMethodRequests.{cancelLatestCommittedText(),
getCommittedText(), getSelectedText()}, AttributedString.getIterator()

AttributedCharacterIterator.Attribute Java 1.2

java.text serializable

This class defines the types of the attribute keys used with AttributedCharacterIterator and
AttributedString. It defines several constant Attribute keys that are commonly used with
multilingual text and input methods. The LANGUAGE key represents the language of the underlying text.
The value of this key should be a Locale object. The READING key represents arbitrary reading
information associated with text. The value must be an Annotation object. The
INPUT_METHOD_SEGMENT key serves to define text segments (usually words) that an input method
operates on. The value of this attribute should be an Annotation object that contains null. Other
classes may subclass this class and define other attribute keys that are useful in other circumstances or
problem domains. See, for example, java.awt.font.TextAttribute in Java Foundation
Classes in a Nutshell (O'Reilly).

public static class AttributedCharacterIterator.Attribute implements Serializable {

file:///C|/orielly/jnut/ch22_01.htm (4 of 33) [2/5/2003 7:51:37 PM]

The java.text Package (Java in a Nutshell)

// Protected Constructors

protected Attribute (String name);

// Public Constants

public static final AttributedCharacterIterator.Attribute INPUT_METHOD_SEGMENT ;

public static final AttributedCharacterIterator.Attribute LANGUAGE ;

public static final AttributedCharacterIterator.Attribute READING ;

// Public Methods Overriding Object

public final boolean equals (Object obj);

public final int hashCode ();

public String toString ();

// Protected Instance Methods

protected String getName ();

protected Object readResolve () throws java.io.InvalidObjectException;

}

Subclasses: java.awt.font.TextAttribute

Passed To: java.awt.im.InputMethodRequests.{cancelLatestCommittedText(),
getCommittedText(), getSelectedText()},
AttributedCharacterIterator.{getAttribute(), getRunLimit(),
getRunStart()}, AttributedString.{addAttribute(), AttributedString(),
getIterator()}

Returned By: java.awt.Font.getAvailableAttributes()

Type Of: AttributedCharacterIterator.Attribute.{INPUT_METHOD_SEGMENT,
LANGUAGE, READING}

AttributedString Java 1.2

java.text

This class represents text and associated attributes. An AttributedString can be defined in terms
of an underlying AttributedCharacterIterator or an underlying String. Additional
attributes can be specified with the addAttribute() and addAttributes() methods.
getIterator() returns an AttributedCharacterIterator over the AttributedString
or over a specified portion of the string. Note that two of the getIterator() methods take an array

file:///C|/orielly/jnut/ch22_01.htm (5 of 33) [2/5/2003 7:51:37 PM]

The java.text Package (Java in a Nutshell)

of Attribute keys as an argument. These methods return an AttributedCharacterIterator
that ignores all attributes that are not in the specified array. If the array argument is null, however, the
returned iterator contains all attributes.

public class AttributedString {

// Public Constructors

public AttributedString (String text);

public AttributedString (AttributedCharacterIterator text);

public AttributedString (String text, java.util.Map attributes);

public AttributedString (AttributedCharacterIterator text, int beginIndex, int endIndex);

public AttributedString (AttributedCharacterIterator text, int beginIndex, int endIndex,
AttributedCharacterIterator.Attribute[] attributes);

// Public Instance Methods

public void addAttribute (AttributedCharacterIterator.Attribute attribute, Object value);

public void addAttribute (AttributedCharacterIterator.Attribute attribute, Object value, int
beginIndex, int endIndex);

public void addAttributes (java.util.Map attributes, int beginIndex, int endIndex);

public AttributedCharacterIterator getIterator ();

public AttributedCharacterIterator getIterator (AttributedCharacterIterator.Attribute[] attributes);

public AttributedCharacterIterator getIterator (AttributedCharacterIterator.Attribute[] attributes, int
beginIndex, int endIndex);

}

BreakIterator Java 1.1

java.text cloneable PJ1.1

This class determines character, word, sentence, and line breaks in a block of text in a way that is
independent of locale and text encoding. As an abstract class, BreakIterator cannot be instantiated
directly. Instead, you must use one of the class methods getCharacterInstance(),
getWordInstance(), getSentenceInstance(), or getLineInstance() to return an
instance of a nonabstract subclass of BreakIterator. These various factory methods return a
BreakIterator object that is configured to locate the requested boundary types and is localized to
work for the optionally specified locale.

Once you have obtained an appropriate BreakIterator object, use setText() to specify the text
in which to locate boundaries. To locate boundaries in a Java String object, simply specify the string.
To locate boundaries in text that uses some other encoding, you must specify a CharacterIterator

file:///C|/orielly/jnut/ch22_01.htm (6 of 33) [2/5/2003 7:51:37 PM]

The java.text Package (Java in a Nutshell)

object for that text so that the BreakIterator object can locate the individual characters of the text.
Having set the text to be searched, you can determine the character positions of characters, words,
sentences, or line breaks with the first(), last(), next(), previous(), current(), and
following() methods, which perform the obvious functions. Note that these methods do not return
text itself, but merely the position of the appropriate word, sentence, or line break.

public abstract class BreakIterator implements Cloneable {

// Protected Constructors

protected BreakIterator ();

// Public Constants

public static final int DONE ; =-1

// Public Class Methods

public static java.util.Locale[] getAvailableLocales (); synchronized

public static BreakIterator getCharacterInstance ();

public static BreakIterator getCharacterInstance (java.util.Locale where);

public static BreakIterator getLineInstance ();

public static BreakIterator getLineInstance (java.util.Locale where);

public static BreakIterator getSentenceInstance ();

public static BreakIterator getSentenceInstance (java.util.Locale where);

public static BreakIterator getWordInstance ();

public static BreakIterator getWordInstance (java.util.Locale where);

// Public Instance Methods

public abstract int current ();

public abstract int first ();

public abstract int following (int offset);

public abstract CharacterIterator getText ();

1.2 public boolean isBoundary (int offset);

public abstract int last ();

public abstract int next ();

public abstract int next (int n);

1.2 public int preceding (int offset);

public abstract int previous ();

public abstract void setText (CharacterIterator newText);

public void setText (String newText);

// Public Methods Overriding Object

public Object clone ();

file:///C|/orielly/jnut/ch22_01.htm (7 of 33) [2/5/2003 7:51:37 PM]

The java.text Package (Java in a Nutshell)

}

Hierarchy: Object-->BreakIterator(Cloneable)

Passed To: java.awt.font.LineBreakMeasurer.LineBreakMeasurer()

Returned By: BreakIterator.{getCharacterInstance(), getLineInstance(),
getSentenceInstance(), getWordInstance()}

CharacterIterator Java 1.1

java.text cloneable PJ1.1

This interface defines an API for portably iterating through the characters that make up a string of text,
regardless of the encoding of that text. Such an API is necessary because the number of bytes per
character is different for different encodings, and some encodings even use variable-width characters
within the same string of text. In addition to allowing iteration, a class that implements the
CharacterIterator interface for non-Unicode text also performs translation of characters from
their native encoding to standard Java Unicode characters.

CharacterIterator is similar to java.util.Enumeration, but is somewhat more complex
than that interface. The first() and last() methods return the first and last characters in the text,
and the next() and prev() methods allow you to loop forward or backwards through the characters
of the text. These methods return the DONE constant when they go beyond the first or last character in the
text; a test for this constant can be used to terminate a loop. The CharacterIterator interface also
allows random access to the characters in a string of text. The getBeginIndex() and
getEndIndex() methods return the character positions for the start and end of the string, and
setIndex() sets the current position. getIndex() returns the index of the current position, and
current() returns the character at that position.

public interface CharacterIterator extends Cloneable {

// Public Constants

public static final char DONE ; ='\uFFFF'

// Public Instance Methods

public abstract Object clone ();

public abstract char current ();

public abstract char first ();

file:///C|/orielly/jnut/ch22_01.htm (8 of 33) [2/5/2003 7:51:37 PM]

The java.text Package (Java in a Nutshell)

public abstract int getBeginIndex ();

public abstract int getEndIndex ();

public abstract int getIndex ();

public abstract char last ();

public abstract char next ();

public abstract char previous ();

public abstract char setIndex (int position);

}

Hierarchy: (CharacterIterator(Cloneable))

Implementations: AttributedCharacterIterator, StringCharacterIterator,
javax.swing.text.Segment

Passed To: java.awt.Font.{canDisplayUpTo(), createGlyphVector(),
getLineMetrics(), getStringBounds()},
java.awt.FontMetrics.{getLineMetrics(), getStringBounds()},
BreakIterator.setText(), CollationElementIterator.setText(),
RuleBasedCollator.getCollationElementIterator()

Returned By: BreakIterator.getText()

ChoiceFormat Java 1.1

java.text cloneable serializable PJ1.1

This class is a subclass of Format that converts a number to a String in a way reminiscent of a
switch statement or an enumerated type. Each ChoiceFormat object has an array of doubles known
as its limits and an array of strings known as its formats. When the format() method is called to
format a number x, the ChoiceFormat finds an index i such that:

limits[i] <= x < limits[i+1]

If x is less than the first element of the array, the first element is used, and if it is greater than the last, the
last element is used. Once the index i has been determined, it is used as the index into the array of
strings, and the indexed string is returned as the result of the format() method.

A ChoiceFormat object may also be created by encoding its limits and formats into a single string

file:///C|/orielly/jnut/ch22_01.htm (9 of 33) [2/5/2003 7:51:37 PM]

The java.text Package (Java in a Nutshell)

known as its pattern. A typical pattern looks like the one below, used to return the singular or plural form
of a word based on the numeric value passed to the format() method:

ChoiceFormat cf = new ChoiceFormat("0#errors|1#error|2#errors");

A ChoiceFormat object created in this way returns the string "errors" when it formats the number 0 or
any number greater than or equal to 2. It returns "error" when it formats the number 1. In the syntax
shown here, note the pound sign (#) used to separate the limit number from the string that corresponds to
that case and the vertical bar (|) used to separate the individual cases. You can use the
applyPattern() method to change the pattern used by a ChoiceFormat object; use
toPattern() to query the pattern it uses.

public class ChoiceFormat extends NumberFormat {

// Public Constructors

public ChoiceFormat (String newPattern);

public ChoiceFormat (double[] limits, String[] formats);

// Public Class Methods

public static final double nextDouble (double d);

public static double nextDouble (double d, boolean positive);

public static final double previousDouble (double d);

// Public Instance Methods

public void applyPattern (String newPattern);

public Object[] getFormats ();

public double[] getLimits ();

public void setChoices (double[] limits, String[] formats);

public String toPattern ();

// Public Methods Overriding NumberFormat

public Object clone ();

public boolean equals (Object obj);

public StringBuffer format (long number, StringBuffer toAppendTo, FieldPosition status);

public StringBuffer format (double number, StringBuffer toAppendTo, FieldPosition status);

public int hashCode ();

public Number parse (String text, ParsePosition status);

}

Hierarchy: Object-->Format(Cloneable,Serializable)-->NumberFormat--
>ChoiceFormat

file:///C|/orielly/jnut/ch22_01.htm (10 of 33) [2/5/2003 7:51:37 PM]

The java.text Package (Java in a Nutshell)

CollationElementIterator Java 1.1

java.text PJ1.1

A CollationElementIterator object is returned by the
getCollationElementIterator() method of the RuleBasedCollator object. The purpose
of this class is to allow a program to iterate (with the next() method) through the characters of a string,
returning ordering values for each of the collation keys in the string. Note that collation keys are not
exactly the same as characters. In the traditional Spanish collation order, for example, the two-character
sequence "ch" is treated as a single collation key that comes alphabetically between the letters "c" and
"d". The value returned by the next() method is the collation order of the next collation key in the
string. This numeric value can be directly compared to the value returned by next() for other
CollationElementIterator objects. The value returned by next() can also be decomposed
into primary, secondary, and tertiary ordering values with the static methods of this class. This class is
used by RuleBasedCollator to implement its compare() method and to create CollationKey
objects. Few applications ever need to use it directly.

public final class CollationElementIterator {

// No Constructor

// Public Constants

public static final int NULLORDER ; =-1

// Public Class Methods

public static final int primaryOrder (int order);

public static final short secondaryOrder (int order);

public static final short tertiaryOrder (int order);

// Public Instance Methods

1.2 public int getMaxExpansion (int order);

public int getOffset ();

public int next ();

1.2 public int previous ();

public void reset ();

public void setOffset (int newOffset);

1.2 public void setText (CharacterIterator source);

public void setText (String source);

}

file:///C|/orielly/jnut/ch22_01.htm (11 of 33) [2/5/2003 7:51:37 PM]

The java.text Package (Java in a Nutshell)

Returned By: RuleBasedCollator.getCollationElementIterator()

CollationKey Java 1.1

java.text comparable PJ1.1

CollationKey objects compare strings more quickly than is possible with
Collation.compare(). Objects of this class are returned by
Collation.getCollationKey(). To compare two CollationKey objects, invoke the
compareTo() method of key A, passing the key B as an argument (both CollationKey objects
must be created through the same Collation object). The return value of this method is less than zero
if the key A is collated before the key B, equal to zero if they are equivalent for the purposes of collation,
or greater than zero if the key A is collated after the key B. Use getSourceString() to obtain the
string represented by a CollationKey.

public final class CollationKey implements Comparable {

// No Constructor

// Public Instance Methods

public int compareTo (CollationKey target);

public String getSourceString ();

public byte[] toByteArray ();

// Methods Implementing Comparable

1.2 public int compareTo (Object o);

// Public Methods Overriding Object

public boolean equals (Object target);

public int hashCode ();

}

Hierarchy: Object-->CollationKey(Comparable)

Passed To: CollationKey.compareTo()

Returned By: Collator.getCollationKey(),
RuleBasedCollator.getCollationKey()

file:///C|/orielly/jnut/ch22_01.htm (12 of 33) [2/5/2003 7:51:37 PM]

The java.text Package (Java in a Nutshell)

Collator Java 1.1

java.text cloneable PJ1.1

This class compares, orders, and sorts strings in a way appropriate for the default locale or some other
specified locale. Because it is an abstract class, it cannot be instantiated directly. Instead, you must use
the static getInstance() method to obtain an instance of a Collator subclass that is appropriate
for the default or specified locale. You can use getAvailableLocales() to determine whether a
Collator object is available for a desired locale.

Once an appropriate Collator object has been obtained, you can use the compare() method to
compare strings. The possible return values of this method are -1, 0, and 1, which indicate, respectively,
that the first string is collated before the second, that the two are equivalent for collation purposes, and
that the first string is collated after the second. The equals() method is a convenient shortcut for
testing two strings for collation equivalence.

When sorting an array of strings, each string in the array is typically compared more than once. Using the
compare() method in this case is inefficient. A more efficient method for comparing strings multiple
times is to use getCollationKey() for each string to create CollationKey objects. These
objects can then be compared to each other more quickly than the strings themselves can be compared.

You can customize the way the Collator object performs comparisons by calling setStrength().
If you pass the constant PRIMARY to this method, the comparison looks only at primary differences in
the strings; it compares letters but ignores accents and case differences. If you pass the constant
SECONDARY, it ignores case differences but does not ignore accents. And if you pass TERTIARY (the
default), the Collator object takes both accents and case differences into account in its comparison.

public abstract class Collator implements Cloneablejava.util.Comparator {

// Protected Constructors

protected Collator ();

// Public Constants

public static final int CANONICAL_DECOMPOSITION ; =1

public static final int FULL_DECOMPOSITION ; =2

public static final int IDENTICAL ; =3

public static final int NO_DECOMPOSITION ; =0

public static final int PRIMARY ; =0

public static final int SECONDARY ; =1

file:///C|/orielly/jnut/ch22_01.htm (13 of 33) [2/5/2003 7:51:37 PM]

The java.text Package (Java in a Nutshell)

public static final int TERTIARY ; =2

// Public Class Methods

public static java.util.Locale[] getAvailableLocales (); synchronized

public static Collator getInstance (); synchronized

public static Collator getInstance (java.util.Locale desiredLocale); synchronized

// Public Instance Methods

public abstract int compare (String source, String target);

public boolean equals (String source, String target);

public abstract CollationKey getCollationKey (String source);

public int getDecomposition (); synchronized

public int getStrength (); synchronized

public void setDecomposition (int decompositionMode); synchronized

public void setStrength (int newStrength); synchronized

// Methods Implementing Comparator

1.2 public int compare (Object o1, Object o2);

public boolean equals (Object that);

// Public Methods Overriding Object

public Object clone ();

public abstract int hashCode ();

}

Hierarchy: Object-->Collator(Cloneable,java.util.Comparator)

Subclasses: RuleBasedCollator

Returned By: Collator.getInstance()

DateFormat Java 1.1

java.text cloneable serializable PJ1.1

This class formats and parses dates and times in a locale-specific way. As an abstract class, it cannot be
instantiated directly, but it provides a number of static methods that return instances of a concrete
subclass you can use to format dates in a variety of ways. The getDateInstance() methods return a
DateFormat object suitable for formatting dates in either the default locale or a specified locale. A

file:///C|/orielly/jnut/ch22_01.htm (14 of 33) [2/5/2003 7:51:37 PM]

The java.text Package (Java in a Nutshell)

formatting style may also optionally be specified; the constants FULL, LONG, MEDIUM, SHORT, and
DEFAULT specify this style. Similarly, the getTimeInstance() methods return a DateFormat
object that formats and parses times, and the getDateTimeInstance() methods return a
DateFormat object that formats both dates and times. These methods also optionally take a format
style constant and a Locale. Finally, getInstance() returns a default DateFormat object that
formats both dates and times in the SHORT format.

Once you have created a DateFormat object, you can use the setCalendar() and
setTimeZone() methods if you want to format the date using a calendar or time zone other than the
default. The various format() methods convert java.util.Date objects to strings using whatever
format is encapsulated in the DateFormat object. The parse() and parseObject() methods
perform the reverse operation; they parse a string formatted according to the rules of the DateFormat
object and convert it into to a Date object. The DEFAULT, FULL, MEDIUM, LONG, and SHORT
constants specify how verbose or compact the formatted date or time should be. The remaining constants,
which all end with _FIELD, specify various fields of formatted dates and times and are used with the
FieldPosition object that is optionally passed to format().

public abstract class DateFormat extends Format {

// Protected Constructors

protected DateFormat ();

// Public Constants

public static final int AM_PM_FIELD ; =14

public static final int DATE_FIELD ; =3

public static final int DAY_OF_WEEK_FIELD ; =9

public static final int DAY_OF_WEEK_IN_MONTH_FIELD ; =11

public static final int DAY_OF_YEAR_FIELD ; =10

public static final int DEFAULT ; =2

public static final int ERA_FIELD ; =0

public static final int FULL ; =0

public static final int HOUR0_FIELD ; =16

public static final int HOUR1_FIELD ; =15

public static final int HOUR_OF_DAY0_FIELD ; =5

public static final int HOUR_OF_DAY1_FIELD ; =4

public static final int LONG ; =1

public static final int MEDIUM ; =2

public static final int MILLISECOND_FIELD ; =8

public static final int MINUTE_FIELD ; =6

public static final int MONTH_FIELD ; =2

file:///C|/orielly/jnut/ch22_01.htm (15 of 33) [2/5/2003 7:51:38 PM]

The java.text Package (Java in a Nutshell)

public static final int SECOND_FIELD ; =7

public static final int SHORT ; =3

public static final int TIMEZONE_FIELD ; =17

public static final int WEEK_OF_MONTH_FIELD ; =13

public static final int WEEK_OF_YEAR_FIELD ; =12

public static final int YEAR_FIELD ; =1

// Public Class Methods

public static java.util.Locale[] getAvailableLocales ();

public static final DateFormat getDateInstance ();

public static final DateFormat getDateInstance (int style);

public static final DateFormat getDateInstance (int style, java.util.Locale aLocale);

public static final DateFormat getDateTimeInstance ();

public static final DateFormat getDateTimeInstance (int dateStyle, int timeStyle);

public static final DateFormat getDateTimeInstance (int dateStyle, int timeStyle,
java.util.Locale aLocale);

public static final DateFormat getInstance ();

public static final DateFormat getTimeInstance ();

public static final DateFormat getTimeInstance (int style);

public static final DateFormat getTimeInstance (int style, java.util.Locale aLocale);

// Property Accessor Methods (by property name)

public java.util.Calendar getCalendar ();

public void setCalendar (java.util.Calendar newCalendar);

public boolean isLenient ();

public void setLenient (boolean lenient);

public NumberFormat getNumberFormat ();

public void setNumberFormat (NumberFormat newNumberFormat);

public java.util.TimeZone getTimeZone ();

public void setTimeZone (java.util.TimeZone zone);

// Public Instance Methods

public final String format (java.util.Date date);

public abstract StringBuffer format (java.util.Date date, StringBuffer toAppendTo, FieldPosition
fieldPosition);

public java.util.Date parse (String text) throws ParseException;

public abstract java.util.Date parse (String text, ParsePosition pos);

// Public Methods Overriding Format

file:///C|/orielly/jnut/ch22_01.htm (16 of 33) [2/5/2003 7:51:38 PM]

The java.text Package (Java in a Nutshell)

public Object clone ();

public final StringBuffer format (Object obj, StringBuffer toAppendTo, FieldPosition
fieldPosition);

public Object parseObject (String source, ParsePosition pos);

// Public Methods Overriding Object

public boolean equals (Object obj);

public int hashCode ();

// Protected Instance Fields

protected java.util.Calendar calendar ;

protected NumberFormat numberFormat ;

}

Hierarchy: Object-->Format(Cloneable,Serializable)-->DateFormat

Subclasses: SimpleDateFormat

Returned By: DateFormat.{getDateInstance(), getDateTimeInstance(),
getInstance(), getTimeInstance()}

DateFormatSymbols Java 1.1

java.text cloneable serializable PJ1.1

This class defines accessor methods for the various pieces of data, such as names of months and days,
used by SimpleDateFormat to format and parse dates and times. You do not typically need to use
this class unless you are formatting dates for an unsupported locale or in some highly customized way.

public class DateFormatSymbols implements CloneableSerializable {

// Public Constructors

public DateFormatSymbols ();

public DateFormatSymbols (java.util.Locale locale);

// Property Accessor Methods (by property name)

public String[] getAmPmStrings ();

public void setAmPmStrings (String[] newAmpms);

public String[] getEras ();

file:///C|/orielly/jnut/ch22_01.htm (17 of 33) [2/5/2003 7:51:38 PM]

The java.text Package (Java in a Nutshell)

public void setEras (String[] newEras);

public String getLocalPatternChars ();

public void setLocalPatternChars (String newLocalPatternChars);

public String[] getMonths ();

public void setMonths (String[] newMonths);

public String[] getShortMonths ();

public void setShortMonths (String[] newShortMonths);

public String[] getShortWeekdays ();

public void setShortWeekdays (String[] newShortWeekdays);

public String[] getWeekdays ();

public void setWeekdays (String[] newWeekdays);

public String[][] getZoneStrings ();

public void setZoneStrings (String[][] newZoneStrings);

// Public Methods Overriding Object

public Object clone ();

public boolean equals (Object obj);

public int hashCode ();

}

Hierarchy: Object-->DateFormatSymbols(Cloneable,Serializable)

Passed To: SimpleDateFormat.{setDateFormatSymbols(), SimpleDateFormat()}

Returned By: SimpleDateFormat.getDateFormatSymbols()

DecimalFormat Java 1.1

java.text cloneable serializable PJ1.1

This is the concrete Format class used by NumberFormat for all locales that use base 10 numbers.
Most applications do not need to use this class directly; they can use the static methods of
NumberFormat to obtain a default NumberFormat object for a desired locale and then perform
minor locale-independent customizations on that object.

Applications that require highly customized number formatting and parsing may create custom
DecimalFormat objects by passing a suitable pattern to the DecimalFormat() constructor

file:///C|/orielly/jnut/ch22_01.htm (18 of 33) [2/5/2003 7:51:38 PM]

The java.text Package (Java in a Nutshell)

method. The applyPattern() method can change this pattern. A pattern consists of a string of
characters from the table below. For example:

"$#,##0.00;($#,##0.00)"

Character Meaning

A digit; zeros show as absent

0 A digit; zeros show as 0

. The locale-specific decimal separator

, The locale-specific grouping separator (comma)

- The locale-specific negative prefix

% Shows value as a percentage

;
Separates positive number format (on left) from optional negative number format (on right)

'
Quotes a reserved character, so it appears literally in the output (apostrophe)

other Appears literally in output

A DecimalFormatSymbols object can be specified optionally when creating a DecimalFormat
object. If one is not specified, a DecimalFormatSymbols object suitable for the default locale is
used.

public class DecimalFormat extends NumberFormat {

// Public Constructors

public DecimalFormat ();

public DecimalFormat (String pattern);

public DecimalFormat (String pattern, DecimalFormatSymbols
symbols);

// Property Accessor Methods (by property name)

public DecimalFormatSymbols getDecimalFormatSymbols ();

public void setDecimalFormatSymbols (DecimalFormatSymbols
newSymbols);

public boolean isDecimalSeparatorAlwaysShown (); default:false

public void setDecimalSeparatorAlwaysShown (boolean newValue);

public int getGroupingSize (); default:3

file:///C|/orielly/jnut/ch22_01.htm (19 of 33) [2/5/2003 7:51:38 PM]

The java.text Package (Java in a Nutshell)

public void setGroupingSize (int newValue);

1.2 public void setMaximumFractionDigits (int newValue); Overrides:NumberFormat

1.2 public void setMaximumIntegerDigits (int newValue); Overrides:NumberFormat

1.2 public void setMinimumFractionDigits (int newValue); Overrides:NumberFormat

1.2 public void setMinimumIntegerDigits (int newValue); Overrides:NumberFormat

public int getMultiplier (); default:1

public void setMultiplier (int newValue);

public String getNegativePrefix (); default:"-"

public void setNegativePrefix (String newValue);

public String getNegativeSuffix (); default:""

public void setNegativeSuffix (String newValue);

public String getPositivePrefix (); default:""

public void setPositivePrefix (String newValue);

public String getPositiveSuffix (); default:""

public void setPositiveSuffix (String newValue);

// Public Instance Methods

public void applyLocalizedPattern (String pattern);

public void applyPattern (String pattern);

public String toLocalizedPattern ();

public String toPattern ();

// Public Methods Overriding NumberFormat

public Object clone ();

public boolean equals (Object obj);

public StringBuffer format (long number, StringBuffer result,
FieldPosition fieldPosition);

public StringBuffer format (double number, StringBuffer result,
FieldPosition fieldPosition);

public int hashCode ();

public Number parse (String text, ParsePosition parsePosition);

}

Hierarchy: Object-->Format(Cloneable,Serializable)-->NumberFormat--
>DecimalFormat

DecimalFormatSymbols Java 1.1

file:///C|/orielly/jnut/ch22_01.htm (20 of 33) [2/5/2003 7:51:38 PM]

The java.text Package (Java in a Nutshell)

java.text cloneable serializable PJ1.1

This class defines the various characters and strings, such as the decimal point, percent sign, and
thousands separator, used by DecimalFormat when formatting numbers. You do not typically use this
class directly unless you are formatting dates for an unsupported locale or in some highly customized
way.

public final class DecimalFormatSymbols implements CloneableSerializable {

// Public Constructors

public DecimalFormatSymbols ();

public DecimalFormatSymbols (java.util.Locale locale);

// Property Accessor Methods (by property name)

public String getCurrencySymbol (); default:"$"

public void setCurrencySymbol (String currency);

public char getDecimalSeparator (); default:.

public void setDecimalSeparator (char decimalSeparator);

public char getDigit (); default:#

public void setDigit (char digit);

public char getGroupingSeparator (); default:,

public void setGroupingSeparator (char groupingSeparator);

public String getInfinity (); default:"\u221E"

public void setInfinity (String infinity);

public String getInternationalCurrencySymbol (); default:"USD"

public void setInternationalCurrencySymbol (String currency);

public char getMinusSign (); default:-

public void setMinusSign (char minusSign);

public char getMonetaryDecimalSeparator (); default:.

public void setMonetaryDecimalSeparator (char sep);

public String getNaN (); default:"\uFFFD"

public void setNaN (String NaN);

public char getPatternSeparator (); default:;

public void setPatternSeparator (char patternSeparator);

public char getPercent (); default:%

public void setPercent (char percent);

file:///C|/orielly/jnut/ch22_01.htm (21 of 33) [2/5/2003 7:51:38 PM]

The java.text Package (Java in a Nutshell)

public char getPerMill (); default:\u2030

public void setPerMill (char perMill);

public char getZeroDigit (); default:0

public void setZeroDigit (char zeroDigit);

// Public Methods Overriding Object

public Object clone ();

public boolean equals (Object obj);

public int hashCode ();

}

Hierarchy: Object-->DecimalFormatSymbols(Cloneable,Serializable)

Passed To: DecimalFormat.{DecimalFormat(), setDecimalFormatSymbols()}

Returned By: DecimalFormat.getDecimalFormatSymbols()

FieldPosition Java 1.1

java.text PJ1.1

FieldPosition objects are optionally passed to the format() methods of the Format class and its
subclasses to return additional information about the formatting that has been performed. The
getBeginIndex() and getEndIndex() methods of this class return the starting and ending
character positions of some field of the formatted string. The integer value passed to the
FieldPosition() constructor specifies what field of the returned string should have its bounds
returned. The NumberFormat and DateFormat classes define various constants (which end with the
string _FIELD) that can be used here. Typically, this bounds information is useful for aligning formatted
strings in columns--for example, aligning the decimal points in a column of numbers.

public class FieldPosition {

// Public Constructors

public FieldPosition (int field);

// Public Instance Methods

public int getBeginIndex ();

public int getEndIndex ();

public int getField ();

file:///C|/orielly/jnut/ch22_01.htm (22 of 33) [2/5/2003 7:51:38 PM]

The java.text Package (Java in a Nutshell)

public void setBeginIndex (int bi);

public void setEndIndex (int ei);

// Public Methods Overriding Object

1.2 public boolean equals (Object obj);

1.2 public int hashCode ();

1.2 public String toString ();

}

Passed To: ChoiceFormat.format(), DateFormat.format(),
DecimalFormat.format(), Format.format(), MessageFormat.format(),
NumberFormat.format(), SimpleDateFormat.format()

Format Java 1.1

java.text cloneable serializable PJ1.1

This abstract class is the base class for all number, date, and string formatting classes in the java.text
package. It defines two abstract methods that are implemented by subclasses. format() converts an
object to a string using the formatting rules encapsulated by the Format subclass and optionally
appends the resulting string to an existing StringBuffer. parseObject() performs the reverse
operation; it parses a formatted string and returns the corresponding object. Status information for these
two operations is returned in FieldPosition and ParsePosition objects. The nonabstract
methods of this class are simple shortcuts that rely on implementations of the abstract methods. See
ChoiceFormat, DateFormat, MessageFormat, and NumberFormat.

public abstract class Format implements CloneableSerializable {

// Public Constructors

public Format ();

// Public Instance Methods

public final String format (Object obj);

public abstract StringBuffer format (Object obj, StringBuffer toAppendTo, FieldPosition pos);

public Object parseObject (String source) throws ParseException;

public abstract Object parseObject (String source, ParsePosition status);

// Public Methods Overriding Object

public Object clone ();

}

file:///C|/orielly/jnut/ch22_01.htm (23 of 33) [2/5/2003 7:51:38 PM]

The java.text Package (Java in a Nutshell)

Hierarchy: Object-->Format(Cloneable,Serializable)

Subclasses: DateFormat, MessageFormat, NumberFormat

Passed To: MessageFormat.{setFormat(), setFormats()}

Returned By: MessageFormat.getFormats()

MessageFormat Java 1.1

java.text cloneable serializable PJ1.1

This class formats and substitutes objects into specified positions in a message string (also known as the
pattern string). It provides the closest Java equivalent to the printf() function of the C programming
language. If a message is to be displayed only a single time, the simplest way to use the
MessageFormat class is through the static format() method. This method is passed a message or
pattern string and an array of argument objects to be formatted and substituted into the string. If the
message is to be displayed several times, it makes more sense to create a MessageFormat object,
supplying the pattern string, and then call the format() instance method of this object, supplying the
array of objects to be formatted into the message.

The message or pattern string used by the MessageFormat contains digits enclosed in curly braces to
indicate where each argument should be substituted. The sequence "{0}" indicates that the first object
should be converted to a string (if necessary) and inserted at that point, while the sequence "{3}"
indicates that the fourth object should be inserted. If the object to be inserted is not a string,
MessageFormat checks to see if it is a Date or a subclass of Number. If so, it uses a default
DateFormat or NumberFormat object to convert the value to a string. If not, it simply invokes the
object's toString() method to convert it.

A digit within curly braces in a pattern string may be followed optionally by a comma, and one of the
words "date", "time", "number", or "choice", to indicate that the corresponding argument should be
formatted as a date, time, number, or choice before being substituted into the pattern string. Any of these
keywords can additionally be followed by a comma and additional pattern information to be used in
formatting the date, time, number, or choice. (See SimpleDateFormat, DecimalFormat, and
ChoiceFormat for more information.)

You can use the setLocale() method to specify a nondefault Locale that the MessageFormat
should use when obtaining DateFormat and NumberFormat objects to format dates, time, and
numbers inserted into the pattern. You can change the Format object used at a particular position in the

file:///C|/orielly/jnut/ch22_01.htm (24 of 33) [2/5/2003 7:51:38 PM]

The java.text Package (Java in a Nutshell)

pattern with the setFormat() method. You can set a new pattern for the MessageFormat object by
calling applyPattern(), and you can obtain a string that represents the current formatting pattern by
calling toPattern(). MessageFormat also supports a parse() method that can parse an array of
objects out of a specified string, according to the specified pattern.

public class MessageFormat extends Format {

// Public Constructors

public MessageFormat (String pattern);

// Public Class Methods

public static String format (String pattern, Object[] arguments);

// Public Instance Methods

public void applyPattern (String newPattern);

public final StringBuffer format (Object[] source, StringBuffer result, FieldPosition ignore);

public Format[] getFormats ();

public java.util.Locale getLocale ();

public Object[] parse (String source) throws ParseException;

public Object[] parse (String source, ParsePosition status);

public void setFormat (int variable, Format newFormat);

public void setFormats (Format[] newFormats);

public void setLocale (java.util.Locale theLocale);

public String toPattern ();

// Public Methods Overriding Format

public Object clone ();

public final StringBuffer format (Object source, StringBuffer result, FieldPosition ignore);

public Object parseObject (String text, ParsePosition status);

// Public Methods Overriding Object

public boolean equals (Object obj);

public int hashCode ();

}

Hierarchy: Object-->Format(Cloneable,Serializable)-->MessageFormat

NumberFormat Java 1.1

java.text cloneable serializable PJ1.1

file:///C|/orielly/jnut/ch22_01.htm (25 of 33) [2/5/2003 7:51:38 PM]

The java.text Package (Java in a Nutshell)

This class formats and parses numbers in a locale-specific way. As an abstract class, it cannot be
instantiated directly, but it provides a number of static methods that return instances of a concrete
subclass you can use for formatting. The getInstance() method returns a NumberFormat object
suitable for normal formatting of numbers in either the default locale or in a specified locale.
getCurrencyInstance() and getPercentInstance() return NumberFormat objects for
formatting numbers that represent monetary amounts and percentages, in either the default locale or in a
specified locale. getAvailableLocales() returns an array of locales for which NumberFormat
objects are available.

Once you have created a suitable NumberFormat object, you can customize its locale-independent
behavior with setMaximumFractionDigits(), setGroupingUsed(), and similar set
methods. In order to customize the locale-dependent behavior, you can use instanceof to test if the
NumberFormat object is an instance of DecimalFormat, and, if so, cast it to that type. The
DecimalFormat class provides complete control over number formatting. Note, however, that a
NumberFormat customized in this way may no longer be appropriate for the desired locale.

After creating and customizing a NumberFormat object, you can use the various format() methods
to convert numbers to strings or string buffers, and you can use the parse() or parseObject()
methods to convert strings to numbers. The constants defined by this class are to be used by the
FieldPosition object. The NumberFormat class in not intended for the display of very large or
very small numbers that require exponential notation, and it may not gracefully handle infinite or NaN
(not-a-number) values.

public abstract class NumberFormat extends Format {

// Public Constructors

public NumberFormat ();

// Public Constants

public static final int FRACTION_FIELD ; =1

public static final int INTEGER_FIELD ; =0

// Public Class Methods

public static java.util.Locale[] getAvailableLocales ();

public static final NumberFormat getCurrencyInstance ();

public static NumberFormat getCurrencyInstance (java.util.Locale inLocale);

public static final NumberFormat getInstance ();

public static NumberFormat getInstance (java.util.Locale inLocale);

public static final NumberFormat getNumberInstance ();

public static NumberFormat getNumberInstance (java.util.Locale inLocale);

public static final NumberFormat getPercentInstance ();

file:///C|/orielly/jnut/ch22_01.htm (26 of 33) [2/5/2003 7:51:38 PM]

The java.text Package (Java in a Nutshell)

public static NumberFormat getPercentInstance (java.util.Locale inLocale);

// Property Accessor Methods (by property name)

public boolean isGroupingUsed ();

public void setGroupingUsed (boolean newValue);

public int getMaximumFractionDigits ();

public void setMaximumFractionDigits (int newValue);

public int getMaximumIntegerDigits ();

public void setMaximumIntegerDigits (int newValue);

public int getMinimumFractionDigits ();

public void setMinimumFractionDigits (int newValue);

public int getMinimumIntegerDigits ();

public void setMinimumIntegerDigits (int newValue);

public boolean isParseIntegerOnly ();

public void setParseIntegerOnly (boolean value);

// Public Instance Methods

public final String format (long number);

public final String format (double number);

public abstract StringBuffer format (long number, StringBuffer toAppendTo, FieldPosition pos);

public abstract StringBuffer format (double number, StringBuffer toAppendTo, FieldPosition
pos);

public Number parse (String text) throws ParseException;

public abstract Number parse (String text, ParsePosition parsePosition);

// Public Methods Overriding Format

public Object clone ();

public final StringBuffer format (Object number, StringBuffer toAppendTo, FieldPosition pos);

public final Object parseObject (String source, ParsePosition parsePosition);

// Public Methods Overriding Object

public boolean equals (Object obj);

public int hashCode ();

}

Hierarchy: Object-->Format(Cloneable,Serializable)-->NumberFormat

Subclasses: ChoiceFormat, DecimalFormat

Passed To: DateFormat.setNumberFormat()

file:///C|/orielly/jnut/ch22_01.htm (27 of 33) [2/5/2003 7:51:38 PM]

The java.text Package (Java in a Nutshell)

Returned By: DateFormat.getNumberFormat(),
NumberFormat.{getCurrencyInstance(), getInstance(),
getNumberInstance(), getPercentInstance()}

Type Of: DateFormat.numberFormat

ParseException Java 1.1

java.text serializable checked PJ1.1

Signals that a string has an incorrect format and cannot be parsed. It is typically thrown by the parse()
or parseObject() methods of Format and its subclasses, but is also thrown by certain methods in
the java.text package that are passed patterns or other rules in string form. The
getErrorOffset() method of this class returns the character position at which the parsing error
occurred in the offending string.

public class ParseException extends Exception {

// Public Constructors

public ParseException (String s, int errorOffset);

// Public Instance Methods

public int getErrorOffset ();

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->ParseException

Thrown By: DateFormat.parse(), Format.parseObject(),
MessageFormat.parse(), NumberFormat.parse(),
RuleBasedCollator.RuleBasedCollator()

ParsePosition Java 1.1

java.text PJ1.1

ParsePosition objects are passed to the parse() and parseObject() methods of Format and
its subclasses. The ParsePosition class represents the position in a string at which parsing should

file:///C|/orielly/jnut/ch22_01.htm (28 of 33) [2/5/2003 7:51:38 PM]

The java.text Package (Java in a Nutshell)

begin or at which parsing stopped. Before calling a parse() method, you can specify the starting
position of parsing by passing the desired index to the ParsePosition() constructor or by calling
the setIndex() of an existing ParsePosition object. When parse() returns, you can determine
where parsing ended by calling getIndex(). When parsing multiple objects or values from a string, a
single ParsePosition object can be used sequentially.

public class ParsePosition {

// Public Constructors

public ParsePosition (int index);

// Public Instance Methods

1.2 public int getErrorIndex ();

public int getIndex ();

1.2 public void setErrorIndex (int ei);

public void setIndex (int index);

// Public Methods Overriding Object

1.2 public boolean equals (Object obj);

1.2 public int hashCode ();

1.2 public String toString ();

}

Passed To: ChoiceFormat.parse(), DateFormat.{parse(), parseObject()},
DecimalFormat.parse(), Format.parseObject(), MessageFormat.{parse(),
parseObject()}, NumberFormat.{parse(), parseObject()},
SimpleDateFormat.parse()

RuleBasedCollator Java 1.1

java.text cloneable PJ1.1

This class is a concrete subclass of the abstract Collator class. It performs collations using a table of
rules that are specified in textual form. Most applications do not use this class directly; instead they call
Collator.getInstance() to obtain a Collator object (typically a RuleBasedCollator
object) that implements the default collation order for a specified or default locale. You should need to
use this class only if you are collating strings for a locale that is not supported by default or if you need to
implement a highly customized collation order.

public class RuleBasedCollator extends Collator {

file:///C|/orielly/jnut/ch22_01.htm (29 of 33) [2/5/2003 7:51:38 PM]

The java.text Package (Java in a Nutshell)

// Public Constructors

public RuleBasedCollator (String rules) throws ParseException;

// Public Instance Methods

1.2
public CollationElementIterator getCollationElementIterator (CharacterIterator
source);

public CollationElementIterator getCollationElementIterator (String source);

public String getRules ();

// Public Methods Overriding Collator

public Object clone ();

public int compare (String source, String target); synchronized

public boolean equals (Object obj);

public CollationKey getCollationKey (String source); synchronized

public int hashCode ();

}

Hierarchy: Object-->Collator(Cloneable,java.util.Comparator)--
>RuleBasedCollator

SimpleDateFormat Java 1.1

java.text cloneable serializable PJ1.1

This is the concrete Format subclass used by DateFormat to handle the formatting and parsing of
dates. Most applications should not use this class directly; instead, they should obtain a localized
DateFormat object by calling one of the static methods of DateFormat.

SimpleDateFormat formats dates and times according to a pattern, which specifies the positions of
the various fields of the date, and a DateFormatSymbols object, which specifies important auxiliary
data, such as the names of months. Applications that require highly customized date or time formatting
can create a custom SimpleDateFormat object by specifying the desired pattern. This creates a
SimpleDateFormat object that uses the DateFormatSymbols object for the default locale. You
may also specify an locale explicitly, to use the DateFormatSymbols object for that locale. You can
even provide an explicit DateFormatSymbols object of your own if you need to format dates and
times for an unsupported locale.

You can use the applyPattern() method of a SimpleDateFormat to change the formatting
pattern used by the object. The syntax of this pattern is described in the table below. Any characters in

file:///C|/orielly/jnut/ch22_01.htm (30 of 33) [2/5/2003 7:51:38 PM]

The java.text Package (Java in a Nutshell)

the format string that do not appear in this table appear literally in the formatted date.

Field Full Form Short Form

Year yyyy (4 digits) yy (2 digits)

Month MMM (name) MM (2 digits), M (1 or 2 digits)

Day of week EEEE EE

Day of month dd (2 digits) d (1 or 2 digits)

Hour (1-12) hh (2 digits) h (1 or 2 digits)

Hour (0-23) HH (2 digits) H (1 or 2 digits)

Hour (0-11) KK K

Hour (1-24) kk k

Minute mm

Second ss

Millisecond SSS

AM/PM a

Time zone zzzz zz

Day of week in month F (e.g., 3rd Thursday)

Day in year DDD (3 digits) D (1, 2, or 3 digits)

Week in year ww

Era (e.g., BC/AD) G

public class SimpleDateFormat extends DateFormat {

// Public Constructors

public SimpleDateFormat ();

public SimpleDateFormat (String pattern);

public SimpleDateFormat (String pattern, DateFormatSymbols formatData);

public SimpleDateFormat (String pattern, java.util.Locale loc);

// Public Instance Methods

public void applyLocalizedPattern (String pattern);

public void applyPattern (String pattern);

1.2 public java.util.Date get2DigitYearStart ();

public DateFormatSymbols getDateFormatSymbols ();

1.2 public void set2DigitYearStart (java.util.Date startDate);

public void setDateFormatSymbols (DateFormatSymbols newFormatSymbols);

file:///C|/orielly/jnut/ch22_01.htm (31 of 33) [2/5/2003 7:51:38 PM]

The java.text Package (Java in a Nutshell)

public String toLocalizedPattern ();

public String toPattern ();

// Public Methods Overriding DateFormat

public Object clone ();

public boolean equals (Object obj);

public StringBuffer format (java.util.Date date, StringBuffer toAppendTo, FieldPosition pos);

public int hashCode ();

public java.util.Date parse (String text, ParsePosition pos);

}

Hierarchy: Object-->Format(Cloneable,Serializable)-->DateFormat--
>SimpleDateFormat

StringCharacterIterator Java 1.1

java.text cloneable PJ1.1

This class is a trivial implementation of the CharacterIterator interface that works for text stored
in Java String objects. See CharacterIterator for details.

public final class StringCharacterIterator implements CharacterIterator {

// Public Constructors

public StringCharacterIterator (String text);

public StringCharacterIterator (String text, int pos);

public StringCharacterIterator (String text, int begin, int end, int pos);

// Public Instance Methods

1.2 public void setText (String text);

// Methods Implementing CharacterIterator

public Object clone ();

public char current ();

public char first ();

public int getBeginIndex ();

public int getEndIndex ();

public int getIndex ();

file:///C|/orielly/jnut/ch22_01.htm (32 of 33) [2/5/2003 7:51:38 PM]

The java.text Package (Java in a Nutshell)

public char last ();

public char next ();

public char previous ();

public char setIndex (int p);

// Public Methods Overriding Object

public boolean equals (Object obj);

public int hashCode ();

}

Hierarchy: Object-->StringCharacterIterator(CharacterIterator(Cloneable))

21.1. The java.security.spec
Package

23. The java.util Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch22_01.htm (33 of 33) [2/5/2003 7:51:38 PM]

file:///C|/orielly/jnut/copyrght.htm

The java.util Package (Java in a Nutshell)

Part 2: API Quick Reference

Chapter 23. The java.util Package
The java.util package defines a number of useful classes, primarily collections classes that are useful
for working with groups of objects. This package should not be considered merely a utility package that is
separate from the rest of the language; in fact, Java depends directly on several of the classes in this
package. Figure 23-1 shows the collection classes of this package, while Figure 23-2 shows the other
classes.

file:///C|/orielly/jnut/ch23_01.htm (1 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

Figure 23-1. The collection classes of the java.util package

Figure 23-2. Other classes of the java.util package

The most important classes in java.util are the collections classes. Prior to Java 1.2, these were
Vector, a growable list of objects, and Hashtable, a mapping between arbitrary key and value
objects. Java 1.2 adds an entire collections framework consisting of the Collection, Map, Set, List,

file:///C|/orielly/jnut/ch23_01.htm (2 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

SortedMap, and SortedSet interfaces and the classes that implement them. Other important classes
and interfaces of the collections framework are Comparator, Collections, Arrays, Iterator,
and ListIterator.

The other classes of the package are also useful. Date, Calendar, and TimeZone work with dates and
times. ResourceBundle and its subclasses represent a bundle of localized resources that are read in by
an internationalized program at runtime. BitSet implements an arbitrary-size array of bits. Random
generates and returns pseudo-random numbers in a variety of forms. StringTokenizer parses a string
into tokens. Finally, in Java 1.3, Timer and TimerTask provide a powerful API for scheduling code to
be run by a background thread, once or repetitively, at a specified time in the future.

AbstractCollection Java 1.2

java.util collection

This abstract class is a partial implementation of Collection that makes it easy to define custom
Collection implementations. To create an unmodifiable collection, simply override size() and
iterator(). The Iterator object returned by iterator() has to support only the hasNext()
and next() methods. To define a modifiable collection, you must additionally override the add()
method of AbstractCollection and make sure the Iterator returned by iterator() supports
the remove() method. Some subclasses may choose to override other methods to tune performance. In
addition, it is conventional that all subclasses provide two constructors: one that takes no arguments and
one that accepts a Collection argument that specifies the initial contents of the collection.

Note that if you subclass AbstractCollection directly, you are implementing a bag--an unordered
collection that allows duplicate elements. If your add() method rejects duplicate elements, you should
subclass AbstractSet instead. See also AbstractList.

public abstract class AbstractCollection implements Collection {

// Protected Constructors

protected AbstractCollection ();

// Methods Implementing Collection

public boolean add (Object o);

public boolean addAll (Collection c);

public void clear ();

public boolean contains (Object o);

public boolean containsAll (Collection c);

public boolean isEmpty ();

file:///C|/orielly/jnut/ch23_01.htm (3 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

public abstract Iterator iterator ();

public boolean remove (Object o);

public boolean removeAll (Collection c);

public boolean retainAll (Collection c);

public abstract int size ();

public Object[] toArray ();

public Object[] toArray (Object[] a);

// Public Methods Overriding Object

public String toString ();

}

Hierarchy: Object-->AbstractCollection(Collection)

Subclasses: AbstractList, AbstractSet

AbstractList Java 1.2

java.util collection

This abstract class is a partial implementation of the List interface that makes it easy to define custom
List implementations based on random-access list elements (such as objects stored in an array). If you
want to base a List implementation on a sequential-access data model (such as a linked list), subclass
AbstractSequentialList instead.

To create an unmodifiable List, simply subclass AbstractList and override the (inherited) size()
and get() methods. To create a modifiable list, you must also override set() and, optionally, add()
and remove(). These three methods are optional, so unless you override them, they simply throw an
UnsupportedOperationException. All other methods of the List interface are implemented in
terms of size(), get(), set(), add(), and remove(). In some cases, you may want to override
these other methods to improve performance. By convention, all List implementations should define
two constructors: one that accepts no arguments and another that accepts a Collection of initial
elements for the list.

public abstract class AbstractList extends AbstractCollection implements java.util.List {

// Protected Constructors

protected AbstractList ();

// Methods Implementing List

file:///C|/orielly/jnut/ch23_01.htm (4 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

public boolean add (Object o);

public void add (int index, Object element);

public boolean addAll (int index, Collection c);

public void clear ();

public boolean equals (Object o);

public abstract Object get (int index);

public int hashCode ();

public int indexOf (Object o);

public Iterator iterator ();

public int lastIndexOf (Object o);

public ListIterator listIterator ();

public ListIterator listIterator (int index);

public Object remove (int index);

public Object set (int index, Object element);

public java.util.List subList (int fromIndex, int toIndex);

// Protected Instance Methods

protected void removeRange (int fromIndex, int toIndex);

// Protected Instance Fields

protected transient int modCount ;

}

Hierarchy: Object-->AbstractCollection(Collection)--
>AbstractList(java.util.List(Collection))

Subclasses: AbstractSequentialList, ArrayList, Vector

AbstractMap Java 1.2

java.util collection

This abstract class is a partial implementation of the Map interface that makes it easy to define simple
custom Map implementations. To define an unmodifiable map, subclass AbstractMap and override the
entrySet() method so that it returns a set of Map.Entry objects. (Note that you must also
implement Map.Entry, of course.) The returned set should not support add() or remove(), and its
iterator should not support remove(). In order to define a modifiable Map, you must additionally
override the put() method and provide support for the remove() method of the iterator returned by

file:///C|/orielly/jnut/ch23_01.htm (5 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

entrySet().iterator(). In addition, it is conventional that all Map implementations define two
constructors: one that accepts no arguments and another that accepts a Map of initial mappings.

AbstractMap defines all Map methods in terms of its entrySet() and put() methods and the
remove() method of the entry set iterator. Note, however, that the implementation is based on a linear
search of the Set returned by entrySet() and is not efficient when the Map contains more than a
handful of entries. Some subclasses may want to override additional AbstractMap methods to improve
performance. HashMap and TreeMap use different algorithms are are substantially more efficient.

public abstract class AbstractMap implements Map {

// Protected Constructors

protected AbstractMap ();

// Methods Implementing Map

public void clear ();

public boolean containsKey (Object key);

public boolean containsValue (Object value);

public abstract Set entrySet ();

public boolean equals (Object o);

public Object get (Object key);

public int hashCode ();

public boolean isEmpty ();

public Set keySet ();

public Object put (Object key, Object value);

public void putAll (Map t);

public Object remove (Object key);

public int size ();

public Collection values ();

// Public Methods Overriding Object

public String toString ();

}

Hierarchy: Object-->AbstractMap(Map)

Subclasses: HashMap, TreeMap, WeakHashMap

AbstractSequentialList Java 1.2

file:///C|/orielly/jnut/ch23_01.htm (6 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

java.util collection

This abstract class is a partial implementation of the List interface that makes it easy to define List
implementations based on a sequential-access data model, as is the case with the LinkedList subclass.
To implement a List based on an array or other random-access model, subclass AbstractList
instead.

To implement an unmodifiable list, subclass this class and override the size() and listIterator()
methods. listIterator() must return a ListIterator that defines the hasNext(),
hasPrevious(), next(), previous(), and index() methods. If you want to allow the list to be
modified, the ListIterator should also support the set() method and, optionally, the add() and
remove() methods. AbstractSequentialList implements all other List methods in terms of
these methods. Some subclasses may want to override additional methods to improve performance. In
addition, it is conventional that all List implementations define two constructors: one that accepts no
arguments and another that accepts a Collection of initial elements for the list.

public abstract class AbstractSequentialList extends AbstractList {

// Protected Constructors

protected AbstractSequentialList ();

// Public Methods Overriding AbstractList

public void add (int index, Object element);

public boolean addAll (int index, Collection c);

public Object get (int index);

public Iterator iterator ();

public abstract ListIterator listIterator (int index);

public Object remove (int index);

public Object set (int index, Object element);

}

Hierarchy: Object-->AbstractCollection(Collection)--
>AbstractList(java.util.List(Collection))-->AbstractSequentialList

Subclasses: LinkedList

AbstractSet Java 1.2

file:///C|/orielly/jnut/ch23_01.htm (7 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

java.util collection

This abstract class is a partial implementation of the Set interface that makes it easy to create custom
Set implementations. Since Set defines the same methods as Collection, you can subclass
AbstractSet exactly as you would subclass AbstractCollection. See
AbstractCollection for details. Note, however, that when subclassing AbstractSet, you should
be sure that your add() method and your constructors do not allow duplicate elements to be added to the
set. See also AbstractList.

public abstract class AbstractSet extends AbstractCollection implements Set {

// Protected Constructors

protected AbstractSet ();

// Methods Implementing Set

public boolean equals (Object o);

public int hashCode ();

}

Hierarchy: Object-->AbstractCollection(Collection)--
>AbstractSet(Set(Collection))

Subclasses: HashSet, TreeSet

ArrayList Java 1.2

java.util cloneable serializable collection

This class is a List implementation based on an array (that is recreated as necessary as the list grows or
shrinks). ArrayList implements all optional List and Collection methods and allows list
elements of any type (including null). Because ArrayList is based on an array, the get() and
set() methods are very efficient. (This is not the case for the LinkedList implementation, for
example.) ArrayList is a general-purpose implementation of List and is quite commonly used.
ArrayList is very much like the Vector class, except that its methods are not synchronized. If you
are using an ArrayList in a multithreaded environment, you should explicitly synchronize any
modifications to the list, or wrap the list with Collections.synchronizedList(). See List and
Collection for details on the methods of ArrayList. See also LinkedList.

An ArrayList has a capacity, which is the number of elements in the internal array that contains the

file:///C|/orielly/jnut/ch23_01.htm (8 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

elements of the list. When the number of elements exceeds the capacity, a new array, with a larger
capacity, must be created. In addition to the List and Collection methods, ArrayList defines a
couple of methods that help you manage this capacity. If you know in advance how many elements an
ArrayList will contain, you can call ensureCapacity(), which can increase efficiency by
avoiding incremental reallocation of the internal array. You can also pass an initial capacity value to the
ArrayList() constructor. Finally, if an ArrayList has reached its final size and will not change in
the future, you can call trimToSize() to reallocate the internal array with a capacity that matches the
list size exactly. When the ArrayList will have a long lifetime, this can be a useful technique to reduce
memory usage.

public class ArrayList extends AbstractList implements Cloneable, java.util.ListSerializable {

// Public Constructors

public ArrayList ();

public ArrayList (int initialCapacity);

public ArrayList (Collection c);

// Public Instance Methods

public void ensureCapacity (int minCapacity);

public void trimToSize ();

// Methods Implementing List

public boolean add (Object o);

public void add (int index, Object element);

public boolean addAll (Collection c);

public boolean addAll (int index, Collection c);

public void clear ();

public boolean contains (Object elem);

public Object get (int index);

public int indexOf (Object elem);

public boolean isEmpty (); default:true

public int lastIndexOf (Object elem);

public Object remove (int index);

public Object set (int index, Object element);

public int size ();

public Object[] toArray ();

public Object[] toArray (Object[] a);

// Protected Methods Overriding AbstractList

protected void removeRange (int fromIndex, int toIndex);

// Public Methods Overriding Object

file:///C|/orielly/jnut/ch23_01.htm (9 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

public Object clone ();

}

Hierarchy: Object-->AbstractCollection(Collection)--
>AbstractList(java.util.List(Collection))--
>ArrayList(Cloneable,java.util.List(Collection),Serializable)

Type Of: java.awt.dnd.DragGestureRecognizer.events,
java.beans.beancontext.BeanContextServicesSupport.bcsListeners,
java.beans.beancontext.BeanContextSupport.bcmListeners

Arrays Java 1.2

java.util

This class defines static methods for sorting, searching, and performing other useful operations on arrays.
It also defines the asList() method, which returns a List wrapper around a specified array of objects.
Any changes made to the List are also made to the underlying array. This is a powerful method that
allows any array of objects to be manipulated in any of the ways a List can be manipulated. It provides
a link between arrays and the Java collections framework.

The various sort() methods sort an array (or a specified portion of an array) in place. Variants of the
method are defined for arrays of each primitive type and for arrays of Object. For arrays of primitive
types, the sorting is done according to the natural ordering of the type. For arrays of objects, the sorting is
done according to the specified Comparator, or, if the array contains only
java.lang.Comparable objects, according to the ordering defined by that interface. When sorting
an array of objects, a stable sorting algorithm is used so that the relative ordering of equal objects is not
disturbed. (This allows repeated sorts to order objects by key and subkey, for example.)

The binarySearch() methods perform an efficient search (in logarithmic time) of a sorted array for a
specified value. If a match is found in the array, binarySearch() returns the index of the match. If no
match is found, the method returns a negative number. For a negative return value r, the index -(r+1)
specifies the array index at which the specified value can be inserted to maintain the sorted order of the
array. When the array to be searched is an array of objects, the elements of the array must all implement
java.lang.Comparable, or you must provide a Comparator object to compare them.

The equals() methods test whether two arrays are equal. Two arrays of primitive type are equal if they
contain the same number of elements and if corresponding pairs of elements are equal according to the ==
operator. Two arrays of objects are equal if they contain the same number of elements and if
corresponding pairs of elements are equal according to the equals() method defined by those objects.

file:///C|/orielly/jnut/ch23_01.htm (10 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

The fill() methods fill an array or a specified range of an array with the specified value.

public class Arrays {

// No Constructor

// Public Class Methods

public static java.util.List asList (Object[] a);

public static int binarySearch (short[] a, short key);

public static int binarySearch (Object[] a, Object key);

public static int binarySearch (long[] a, long key);

public static int binarySearch (int[] a, int key);

public static int binarySearch (double[] a, double key);

public static int binarySearch (byte[] a, byte key);

public static int binarySearch (char[] a, char key);

public static int binarySearch (float[] a, float key);

public static int binarySearch (Object[] a, Object key, Comparator c);

public static boolean equals (boolean[] a, boolean[] a2);

public static boolean equals (byte[] a, byte[] a2);

public static boolean equals (float[] a, float[] a2);

public static boolean equals (double[] a, double[] a2);

public static boolean equals (int[] a, int[] a2);

public static boolean equals (long[] a, long[] a2);

public static boolean equals (char[] a, char[] a2);

public static boolean equals (short[] a, short[] a2);

public static boolean equals (Object[] a, Object[] a2);

public static void fill (double[] a, double val);

public static void fill (char[] a, char val);

public static void fill (short[] a, short val);

public static void fill (Object[] a, Object val);

public static void fill (float[] a, float val);

public static void fill (byte[] a, byte val);

public static void fill (int[] a, int val);

public static void fill (long[] a, long val);

public static void fill (boolean[] a, boolean val);

public static void fill (Object[] a, int fromIndex, int toIndex, Object val);

public static void fill (boolean[] a, int fromIndex, int toIndex, boolean val);

file:///C|/orielly/jnut/ch23_01.htm (11 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

public static void fill (byte[] a, int fromIndex, int toIndex, byte val);

public static void fill (float[] a, int fromIndex, int toIndex, float val);

public static void fill (short[] a, int fromIndex, int toIndex, short val);

public static void fill (int[] a, int fromIndex, int toIndex, int val);

public static void fill (long[] a, int fromIndex, int toIndex, long val);

public static void fill (double[] a, int fromIndex, int toIndex, double val);

public static void fill (char[] a, int fromIndex, int toIndex, char val);

public static void sort (char[] a);

public static void sort (short[] a);

public static void sort (int[] a);

public static void sort (byte[] a);

public static void sort (double[] a);

public static void sort (float[] a);

public static void sort (long[] a);

public static void sort (Object[] a);

public static void sort (Object[] a, Comparator c);

public static void sort (short[] a, int fromIndex, int toIndex);

public static void sort (Object[] a, int fromIndex, int toIndex);

public static void sort (byte[] a, int fromIndex, int toIndex);

public static void sort (char[] a, int fromIndex, int toIndex);

public static void sort (float[] a, int fromIndex, int toIndex);

public static void sort (double[] a, int fromIndex, int toIndex);

public static void sort (int[] a, int fromIndex, int toIndex);

public static void sort (long[] a, int fromIndex, int toIndex);

public static void sort (Object[] a, int fromIndex, int toIndex, Comparator c);

}

BitSet Java 1.0

java.util cloneable serializable PJ1.1

This class defines an arbitrarily large set of bits. Instance methods allow you to set, clear, and query
individual bits in the set. You can also perform bitwise boolean arithmetic on the bits in BitSet objects.
This class can be used as an extremely compact array of boolean values, although reading and writing
those values is slower than normal array access.

file:///C|/orielly/jnut/ch23_01.htm (12 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

public class BitSet implements Cloneable, Serializable {

// Public Constructors

public BitSet ();

public BitSet (int nbits);

// Public Instance Methods

public void and (BitSet set);

1.2 public void andNot (BitSet set);

public void clear (int bitIndex);

public boolean get (int bitIndex);

1.2 public int length ();

public void or (BitSet set);

public void set (int bitIndex);

public int size ();

public void xor (BitSet set);

// Public Methods Overriding Object

public Object clone ();

public boolean equals (Object obj);

public int hashCode ();

public String toString ();

}

Hierarchy: Object-->BitSet(Cloneable,Serializable)

Passed To: BitSet.{and(), andNot(), or(), xor()},
javax.swing.text.html.parser.DTD.defineElement()

Type Of: javax.swing.text.html.parser.Element.{exclusions, inclusions}

Calendar Java 1.1

java.util cloneable serializable PJ1.1

This abstract class defines methods that perform date and time arithmetic. It also includes methods that
convert dates and times to and from the machine-usable millisecond format used by the Date class and
units such as minutes, hours, days, weeks, months, and years that are more useful to humans. As an
abstract class, Calendar cannot be directly instantiated. Instead, it provides static getInstance()

file:///C|/orielly/jnut/ch23_01.htm (13 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

methods that return instances of a Calendar subclass suitable for use in a specified or default locale
with a specified or default time zone. See also Date, DateFormat, and TimeZone.

Calendar defines a number of useful constants. Some of these are values that represent days of the
week and months of the year. Other constants, such as HOUR and DAY_OF_WEEK, represent various
fields of date and time information. These field constants are passed to a number of Calendar methods,
such as get() and set(), in order to indicate what particular date or time field is desired.

setTime() and the various set() methods set the date represented by a Calendar object. The
add() method adds (or subtracts) values to a calendar field, incrementing the next larger field when the
field being set rolls over. roll() does the same, without modifying anything but the specified field.
before() and after() compare two Calendar objects. Many of the methods of the Calendar
class are replacements for methods of Date that have been deprecated as of Java 1.1. While the
Calendar class converts a time value to its various hour, day, month, and other fields, it is not intended
to present those fields in a form suitable for display to the end user. That function is performed by the
java.text.DateFormat class, which handles internationalization issues.

public abstract class Calendar implements Cloneable, Serializable {

// Protected Constructors

protected Calendar ();

protected Calendar (TimeZone zone, Locale aLocale);

// Public Constants

public static final int AM ; =0

public static final int AM_PM ; =9

public static final int APRIL ; =3

public static final int AUGUST ; =7

public static final int DATE ; =5

public static final int DAY_OF_MONTH ; =5

public static final int DAY_OF_WEEK ; =7

public static final int DAY_OF_WEEK_IN_MONTH ; =8

public static final int DAY_OF_YEAR ; =6

public static final int DECEMBER ; =11

public static final int DST_OFFSET ; =16

public static final int ERA ; =0

public static final int FEBRUARY ; =1

public static final int FIELD_COUNT ; =17

public static final int FRIDAY ; =6

public static final int HOUR ; =10

file:///C|/orielly/jnut/ch23_01.htm (14 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

public static final int HOUR_OF_DAY ; =11

public static final int JANUARY ; =0

public static final int JULY ; =6

public static final int JUNE ; =5

public static final int MARCH ; =2

public static final int MAY ; =4

public static final int MILLISECOND ; =14

public static final int MINUTE ; =12

public static final int MONDAY ; =2

public static final int MONTH ; =2

public static final int NOVEMBER ; =10

public static final int OCTOBER ; =9

public static final int PM ; =1

public static final int SATURDAY ; =7

public static final int SECOND ; =13

public static final int SEPTEMBER ; =8

public static final int SUNDAY ; =1

public static final int THURSDAY ; =5

public static final int TUESDAY ; =3

public static final int UNDECIMBER ; =12

public static final int WEDNESDAY ; =4

public static final int WEEK_OF_MONTH ; =4

public static final int WEEK_OF_YEAR ; =3

public static final int YEAR ; =1

public static final int ZONE_OFFSET ; =15

// Public Class Methods

public static Locale[] getAvailableLocales (); synchronized

public static Calendar getInstance (); synchronized

public static Calendar getInstance (Locale aLocale); synchronized

public static Calendar getInstance (TimeZone zone); synchronized

public static Calendar getInstance (TimeZone zone, Locale aLocale); synchronized

// Property Accessor Methods (by property name)

public int getFirstDayOfWeek ();

public void setFirstDayOfWeek (int value);

public boolean isLenient ();

file:///C|/orielly/jnut/ch23_01.htm (15 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

public void setLenient (boolean lenient);

public int getMinimalDaysInFirstWeek ();

public void setMinimalDaysInFirstWeek (int value);

public final java.util.Date getTime ();

public final void setTime (java.util.Date date);

public TimeZone getTimeZone ();

public void setTimeZone (TimeZone value);

// Public Instance Methods

public abstract void add (int field, int amount);

public boolean after (Object when);

public boolean before (Object when);

public final void clear ();

public final void clear (int field);

public final int get (int field);

1.2 public int getActualMaximum (int field);

1.2 public int getActualMinimum (int field);

public abstract int getGreatestMinimum (int field);

public abstract int getLeastMaximum (int field);

public abstract int getMaximum (int field);

public abstract int getMinimum (int field);

public final boolean isSet (int field);

1.2 public void roll (int field, int amount);

public abstract void roll (int field, boolean up);

public final void set (int field, int value);

public final void set (int year, int month, int date);

public final void set (int year, int month, int date, int hour, int minute);

public final void set (int year, int month, int date, int hour, int minute, int second);

// Public Methods Overriding Object

public Object clone ();

public boolean equals (Object obj);

1.2 public int hashCode ();

public String toString ();

// Protected Instance Methods

protected void complete ();

protected abstract void computeFields ();

file:///C|/orielly/jnut/ch23_01.htm (16 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

protected abstract void computeTime ();

protected long getTimeInMillis ();

protected final int internalGet (int field);

protected void setTimeInMillis (long millis);

// Protected Instance Fields

protected boolean areFieldsSet ;

protected int[] fields ;

protected boolean[] isSet ;

protected boolean isTimeSet ;

protected long time ;

}

Hierarchy: Object-->Calendar(Cloneable,Serializable)

Subclasses: GregorianCalendar

Passed To: Too many methods to list.

Returned By: java.text.DateFormat.getCalendar(), Calendar.getInstance()

Type Of: java.text.DateFormat.calendar

Collection Java 1.2

java.util collection

This interface represents a group, or collection, of objects. The objects may or may not be ordered, and
the collection may or may not contain duplicate objects. Collection is not often implemented directly.
Instead, most collection classes implement one of the more specific subinterfaces: Set, an unordered
collection that does not allow duplicates, or List, an ordered collection that does allow duplicates.

The Collection type provides a general way to refer to any set, list, or other collection of objects; it
defines generic methods that work with any collection. contains() and containsAll() test
whether the Collection contains a specified object or all the objects in a given collection.
isEmpty() returns true if the Collection has no elements, or false otherwise. size() returns
the number of elements in the Collection. iterator() returns an Iterator object that allows
you to iterate through the objects in the collection. toArray() returns the objects in the Collection

file:///C|/orielly/jnut/ch23_01.htm (17 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

in a new array of type Object. Another version of toArray() takes an array as an argument and
stores all elements of the Collection (which must all be compatible with the array) into that array. If
the array is not big enough, the method allocates a new, larger array of the same type. If the array is too
big, the method stores null into the first empty element of the array. This version of toArray()
returns the array that was passed in or the new array, if one was allocated.

The previous methods all query or extract the contents of a collection. The Collection interface also
defines methods for modifying the contents of the collection. add() and addAll() add an object or a
collection of objects to a Collection. remove() and removeAll() remove an object or collection.
retainAll() is a variant that removes all objects except those in a specified Collection.
clear() removes all objects from the collection. All these modification methods except clear()
return true if the collection was modified as a result of the call. An interface cannot specify
constructors, but it is conventional that all implementations of Collection provide at least two
standard constructors: one that takes no arguments and creates an empty collection, and a copy
constructor that accepts a Collection object that specifies the initial contents of the new
Collection.

Implementations of Collection and its subinterfaces are not required to support all operations defined
by the Collection interface. All modification methods listed above are optional; an implementation
(such as an immutable Set implementation) that does not support them simply throws
java.lang.UnsupportedOperationException for these methods. Furthermore,
implementations are free to impose restrictions on the types of objects that can be members of a
collection. Some implementations might require elements to be of a particular type, for example, and
others might not allow null as an element.

See also Set, List, Map, and Collections.

public interface Collection {

// Public Instance Methods

public abstract boolean add (Object o);

public abstract boolean addAll (Collection c);

public abstract void clear ();

public abstract boolean contains (Object o);

public abstract boolean containsAll (Collection c);

public abstract boolean equals (Object o);

public abstract int hashCode ();

public abstract boolean isEmpty ();

public abstract Iterator iterator ();

public abstract boolean remove (Object o);

public abstract boolean removeAll (Collection c);

file:///C|/orielly/jnut/ch23_01.htm (18 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

public abstract boolean retainAll (Collection c);

public abstract int size ();

public abstract Object[] toArray ();

public abstract Object[] toArray (Object[] a);

}

Implementations: java.beans.beancontext.BeanContext, AbstractCollection,
java.util.List, Set

Passed To: Too many methods to list.

Returned By: java.awt.RenderingHints.values(),
java.security.Provider.values(),
java.security.cert.CertificateFactory.{generateCertificates(),
generateCRLs()},
java.security.cert.CertificateFactorySpi.{engineGenerateCertificates(),
engineGenerateCRLs()}, AbstractMap.values(),
Collections.{synchronizedCollection(), unmodifiableCollection()},
HashMap.values(), Hashtable.values(), Map.values(), TreeMap.values(),
java.util.jar.Attributes.values()

Type Of: java.beans.beancontext.BeanContextMembershipEvent.children

Collections Java 1.2

java.util

This class defines static methods and constants that are useful for working with collections and maps. One
of the most commonly used methods is sort(), which sorts a List in place (the list cannot be
immutable, of course). The sorting algorithm is stable, which means that equal elements retain the same
relative order. One version of sort() uses a specified Comparator to perform the sort; the other
relies on the natural ordering of the list elements and requires all the elements to implement
java.lang.Comparable.

A related method is binarySearch(). It efficiently (in logarithmic time) searches a sorted List for a
specified object and returns the index at which a matching object is found. If no match is found, it returns
a negative number. For a negative return value r, the value -(r+1) specifies the index at which the
specified object can be inserted into the list to maintain the sorted order of the list. As with sort(),
binarySearch() can be passed a Comparator that defines the order of the sorted list. If no

file:///C|/orielly/jnut/ch23_01.htm (19 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

Comparator is specified, the list elements must all implement Comparable, and the list is assumed to
be sorted according to the natural ordering defined by this interface.

The various methods whose names begin with synchronized return a thread-safe collection object
wrapped around the specified collection. Vector and Hashtable are the only two collection objects
thread-safe by default. Use these methods to obtain a synchronized wrapper object if you are using
any other type of Collection or Map in a multithreaded environment where more than one thread can
modify it.

The various methods whose names begin with unmodifiable function like synchronized
methods. They return a Collection or Map object wrapped around the specified collection. The
returned object is unmodifiable, however, so its add(), remove(), set(), put(), etc., methods all
throw java.lang.UnsupportedOperationException.

The Collections class also defines a number of miscellanous methods. copy() copies elements of a
source list into a destination list. enumeration() returns an Enumeration for a Collection,
which is useful when working with code that uses the old Enumeration interface instead of the newer
Iterator interface. fill() replaces all elements of the specified list with the specified object. The
min() and max() methods search an unordered Collection for the minimum and maximum
elements, according either to a specified Comparator or to the natural order defined by the
Comparable elements themselves. nCopies() creates a new immutable List that contains a
specified number of copies of a specified object. reverse() reverses the order of the elements in a list.
This method operates in place and therefore does not work for immutable lists. reverseOrder()
returns a convenient predefined Comparator object that can order Comparable objects into the
reverse of their natural ordering. shuffle() randomizes the order of elements in a list, using either an
internal source of randomness or the Random pseudo-random number generator you provide.
singleton() returns an unmodifiable set that contains only the specified object. The Collections
class also defines two related constants, EMPTY_LIST and EMPTY_SET, which are immutable List
and Set objects that contain no elements. In Java 1.3, singletonList() and singletonMap()
return an immutable list and an immutable map, respectively, each of which contains only a single entry.
The Collections class also defines related constants, EMPTY_LIST, EMPTY_SET, and EMPTY_MAP
(in Java 1.3), which are immutable List, Set, and Map objects that contain no elements.

See Arrays for methods that perform sorting and searching operations on arrays instead of collections.

public class Collections {

// No Constructor

// Public Constants

public static final java.util.List EMPTY_LIST ;

1.3 public static final Map EMPTY_MAP ;

public static final Set EMPTY_SET ;

file:///C|/orielly/jnut/ch23_01.htm (20 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

// Public Class Methods

public static int binarySearch (java.util.List list, Object key);

public static int binarySearch (java.util.List list, Object key, Comparator c);

public static void copy (java.util.List dest, java.util.List src);

public static Enumeration enumeration (Collection c);

public static void fill (java.util.List list, Object o);

public static Object max (Collection coll);

public static Object max (Collection coll, Comparator comp);

public static Object min (Collection coll);

public static Object min (Collection coll, Comparator comp);

public static java.util.List nCopies (int n, Object o);

public static void reverse (java.util.List l);

public static Comparator reverseOrder ();

public static void shuffle (java.util.List list);

public static void shuffle (java.util.List list, Random rnd);

public static Set singleton (Object o);

1.3 public static java.util.List singletonList (Object o);

1.3 public static Map singletonMap (Object key, Object value);

public static void sort (java.util.List list);

public static void sort (java.util.List list, Comparator c);

public static Collection synchronizedCollection (Collection c);

public static java.util.List synchronizedList (java.util.List list);

public static Map synchronizedMap (Map m);

public static Set synchronizedSet (Set s);

public static SortedMap synchronizedSortedMap (SortedMap m);

public static SortedSet synchronizedSortedSet (SortedSet s);

public static Collection unmodifiableCollection (Collection c);

public static java.util.List unmodifiableList (java.util.List list);

public static Map unmodifiableMap (Map m);

public static Set unmodifiableSet (Set s);

public static SortedMap unmodifiableSortedMap (SortedMap m);

public static SortedSet unmodifiableSortedSet (SortedSet s);

}

Comparator Java 1.2

file:///C|/orielly/jnut/ch23_01.htm (21 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

java.util

This interface defines a compare() method that specifies a total ordering for a set of objects, allowing
those objects to be sorted. The Comparator is used when the objects to be ordered do not have a natural
ordering defined by the Comparable interface, or when you want to order them using something other
than their natural ordering.

The compare() method is passed two objects. If the first argument is less than the second argument or
should be placed before the second argument in a sorted list, compare() should return a negative
integer. If the first argument is greater than the second argument or should be placed after the second
argument in a sorted list, compare() should return a positive integer. If the two objects are equivalent
or if their relative position in a sorted list does not matter, compare() should return 0. Comparator
implementations may assume that both Object arguments are of appropriate types and cast them as
desired. If either argument is not of the expected type, the compare() method throws a
ClassCastException.

Note that the magnitude of the numbers returned by compare() does not matter, only whether they are
less than, equal to, or greater than zero. In most cases, you should implement a Comparator so that
compare(o1,o2) returns 0 if and only if o1.equals(o2) returns true. This is particularly
important when using a Comparator to impose an ordering on a TreeSet or a TreeMap.

See Collections and Arrays for various methods that use Comparator objects for sorting and
searching. See also the related java.lang.Comparable interface.

public interface Comparator {

// Public Instance Methods

public abstract int compare (Object o1, Object o2);

public abstract boolean equals (Object obj);

}

Implementations: java.text.Collator

Passed To: Arrays.{binarySearch(), sort()}, Collections.{binarySearch(),
max(), min(), sort()}, TreeMap.TreeMap(), TreeSet.TreeSet()

Returned By: Collections.reverseOrder(), SortedMap.comparator(),
SortedSet.comparator(), TreeMap.comparator(), TreeSet.comparator()

Type Of: String.CASE_INSENSITIVE_ORDER

file:///C|/orielly/jnut/ch23_01.htm (22 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

ConcurrentModificationException Java 1.2

java.util serializable unchecked

Signals that a modification has been made to a data structure at the same time some other operation is in
progress and that, as a result, the correctness of the ongoing operation cannot be guaranteed. It is typically
thrown by an Iterator or ListIterator object to stop an iteration if it detects that the underlying
collection has been modified while the iteration is in progress.

public class ConcurrentModificationException extends RuntimeException {

// Public Constructors

public ConcurrentModificationException ();

public ConcurrentModificationException (String message);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->RuntimeException-
->ConcurrentModificationException

Date Java 1.0

java.util cloneable serializable comparable PJ1.1

This class represents dates and times and lets you work with them in a system-independent way. You can
create a Date by specifying the number of milliseconds from the epoch (midnight GMT, January 1st,
1970) or the year, month, date, and, optionally, the hour, minute, and second. Years are specified as the
number of years since 1900. If you call the Date constructor with no arguments, the Date is initialized
to the current time and date. The instance methods of the class allow you to get and set the various date
and time fields, to compare dates and times, and to convert dates to and from string representations. As of
Java 1.1, many of the date methods have been deprecated in favor of the methods of the Calendar class.

public class Date implements Cloneable, Comparable, Serializable {

// Public Constructors

public Date ();

public Date (String s);

file:///C|/orielly/jnut/ch23_01.htm (23 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

public Date (long date);

public Date (int year, int month, int date);

public Date (int year, int month, int date, int hrs, int min);

public Date (int year, int month, int date, int hrs, int min, int sec);

// Property Accessor Methods (by property name)

public long getTime ();

public void setTime (long time);

// Public Instance Methods

public boolean after (java.util.Date when);

public boolean before (java.util.Date when);

1.2 public int compareTo (java.util.Date anotherDate);

// Methods Implementing Comparable

1.2 public int compareTo (Object o);

// Public Methods Overriding Object

1.2 public Object clone ();

public boolean equals (Object obj);

public int hashCode ();

public String toString ();

// Deprecated Public Methods

public int getDate ();

public int getDay ();

public int getHours ();

public int getMinutes ();

public int getMonth ();

public int getSeconds ();

public int getTimezoneOffset ();

public int getYear ();

public static long parse (String s);

public void setDate (int date);

public void setHours (int hours);

public void setMinutes (int minutes);

public void setMonth (int month);

public void setSeconds (int seconds);

public void setYear (int year);

public String toGMTString ();

file:///C|/orielly/jnut/ch23_01.htm (24 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

public String toLocaleString ();

public static long UTC (int year, int month, int date, int hrs, int min, int sec);

}

Hierarchy: Object-->java.util.Date(Cloneable,Comparable,Serializable)

Subclasses: java.sql.Date, java.sql.Time, java.sql.Timestamp

Passed To: java.security.cert.X509Certificate.checkValidity(),
java.text.DateFormat.format(), java.text.SimpleDateFormat.{format(),
set2DigitYearStart()}, Calendar.setTime(), java.util.Date.{after(),
before(), compareTo()}, GregorianCalendar.setGregorianChange(),
SimpleTimeZone.inDaylightTime(), java.util.Timer.{schedule(),
scheduleAtFixedRate()}, TimeZone.inDaylightTime()

Returned By: java.security.KeyStore.getCreationDate(),
java.security.KeyStoreSpi.engineGetCreationDate(),
java.security.cert.X509Certificate.{getNotAfter(), getNotBefore()},
java.security.cert.X509CRL.{getNextUpdate(), getThisUpdate()},
java.security.cert.X509CRLEntry.getRevocationDate(),
java.text.DateFormat.parse(),
java.text.SimpleDateFormat.{get2DigitYearStart(), parse()},
Calendar.getTime(), GregorianCalendar.getGregorianChange()

Dictionary Java 1.0

java.util PJ1.1

This abstract class is the superclass of Hashtable. Other hashtable-like data structures might also
extend this class. See Hashtable for more information. In Java 1.2, the Map interface replaces the
functionality of this class.

public abstract class Dictionary {

// Public Constructors

public Dictionary ();

// Public Instance Methods

public abstract Enumeration elements ();

public abstract Object get (Object key);

file:///C|/orielly/jnut/ch23_01.htm (25 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

public abstract boolean isEmpty ();

public abstract Enumeration keys ();

public abstract Object put (Object key, Object value);

public abstract Object remove (Object key);

public abstract int size ();

}

Subclasses: Hashtable

Passed To: javax.swing.JSlider.setLabelTable(),
javax.swing.text.AbstractDocument.setDocumentProperties()

Returned By: javax.swing.JSlider.getLabelTable(),
javax.swing.text.AbstractDocument.getDocumentProperties()

EmptyStackException Java 1.0

java.util serializable unchecked PJ1.1

Signals that a Stack object is empty.

public class EmptyStackException extends RuntimeException {

// Public Constructors

public EmptyStackException ();

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->RuntimeException-
->EmptyStackException

Thrown By: java.awt.EventQueue.pop()

Enumeration Java 1.0

java.util PJ1.1

file:///C|/orielly/jnut/ch23_01.htm (26 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

This interface defines the methods necessary to enumerate, or iterate, through a set of values, such as the
set of values contained in a hashtable or binary tree. It is particularly useful for data structures, like
hashtables, for which elements cannot simply be looked up by index, as they can in arrays. An
Enumeration is usually not instantiated directly, but instead is created by the object that is to have its
values enumerated. A number of classes, such as Vector and Hashtable, have methods that return
Enumeration objects. In Java 1.2, the new Iterator interface is preferred over Enumeration.

To use an Enumeration object, you use its two methods in a loop. hasMoreElements() returns
true if there are more values to be enumerated and can determine whether a loop should continue.
Within a loop, a call to nextElement() returns a value from the enumeration. An Enumeration
makes no guarantees about the order in which the values are returned. The values in an Enumeration
can be iterated through only once; there is no way to reset it to the beginning.

public interface Enumeration {

// Public Instance Methods

public abstract boolean hasMoreElements ();

public abstract Object nextElement ();

}

Implementations: StringTokenizer, javax.naming.NamingEnumeration

Passed To: java.io.SequenceInputStream.SequenceInputStream(),
javax.naming.CompositeName.CompositeName(),
javax.naming.CompoundName.CompoundName(),
javax.swing.JTree.removeDescendantToggledPaths(),
javax.swing.text.AbstractDocument.AbstractElement.removeAttributes(),
javax.swing.text.AbstractDocument.AttributeContext.removeAttributes(),
javax.swing.text.MutableAttributeSet.removeAttributes(),
javax.swing.text.SimpleAttributeSet.removeAttributes(),
javax.swing.text.StyleContext.removeAttributes(),
javax.swing.text.StyleContext.NamedStyle.removeAttributes(),
javax.swing.text.html.StyleSheet.removeAttributes()

Returned By: Too many methods to list.

Type Of: javax.swing.tree.DefaultMutableTreeNode.EMPTY_ENUMERATION

EventListener Java 1.1

file:///C|/orielly/jnut/ch23_01.htm (27 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

java.util event listener PJ1.1

EventListener is a base interface for the event model that is used by AWT and Swing in Java 1.1 and
later. This interface defines no methods or constants; it serves simply as a tag that identifies objects that
act as event listeners. The event listener interfaces in the java.awt.event, java.beans, and
javax.swing.event packages extend this interface.

public interface EventListener {

}

Implementations: Too many classes to list.

Passed To: java.awt.AWTEventMulticaster.{addInternal(),
AWTEventMulticaster(), remove(), removeInternal(), save()},
javax.swing.event.EventListenerList.{add(), remove()}

Returned By: Too many methods to list.

Type Of: java.awt.AWTEventMulticaster.{a, b}

EventObject Java 1.1

java.util serializable event PJ1.1

EventObject serves as the superclass for all event objects used by the event model introduced in Java
1.1 for AWT and JavaBeans and also used by Swing in Java 1.2. This class defines a generic type of
event; it is extended by the more specific event classes in the java.awt, java.awt.event,
java.beans, and javax.swing.event packages. The only common feature shared by all events is
a source object, which is the object that, in some way, generated the event. The source object is passed to
the EventObject() constructor and is returned by the getSource() method.

public class EventObject implements Serializable {

// Public Constructors

public EventObject (Object source);

// Public Instance Methods

public Object getSource ();

// Public Methods Overriding Object

file:///C|/orielly/jnut/ch23_01.htm (28 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

public String toString ();

// Protected Instance Fields

protected transient Object source ;

}

Hierarchy: Object-->EventObject(Serializable)

Subclasses: Too many classes to list.

Passed To: javax.swing.AbstractCellEditor.{isCellEditable(),
shouldSelectCell()}, javax.swing.CellEditor.{isCellEditable(),
shouldSelectCell()}, javax.swing.DefaultCellEditor.{isCellEditable(),
shouldSelectCell()},
javax.swing.DefaultCellEditor.EditorDelegate.{isCellEditable(),
shouldSelectCell(), startCellEditing()},
javax.swing.JTable.editCellAt(),
javax.swing.tree.DefaultTreeCellEditor.{canEditImmediately(),
isCellEditable(), shouldSelectCell(), shouldStartEditingTimer()}

GregorianCalendar Java 1.1

java.util cloneable serializable PJ1.1

This concrete subclass of Calendar implements the standard solar calendar with years numbered from
the birth of Christ that is used is most locales throughout the world. You do not typically use this class
directly, but instead obtain a Calendar object suitable for the default locale by calling
Calendar.getInstance(). See Calendar for details on working with Calendar objects. There
is a discontinuity in the Gregorian calendar that represents the historical switch from the Julian calendar
to the Gregorian calendar. By default, GregorianCalendar assumes that this switch occurs on
October 15, 1582. Most programs need not be concerned with the switch.

public class GregorianCalendar extends Calendar {

// Public Constructors

public GregorianCalendar ();

public GregorianCalendar (TimeZone zone);

public GregorianCalendar (Locale aLocale);

public GregorianCalendar (TimeZone zone, Locale aLocale);

file:///C|/orielly/jnut/ch23_01.htm (29 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

public GregorianCalendar (int year, int month, int date);

public GregorianCalendar (int year, int month, int date, int hour, int minute);

public GregorianCalendar (int year, int month, int date, int hour, int minute, int second);

// Public Constants

public static final int AD ; =1

public static final int BC ; =0

// Public Instance Methods

public final java.util.Date getGregorianChange ();

public boolean isLeapYear (int year);

public void setGregorianChange (java.util.Date date);

// Public Methods Overriding Calendar

public void add (int field, int amount);

public boolean equals (Object obj);

1.2 public int getActualMaximum (int field);

1.2 public int getActualMinimum (int field);

public int getGreatestMinimum (int field);

public int getLeastMaximum (int field);

public int getMaximum (int field);

public int getMinimum (int field);

public int hashCode ();

public void roll (int field, boolean up);

public void roll (int field, int amount);

// Protected Methods Overriding Calendar

protected void computeFields ();

protected void computeTime ();

}

Hierarchy: Object-->Calendar(Cloneable,Serializable)-->GregorianCalendar

HashMap Java 1.2

java.util cloneable serializable collection

This class implements the Map interface using an internal hashtable. It supports all optional Map methods,

file:///C|/orielly/jnut/ch23_01.htm (30 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

allows key and value objects of any types, and allows null to be used as a key or a value. Because
HashMap is based on a hashtable data structure, the get() and put() methods are very efficient.
HashMap is much like the Hashtable class, except that the HashMap methods are not
synchronized (and are therefore faster), and HashMap allows null to be used as a key or a value. If
you are working in a multithreaded environment, or if compatibility with previous versions of Java is a
concern, use Hashtable. Otherwise, use HashMap.

If you know in advance approximately how many mappings a HashMap will contain, you can improve
efficiency by specifying initialCapacity when you call the HashMap() constructor. The initialCapacity
argument times the loadFactor argument should be greater than the number of mappings the HashMap
will contain. A good value for loadFactor is 0.75; this is also the default value. See Map for details on the
methods of HashMap. See also TreeMap and HashSet.

public class HashMap extends AbstractMap implements Cloneable, Map, Serializable {

// Public Constructors

public HashMap ();

public HashMap (int initialCapacity);

public HashMap (Map t);

public HashMap (int initialCapacity, float loadFactor);

// Methods Implementing Map

public void clear ();

public boolean containsKey (Object key);

public boolean containsValue (Object value);

public Set entrySet ();

public Object get (Object key);

public boolean isEmpty (); default:true

public Set keySet ();

public Object put (Object key, Object value);

public void putAll (Map t);

public Object remove (Object key);

public int size ();

public Collection values ();

// Public Methods Overriding Object

public Object clone ();

}

Hierarchy: Object-->AbstractMap(Map)-->HashMap(Cloneable,Map,Serializable)

file:///C|/orielly/jnut/ch23_01.htm (31 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

Type Of: java.beans.beancontext.BeanContextServicesSupport.services,
java.beans.beancontext.BeanContextSupport.children

HashSet Java 1.2

java.util cloneable serializable collection

This class implements Set using an internal hashtable. It supports all optional Set and Collection
methods and allows any type of object or null to be a member of the set. Because HashSet is based on
a hashtable, the basic add(), remove(), and contains() methods are all quite efficient. HashSet
makes no guarantee about the order in which the set elements are enumerated by the Iterator returned
by iterator(). The methods of HashSet are not synchronized. If you are using it in a
multithreaded environment, you must explicitly synchronize all code that modifies the set or obtain a
synchronized wrapper for it by calling Collections.synchronizedSet().

If you know in advance approximately how many mappings a HashSet will contain, you can improve
efficiency by specifying initialCapacity when you call the HashSet() constructor. The initialCapacity
argument times the loadFactor argument should be greater than the number of mappings the HashSet
will contain. A good value for loadFactor is 0.75; this is also the default value. See Set and
Collection for details on the methods of HashSet. See also TreeSet and HashMap.

public class HashSet extends AbstractSet implements Cloneable, Serializable, Set {

// Public Constructors

public HashSet ();

public HashSet (int initialCapacity);

public HashSet (Collection c);

public HashSet (int initialCapacity, float loadFactor);

// Methods Implementing Set

public boolean add (Object o);

public void clear ();

public boolean contains (Object o);

public boolean isEmpty (); default:true

public Iterator iterator ();

public boolean remove (Object o);

public int size ();

// Public Methods Overriding Object

file:///C|/orielly/jnut/ch23_01.htm (32 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

public Object clone ();

}

Hierarchy: Object-->AbstractCollection(Collection)--
>AbstractSet(Set(Collection))--
>HashSet(Cloneable,Serializable,Set(Collection))

Hashtable Java 1.0

java.util cloneable serializable collection PJ1.1

This class implements a hashtable data structure, which maps key objects to value objects and allows the
efficient lookup of the value associated with a given key. put() associates a value with a key in a
Hashtable. get() retrieves a value for a specified key. remove() deletes a key/value association.
keys() and elements() return Enumeration objects that allow you to iterate through the
complete set of keys and values stored in the table. Objects used as keys in a Hashtable must have
valid equals() and hashCode() methods (the versions inherited from Object are okay). null is
not legal as a key or value in a Hashtable.

Hashtable is a commonly used class and has been a part of the Java API since Java 1.0. In Java 1.2, it
has been enhanced to implement the Map interface, which defines some functionality in addition to the
Java 1.0 Hashtable methods. Hashtable is very similar to the HashMap class, but has
synchronized methods, which make it thread-safe but increase the overhead associated with it. If you
need thread safety or require compatibility with Java 1.0 or Java 1.1, use Hashtable. Otherwise, use
HashMap.

public class Hashtable extends Dictionary implements Cloneable, Map,Serializable {

// Public Constructors

public Hashtable ();

1.2 public Hashtable (Map t);

public Hashtable (int initialCapacity);

public Hashtable (int initialCapacity, float loadFactor);

// Public Instance Methods

public boolean contains (Object value); synchronized

// Methods Implementing Map

public void clear (); synchronized

public boolean containsKey (Object key); synchronized

file:///C|/orielly/jnut/ch23_01.htm (33 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

1.2 public boolean containsValue (Object value);

1.2 public Set entrySet ();

1.2 public boolean equals (Object o); synchronized

public Object get (Object key); synchronized

1.2 public int hashCode (); synchronized

public boolean isEmpty (); default:true

1.2 public Set keySet ();

public Object put (Object key, Object value); synchronized

1.2 public void putAll (Map t); synchronized

public Object remove (Object key); synchronized

public int size ();

1.2 public Collection values ();

// Public Methods Overriding Dictionary

public Enumeration elements (); synchronized

public Enumeration keys (); synchronized

// Public Methods Overriding Object

public Object clone (); synchronized

public String toString (); synchronized

// Protected Instance Methods

protected void rehash ();

}

Hierarchy: Object-->Dictionary-->Hashtable(Cloneable,Map,Serializable)

Subclasses: Properties, javax.swing.UIDefaults

Passed To: Too many methods to list.

Returned By: javax.naming.CannotProceedException.getEnvironment(),
javax.naming.Context.getEnvironment(),
javax.naming.InitialContext.getEnvironment(),
javax.servlet.http.HttpUtils.{parsePostData(), parseQueryString()},
javax.swing.JLayeredPane.getComponentToLayer(),
javax.swing.JSlider.createStandardLabels()

Type Of: java.awt.GridBagLayout.comptable,
javax.naming.CannotProceedException.environment,
javax.naming.InitialContext.myProps,

file:///C|/orielly/jnut/ch23_01.htm (34 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

javax.swing.JTable.{defaultEditorsByColumnClass,
defaultRenderersByColumnClass},
javax.swing.text.html.parser.DTD.{elementHash, entityHash},
javax.swing.undo.StateEdit.{postState, preState}

Iterator Java 1.2

java.util

This interface defines methods for iterating, or enumerating, the elements of a collection. The
hasNext() method returns true if there are more elements to be enumerated or false if all elements
have already been returned. The next() method returns the next element. These two methods make it
easy to loop through an iterator with code such as the following:

for(Iterator i = c.iterator(); i.hasNext();)
 processObject(i.next());

The Iterator interface is much like the Enumeration interface. In Java 1.2, Iterator is preferred
over Enumeration because it provides a well-defined way to safely remove elements from a collection
while the iteration is in progress. The remove() method removes the object most recently returned by
next() from the collection that is being iterated through. Note, however, that support for remove() is
optional; if an Iterator does not support remove(), it throws a
java.lang.UnsupportedOperationException when you call it. While you are iterating
through a collection, you are allowed to modify the collection only by calling the remove() method of
the Iterator. If the collection is modified in any other way while an iteration is ongoing, the
Iterator may fail to operate correctly,x or it may throw a
ConcurrentModificationException.

public interface Iterator {

// Public Instance Methods

public abstract boolean hasNext ();

public abstract Object next ();

public abstract void remove ();

}

Implementations: java.beans.beancontext.BeanContextSupport.BCSIterator,
ListIterator

Returned By: Too many methods to list.

file:///C|/orielly/jnut/ch23_01.htm (35 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

LinkedList Java 1.2

java.util cloneable serializable collection

This class implements the List interface in terms of a doubly linked list. It supports all optional methods
of List and Collection and allows list elements of any type, including null. Because
LinkedList is implemented with a linked list data structure, the get() and set() methods are
substantially less efficient than the same methods for an ArrayList. However, a LinkedList may be
more efficient when the add() and remove() methods are used frequently. The methods of
LinkedList are not synchronized. If you are using a LinkedList in a multithreaded
environment, you must explicitly synchronize any code that modifies the list or obtain a synchronized
wrapper object with Collections.synchronizedList().

In addition to the methods defined by the List interface, LinkedList defines methods to get the first
and last elements of the list, to add an element to the beginning or end of the list, and to remove the first
or last element of the list. These convenient and efficient methods make LinkedList well-suited for
use as a stack or queue. See List and Collection for details on the methods of LinkedList. See
also ArrayList.

public class LinkedList extends AbstractSequentialList implements Cloneable, java.util.List,
Serializable {

// Public Constructors

public LinkedList ();

public LinkedList (Collection c);

// Public Instance Methods

public void addFirst (Object o);

public void addLast (Object o);

public Object getFirst ();

public Object getLast ();

public Object removeFirst ();

public Object removeLast ();

// Methods Implementing List

public boolean add (Object o);

public void add (int index, Object element);

public boolean addAll (Collection c);

public boolean addAll (int index, Collection c);

file:///C|/orielly/jnut/ch23_01.htm (36 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

public void clear ();

public boolean contains (Object o);

public Object get (int index);

public int indexOf (Object o);

public int lastIndexOf (Object o);

public ListIterator listIterator (int index);

public boolean remove (Object o);

public Object remove (int index);

public Object set (int index, Object element);

public int size ();

public Object[] toArray ();

public Object[] toArray (Object[] a);

// Public Methods Overriding Object

public Object clone ();

}

Hierarchy: Object-->AbstractCollection(Collection)--
>AbstractList(java.util.List(Collection))-->AbstractSequentialList--
>LinkedList(Cloneable,java.util.List(Collection),Serializable)

List Java 1.2

java.util collection

This interface represents an ordered collection of objects. Each element in a List has an index, or
position, in the list, and elements can be inserted, queried, and removed by index. The first element of a
List has an index of 0. The last element in a list has index size()-1.

In addition to the methods defined by the superinterface, Collection, List defines a number of
methods for working with its indexed elements. get() and set() query and set the object at a
particular index, respectively. Versions of add() and addAll() that take an index argument insert an
object or Collection of objects at a specified index. The versions of add() and addAll() that do
not take an index argument insert an object or collection of objects at the end of the list. List defines a
version of remove() that removes the object at a specified index.

The iterator() method is just like the iterator() method of Collection, except that the
Iterator it returns is guaranteed to enumerate the elements of the List in order. listIterator()

file:///C|/orielly/jnut/ch23_01.htm (37 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

returns a ListIterator object, which is more powerful than a regular Iterator and allows the list
to be modified while iteration proceeds. listIterator() can take an index argument to specify
where in the list iteration should begin.

indexOf() and lastIndexOf() perform linear searches from the beginning and end, respectively,
of the list, searching for a specified object. Each method returns the index of the first matching object it
finds, or -1 if it does not find a match. Finally, subList() returns a List that contains only a specified
contiguous range of list elements. The returned list is simply a view into the original list, so changes in the
original List are visible in the returned List. This subList() method is particularly useful if you
want to sort, search, clear(), or otherwise manipulate only a partial range of a larger list.

An interface cannot specify constructors, but it is conventional that all implementations of List provide
at least two standard constructors: one that takes no arguments and creates an empty list, and a copy
constructor that accepts an arbitrary Collection object that specifies the initial contents of the new
List.

As with Collection, all List methods that change the contents of the list are optional, and
implementations that do not support them simply throw
java.lang.UnsupportedOperationException. Different implementations of List may have
significantly different efficiency characteristics. For example, the get() and set() methods of an
ArrayList are much more efficient than those of a LinkedList. On the other hand, the add() and
remove() methods of a LinkedList can be more efficient than those of an ArrayList. See also
Collection, Set, Map, ArrayList, and LinkedList.

public interface List extends Collection {

// Public Instance Methods

public abstract boolean add (Object o);

public abstract void add (int index, Object element);

public abstract boolean addAll (Collection c);

public abstract boolean addAll (int index, Collection c);

public abstract void clear ();

public abstract boolean contains (Object o);

public abstract boolean containsAll (Collection c);

public abstract boolean equals (Object o);

public abstract Object get (int index);

public abstract int hashCode ();

public abstract int indexOf (Object o);

public abstract boolean isEmpty ();

public abstract Iterator iterator ();

file:///C|/orielly/jnut/ch23_01.htm (38 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

public abstract int lastIndexOf (Object o);

public abstract ListIterator listIterator ();

public abstract ListIterator listIterator (int index);

public abstract boolean remove (Object o);

public abstract Object remove (int index);

public abstract boolean removeAll (Collection c);

public abstract boolean retainAll (Collection c);

public abstract Object set (int index, Object element);

public abstract int size ();

public abstract java.util.List subList (int fromIndex, int toIndex);

public abstract Object[] toArray ();

public abstract Object[] toArray (Object[] a);

}

Hierarchy: (java.util.List(Collection))

Implementations: AbstractList, ArrayList, LinkedList, Vector

Passed To: java.awt.dnd.DragGestureEvent.DragGestureEvent(),
Collections.{binarySearch(), copy(), fill(), reverse(), shuffle(),
sort(), synchronizedList(), unmodifiableList()}

Returned By: java.awt.dnd.DropTargetContext.getCurrentDataFlavorsAsList(),
java.awt.dnd.DropTargetDragEvent.getCurrentDataFlavorsAsList(),
java.awt.dnd.DropTargetDropEvent.getCurrentDataFlavorsAsList(),
AbstractList.subList(), Arrays.asList(), Collections.{nCopies(),
singletonList(), synchronizedList(), unmodifiableList()},
java.util.List.subList(), Vector.subList()

Type Of: Collections.EMPTY_LIST

ListIterator Java 1.2

java.util

This interface is an extension of Iterator for use with ordered collections, or lists. It defines methods
to iterate forward and backward through a list, to determine the list index of the elements being iterated,

file:///C|/orielly/jnut/ch23_01.htm (39 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

and, for mutable lists, to safely insert, delete, and edit elements in the list while the iteration is in progress.
For some lists, notably LinkedList, using an iterator to enumerate the list's elements may be
substantially more efficient than looping through the list by index and calling get() repeatedly.

hasNext() and next() are the most commonly used methods of ListIterator; they iterate
forward through the list. See Iterator for details. In addition to these two methods, however,
ListIterator also defines hasPrevious() and previous() that allow you to iterate backward
through the list. previous() returns the previous element on the list or throws a
NoSuchElementException if there is no previous element. hasPrevious() returns true if a
subsequent call to previous() returns an object. nextIndex() and previousIndex() return the
index of the object that would be returned by a subsequent call to next() or previous(). If next()
or previous() throw a NoSuchElementException, nextIndex() returns the size of the list,
and previousIndex() returns -1.

ListIterator defines three optionally supported methods that provide a safe way to modify the
contents of the underlying list while the iteration is in progress. add() inserts a new object into the list,
immediately before the object that would be returned by a subsequent call to next(). Calling add()
does not affect the value that is returned by next(), however. If you call previous() immediately
after calling add(), the method returns the object you just added. remove() deletes from the list the
object most recently returned by next() or previous(). You can only call remove() once per call
to next() or previous(). If you have called add(), you must call next() or previous() again
before calling remove(). set() replaces the object most recently returned by next() or
previous() with the specified object. If you have called add() or remove(), you must call
next() or previous() again before calling set(). Remember that support for the add(),
remove(), and set() methods is optional. Iterators for immutable lists never support them, of course.
An unsupported method throws a java.lang.UnsupportedOperationException when called.
Also, when an iterator is in use, all modifications should be made through the iterator rather than to the
list itself. If the underlying list is modified while an iteration is ongoing, the ListIterator may fail to
operate correctly or may throw a ConcurrentModificationException.

public interface ListIterator extends Iterator {

// Public Instance Methods

public abstract void add (Object o);

public abstract boolean hasNext ();

public abstract boolean hasPrevious ();

public abstract Object next ();

public abstract int nextIndex ();

public abstract Object previous ();

public abstract int previousIndex ();

public abstract void remove ();

file:///C|/orielly/jnut/ch23_01.htm (40 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

public abstract void set (Object o);

}

Hierarchy: (ListIterator(Iterator))

Returned By: AbstractList.listIterator(),
AbstractSequentialList.listIterator(), LinkedList.listIterator(),
java.util.List.listIterator()

ListResourceBundle Java 1.1

java.util PJ1.1

This abstract class provides a simple way to define a ResourceBundle. You may find it easier to
subclass ListResourceBundle than to subclass ResourceBundle directly.
ListResourceBundle provides implementations for the abstract handleGetObject() and
getKeys() methods defined by ResourceBundle and adds its own abstract getContents()
method a subclass must override. getContents() returns an Object[][]--an array of arrays of
objects. This array can have any number of elements. Each element of this array must itself be an array
with two elements: the first element of each subarray should be a String that specifies the name of a
resource, and the corresponding second element should be the value of that resource; this value can be an
Object of any desired type. See also ResourceBundle and PropertyResourceBundle.

public abstract class ListResourceBundle extends ResourceBundle {

// Public Constructors

public ListResourceBundle ();

// Public Methods Overriding ResourceBundle

public Enumeration getKeys ();

public final Object handleGetObject (String key);

// Protected Instance Methods

protected abstract Object[][] getContents ();

}

Hierarchy: Object-->ResourceBundle-->ListResourceBundle

Subclasses: java.text.resources.DateFormatZoneData,
java.text.resources.DateFormatZoneData_en,

file:///C|/orielly/jnut/ch23_01.htm (41 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

java.text.resources.LocaleElements,
java.text.resources.LocaleElements_en,
java.text.resources.LocaleElements_en_US,
javax.accessibility.AccessibleResourceBundle

Locale Java 1.1

java.util cloneable serializable PJ1.1

The Locale class represents a locale: a political, geographical, or cultural region that typically has a
distinct language and distinct customs and conventions for such things as formatting dates, times, and
numbers. The Locale class defines a number of constants that represent commonly used locales.
Locale also defines a static getDefault() method that returns the default Locale object, which
represents a locale value inherited from the host system. getAvailableLocales() returns the list of
all locales supported by the underlying system. If none of these methods for obtaining a Locale object
are suitable, you can explicitly create your own Locale object. To do this, you must specify a language
code, a country code, and an optional variant string. getISOCountries() and
getISOLanguages() return the list of supported country codes and language codes.

The Locale class does not implement any internationalization behavior itself; it merely serves as a
locale identifier for those classes that can localize their behavior. Given a Locale object, you can invoke
the various getDisplay methods to obtain a description of the locale suitable for display to a user.
These methods may themselves take a Locale argument, so the names of languages and countries can
be localized as appropriate.

public final class Locale implements Cloneable, Serializable {

// Public Constructors

public Locale (String language, String country);

public Locale (String language, String country, String variant);

// Public Constants

public static final Locale CANADA ;

public static final Locale CANADA_FRENCH ;

public static final Locale CHINA ;

public static final Locale CHINESE ;

public static final Locale ENGLISH ;

public static final Locale FRANCE ;

public static final Locale FRENCH ;

file:///C|/orielly/jnut/ch23_01.htm (42 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

public static final Locale GERMAN ;

public static final Locale GERMANY ;

public static final Locale ITALIAN ;

public static final Locale ITALY ;

public static final Locale JAPAN ;

public static final Locale JAPANESE ;

public static final Locale KOREA ;

public static final Locale KOREAN ;

public static final Locale PRC ;

public static final Locale SIMPLIFIED_CHINESE ;

public static final Locale TAIWAN ;

public static final Locale TRADITIONAL_CHINESE ;

public static final Locale UK ;

public static final Locale US ;

// Public Class Methods

1.2 public static Locale[] getAvailableLocales ();

public static Locale getDefault ();

1.2 public static String[] getISOCountries ();

1.2 public static String[] getISOLanguages ();

public static void setDefault (Locale newLocale); synchronized

// Property Accessor Methods (by property name)

public String getCountry ();

public final String getDisplayCountry ();

public String getDisplayCountry (Locale inLocale);

public final String getDisplayLanguage ();

public String getDisplayLanguage (Locale inLocale);

public final String getDisplayName ();

public String getDisplayName (Locale inLocale);

public final String getDisplayVariant ();

public String getDisplayVariant (Locale inLocale);

public String getISO3Country () throws MissingResourceException;

public String getISO3Language () throws MissingResourceException;

public String getLanguage ();

public String getVariant ();

// Public Methods Overriding Object

file:///C|/orielly/jnut/ch23_01.htm (43 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

public Object clone ();

public boolean equals (Object obj);

public int hashCode (); synchronized

public final String toString ();

}

Hierarchy: Object-->Locale(Cloneable,Serializable)

Passed To: Too many methods to list.

Returned By: Too many methods to list.

Type Of: Too many fields to list.

Map Java 1.2

java.util collection

This interface represents a collection of mappings, or associations, between key objects and value objects.
Hashtables and associative arrays are examples of maps. The set of key objects in a Map must not have
any duplicates; the collection of value objects is under no such constraint. The key objects should usually
be immutable objects, or, if they are not, care should be taken that they do not change while in use in a
Map. As of Java 1.2, the Map interface replaces the abstract Dictionary class. Although a Map is not a
Collection, the Map interface is still considered an integral part, along with Set, List, and others,
of the Java collections framework.

You can add a key/value association to a Map with the put() method. Use putAll() to copy all
mappings from one Map to another. Call get() to look up the value object associated with a specified
key object. Use remove() to delete the mapping between a specified key and its value, or use
clear() to delete all mappings from a Map. size() returns the number of mappings in a Map, and
isEmpty() tests whether the Map contains no mappings. containsKey() tests whether a Map
contains the specified key object, and containsValue() tests whether it contains the specified value.
(For most implementations, containsValue() is a much more expensive operation than
containsKey(), however.) keySet() returns a Set of all key objects in the Map. values()
returns a Collection (not a Set, since it may contain duplicates) of all value objects in the map.
entrySet() returns a Set of all mappings in a Map. The elements of this returned Set are
Map.Entry objects. The collections returned by values(), keySet(), and entrySet() are based
on the Map itself, so changes to the Map are reflected in the collections.

file:///C|/orielly/jnut/ch23_01.htm (44 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

An interface cannot specify constructors, but it is conventional that all implementations of Map provide at
least two standard constructors: one that takes no arguments and creates an empty map, and a copy
constructor that accepts a Map object that specifies the initial contents of the new Map.

Implementations are required to support all methods that query the contents of a Map, but support for
methods that modify the contents of a Map is optional. If an implementation does not support a particular
method, the implementation of that method simply throws a
java.lang.UnsupportedOperationException. See also Collection, Set, List,
HashMap, Hashtable, WeakHashMap, SortedMap, and TreeMap.

public interface Map {

// Inner Classes

;

// Public Instance Methods

public abstract void clear ();

public abstract boolean containsKey (Object key);

public abstract boolean containsValue (Object value);

public abstract Set entrySet ();

public abstract boolean equals (Object o);

public abstract Object get (Object key);

public abstract int hashCode ();

public abstract boolean isEmpty ();

public abstract Set keySet ();

public abstract Object put (Object key, Object value);

public abstract void putAll (Map t);

public abstract Object remove (Object key);

public abstract int size ();

public abstract Collection values ();

}

Implementations: java.awt.RenderingHints, AbstractMap, HashMap, Hashtable,
SortedMap, WeakHashMap, java.util.jar.Attributes

Passed To: Too many methods to list.

Returned By: java.awt.Font.getAttributes(),
java.awt.Toolkit.mapInputMethodHighlight(),
java.awt.datatransfer.FlavorMap.{getFlavorsForNatives(),

file:///C|/orielly/jnut/ch23_01.htm (45 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

getNativesForFlavors()},
java.awt.datatransfer.SystemFlavorMap.{getFlavorsForNatives(),
getNativesForFlavors()}, java.awt.im.InputMethodHighlight.getStyle(),
java.sql.Connection.getTypeMap(),
java.text.AttributedCharacterIterator.getAttributes(),
Collections.{singletonMap(), synchronizedMap(), unmodifiableMap()},
java.util.jar.Manifest.getEntries(), javax.sql.RowSet.getTypeMap()

Type Of: java.awt.Toolkit.desktopProperties, Collections.EMPTY_MAP,
java.util.jar.Attributes.map

Map.Entry Java 1.2

java.util

This interface represents a single mapping, or association, between a key object and a value object in a
Map. The entrySet() method of a Map returns a Set of Map.Entry objects that represent the set of
mappings in the map. Use the iterator() method of that Set to enumerate these Map.Entry
objects. Use getKey() and getValue() to obtain the key and value objects for the entry. Use the
optionally supported setValue() method to change the value of an entry. This method throws a
java.lang.UnsupportedOperationException if it is not supported by the implementation.

public static interface Map.Entry {

// Public Instance Methods

public abstract boolean equals (Object o);

public abstract Object getKey ();

public abstract Object getValue ();

public abstract int hashCode ();

public abstract Object setValue (Object value);

}

MissingResourceException Java 1.1

java.util serializable unchecked PJ1.1

Signals that no ResourceBundle can be located for the desired locale or that a named resource cannot
be found within a given ResourceBundle. getClassName() returns the name of the

file:///C|/orielly/jnut/ch23_01.htm (46 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

ResourceBundle class in question, and getKey() returns the name of the resource that cannot be
located.

public class MissingResourceException extends RuntimeException {

// Public Constructors

public MissingResourceException (String s, String className, String key);

// Public Instance Methods

public String getClassName ();

public String getKey ();

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->RuntimeException-
->MissingResourceException

Thrown By: Locale.{getISO3Country(), getISO3Language()},
ResourceBundle.{getBundle(), getObject(), getString(),
getStringArray(), handleGetObject()}

NoSuchElementException Java 1.0

java.util serializable unchecked PJ1.1

Signals that there are no elements in an object (such as a Vector) or that there are no more elements in
an object (such as an Enumeration).

public class NoSuchElementException extends RuntimeException {

// Public Constructors

public NoSuchElementException ();

public NoSuchElementException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->RuntimeException-
->NoSuchElementException

Observable Java 1.0

file:///C|/orielly/jnut/ch23_01.htm (47 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

java.util PJ1.1

This class is the superclass of all observable objects to be used in an object-oriented model/view
paradigm. The class methods allow you to add and delete Observer objects on the list maintained by an
Observable object and to notify all of the Observer objects on the list. Observer objects are
notified by invoking their update() methods. Observable also maintains an internal changed flag
that can be set and cleared by the Observable itself and queried with hasChanged() by any
interested observer.

public class Observable {

// Public Constructors

public Observable ();

// Public Instance Methods

public void addObserver (Observer o); synchronized

public int countObservers (); synchronized

public void deleteObserver (Observer o); synchronized

public void deleteObservers (); synchronized

public boolean hasChanged (); synchronized

public void notifyObservers ();

public void notifyObservers (Object arg);

// Protected Instance Methods

protected void clearChanged (); synchronized

protected void setChanged (); synchronized

}

Passed To: Observer.update()

Observer Java 1.0

java.util PJ1.1

This interface defines the update() method required for an object to observe subclasses of
Observable. An Observer registers interest in an Observable object by calling the
addObserver() method of Observable. Observer objects that have been registered in this way
have their update() methods invoked by the Observable when that object has changed.

file:///C|/orielly/jnut/ch23_01.htm (48 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

public interface Observer {

// Public Instance Methods

public abstract void update (Observable o, Object arg);

}

Passed To: Observable.{addObserver(), deleteObserver()}

Properties Java 1.0

java.util cloneable serializable collection PJ1.1

This class is an extension of Hashtable that allows key/value pairs to be read from and written to a
stream. The Properties class implements the system properties list, which supports user
customization by allowing programs to look up the values of named resources. Because the load() and
store() methods provide an easy way to read and write properties from and to a text stream, this class
provides a convenient way to implement an application configuration file.

When you create a Properties object, you may specify another Properties object that contains
default values. Keys (property names) and values are associated in a Properties object with the
Hashtable method put(). Values are looked up with getProperty(); if this method does not find
the key in the current Properties object, it looks in the default Properties object that was passed
to the constructor method. A default value can also be specified, in case the key is not found at all. Use
setProperty() to add a property name/value pair to the Properties object. This Java 1.2 method
is preferred over the inherited put() method because it enforces the constraint that property names and
values be strings.

propertyNames() returns an enumeration of all property names (keys) stored in the Properties
object and (recursively) all property names stored in the default Properties object associated with it.
list() prints the properties stored in a Properties object, which can be useful for debugging.
store() writes a Properties object to a stream, writing one property per line, in name=value
format. As of Java 1.2, store() is preferred over the deprecated save() method, which writes
properties in the same way but suppresses any I/O exceptions that may be thrown in the process. The
second argument to both store() and save() is a comment that is written out at the beginning of the
property file. Finally, load() reads key/value pairs from a stream and stores them in a Properties
object. It is suitable for reading both properties written with store() and hand-edited properties files.

public class Properties extends Hashtable {

// Public Constructors

file:///C|/orielly/jnut/ch23_01.htm (49 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

public Properties ();

public Properties (Properties defaults);

// Public Instance Methods

public String getProperty (String key);

public String getProperty (String key, String defaultValue);

public void list (java.io.PrintStream out);

1.1 public void list (java.io.PrintWriter out);

public void load (java.io.InputStream inStream) throws java.io.IOException; synchronized

public Enumeration propertyNames ();

1.2 public Object setProperty (String key, String value); synchronized

1.2
public void store (java.io.OutputStream out, String header) throws
java.io.IOException;

synchronized

// Protected Instance Fields

protected Properties defaults ;

// Deprecated Public Methods

public void save (java.io.OutputStream out, String header); synchronized

}

Hierarchy: Object-->Dictionary-->Hashtable(Cloneable,Map,Serializable)--
>Properties

Subclasses: java.security.Provider

Passed To: java.awt.Toolkit.getPrintJob(), System.setProperties(),
java.rmi.activation.ActivationGroupDesc.ActivationGroupDesc(),
java.sql.Driver.{connect(), getPropertyInfo()},
java.sql.DriverManager.getConnection(), Properties.Properties(),
javax.ejb.deployment.DeploymentDescriptor.setEnvironmentProperties(),
javax.naming.CompoundName.CompoundName(), org.omg.CORBA.ORB.{init(),
set_parameters()}

Returned By: System.getProperties(),
java.rmi.activation.ActivationGroupDesc.getPropertyOverrides(),
javax.ejb.EJBContext.getEnvironment(),
javax.ejb.deployment.DeploymentDescriptor.getEnvironmentProperties()

Type Of: Properties.defaults, javax.naming.CompoundName.mySyntax

file:///C|/orielly/jnut/ch23_01.htm (50 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

PropertyPermission Java 1.2

java.util serializable permission

This class is a java.security.Permission that governs read and write access to system properties
with System.getProperty() and System.setProperty(). A PropertyPermission
object has a name, or target, and a comma-separated list of actions. The name of the permission is the
name of the property of interest. The action string can be "read" for getProperty() access, "write" for
setProperty() access, or "read,write" for both types of access. PropertyPermission extends
java.security.BasicPermission, so the name of the property supports simple wildcards. The
name "*" represents any property name. If a name ends with ".*", it represents any property names that
share the specified prefix. For example, the name "java.*" represents "java.version", "java.vendor",
"java.vendor.url", and all other properties that begin with "java".

Granting access to system properties is not overtly dangerous, but caution is still necessary. Some
properties, such as "user.home", reveal details about the host system that malicious code can use to mount
an attack. Programmers writing system-level code and system administrators configuring security policies
may need to use this class, but applications never need to use it.

public final class PropertyPermission extends java.security.BasicPermission {

// Public Constructors

public PropertyPermission (String name, String actions);

// Public Methods Overriding BasicPermission

public boolean equals (Object obj);

public String getActions ();

public int hashCode ();

public boolean implies (java.security.Permission p);

public java.security.PermissionCollection newPermissionCollection ();

}

Hierarchy: Object--
>java.security.Permission(java.security.Guard,Serializable)--
>java.security.BasicPermission(Serializable)-->PropertyPermission

PropertyResourceBundle Java 1.1

file:///C|/orielly/jnut/ch23_01.htm (51 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

java.util PJ1.1

This class is a concrete subclass of ResourceBundle. It reads a Properties file from a specified
InputStream and implements the ResourceBundle API for looking up named resources from the
resulting Properties object. A Properties file contains lines of the form:

name=value

Each such line defines a named property with the specified String value. Although you can instantiate a
PropertyResourceBundle yourself, it is more common to simply define a Properties file and
then allow ResourceBundle.getBundle() to look up that file and return the necessary
PropertyResourceBundle object. See also Properties and ResourceBundle.

public class PropertyResourceBundle extends ResourceBundle {

// Public Constructors

public PropertyResourceBundle (java.io.InputStream stream) throws java.io.IOException;

// Public Methods Overriding ResourceBundle

public Enumeration getKeys ();

public Object handleGetObject (String key);

}

Hierarchy: Object-->ResourceBundle-->PropertyResourceBundle

Random Java 1.0

java.util serializable PJ1.1

This class implements a pseudo-random number generator suitable for games and similar applications. If
you need a cryptographic-strength source of pseudo-randomness, see
java.security.SecureRandom. nextDouble() and nextFloat() return a value between
0.0 and 1.0. nextLong() and the no-argument version of nextInt() return long and int values
distributed across the range of those data types. In Java 1.2, if you pass an argument to nextInt(), it
returns a value between zero (inclusive) and the specified number (exclusive). nextGaussian()
returns pseudo-random floating-point values with a Gaussian distribution; the mean of the values is 0.0
and the standard deviation is 1.0. nextBoolean() returns a pseudo-random boolean value, and
nextBytes() fills in the specified byte array with pseudo-random bytes. You can use the
setSeed() method or the optional constructor argument to initialize the pseudo-random number

file:///C|/orielly/jnut/ch23_01.htm (52 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

generator with some variable seed value other than the current time (the default) or with a constant to
ensure a repeatable sequence of pseudo-randomness.

public class Random implements Serializable {

// Public Constructors

public Random ();

public Random (long seed);

// Public Instance Methods

1.2 public boolean nextBoolean ();

1.1 public void nextBytes (byte[] bytes);

public double nextDouble ();

public float nextFloat ();

public double nextGaussian (); synchronized

public int nextInt ();

1.2 public int nextInt (int n);

public long nextLong ();

public void setSeed (long seed); synchronized

// Protected Instance Methods

protected int next (int bits); synchronized

}

Hierarchy: Object-->Random(Serializable)

Subclasses: java.security.SecureRandom

Passed To: java.math.BigInteger.BigInteger(), Collections.shuffle()

ResourceBundle Java 1.1

java.util PJ1.1

This abstract class allows subclasses to define sets of localized resources that can then be dynamically
loaded as needed by internationalized programs. Such resources may include user-visible text and images
that appear in an application, as well as more complex things such as Menu objects. Use getBundle()
to load a ResourceBundle subclass that is appropriate for the default or specified locale. Use
getObject(), getString(), and getStringArray() to look up a named resource in a bundle.

file:///C|/orielly/jnut/ch23_01.htm (53 of 72) [2/5/2003 7:51:53 PM]

The java.util Package (Java in a Nutshell)

To define a bundle, provide implementations of handleGetObject() and getKeys(). It is often
easier, however, to subclass ListResourceBundle or provide a Properties file that is used by
PropertyResourceBundle. The name of any localized ResourceBundle class you define should
include the locale language code, and, optionally, the locale country code.

public abstract class ResourceBundle {

// Public Constructors

public ResourceBundle ();

// Public Class Methods

public static final ResourceBundle getBundle (String baseName) throws
MissingResourceException;

public static final ResourceBundle getBundle (String baseName, Locale locale);

public static ResourceBundle getBundle (String baseName, Locale locale, ClassLoader loader)
throws MissingResourceException;

// Public Instance Methods

public abstract Enumeration getKeys ();

1.2 public Locale getLocale ();

public final Object getObject (String key) throws MissingResourceException;

public final String getString (String key) throws MissingResourceException;

public final String[] getStringArray (String key) throws MissingResourceException;

// Protected Instance Methods

protected abstract Object handleGetObject (String key) throws MissingResourceException;

protected void setParent (ResourceBundle parent);

// Protected Instance Fields

protected ResourceBundle parent ;

}

Subclasses: ListResourceBundle, PropertyResourceBundle

Passed To: java.awt.ComponentOrientation.getOrientation(),
java.awt.Window.applyResourceBundle(), ResourceBundle.setParent()

Returned By: ResourceBundle.getBundle()

Type Of: ResourceBundle.parent

Set Java 1.2

file:///C|/orielly/jnut/ch23_01.htm (54 of 72) [2/5/2003 7:51:54 PM]

The java.util Package (Java in a Nutshell)

java.util collection

This interface represents an unordered Collection of objects that contains no duplicate elements. That
is, a Set cannot contain two elements e1 and e2 where e1.equals(e2), and it can contain at most
one null element. The Set interface defines the same methods as its superinterface, Collection. It
constrains the add() and allAll() methods from adding duplicate elements to the Set.

An interface cannot specify constructors, but it is conventional that all implementations of Set provide at
least two standard constructors: one that takes no arguments and creates an empty set, and a copy
constructor that accepts a Collection object that specifies the initial contents of the new Set. This
copy constructor must ensure that duplicate elements are not added to the Set, of course.

As with Collection, the Set methods that modify the contents of the set are optional, and
implementations that do not support these methods simply throw
java.lang.UnsupportedOperationException. See also Collection, List, Map,
SortedSet, HashSet, and TreeSet.

public interface Set extends Collection {

// Public Instance Methods

public abstract boolean add (Object o);

public abstract boolean addAll (Collection c);

public abstract void clear ();

public abstract boolean contains (Object o);

public abstract boolean containsAll (Collection c);

public abstract boolean equals (Object o);

public abstract int hashCode ();

public abstract boolean isEmpty ();

public abstract Iterator iterator ();

public abstract boolean remove (Object o);

public abstract boolean removeAll (Collection c);

public abstract boolean retainAll (Collection c);

public abstract int size ();

public abstract Object[] toArray ();

public abstract Object[] toArray (Object[] a);

}

file:///C|/orielly/jnut/ch23_01.htm (55 of 72) [2/5/2003 7:51:54 PM]

The java.util Package (Java in a Nutshell)

Hierarchy: (Set(Collection))

Implementations: AbstractSet, HashSet, SortedSet

Passed To: java.text.AttributedCharacterIterator.{getRunLimit(),
getRunStart()}, Collections.{synchronizedSet(), unmodifiableSet()}

Returned By: Too many methods to list.

Type Of: Collections.EMPTY_SET

SimpleTimeZone Java 1.1

java.util cloneable serializable PJ1.1

This concrete subclass of TimeZone is a simple implementation of that abstract class that is suitable for
use in locales that use the Gregorian calendar. Programs do not normally need to instantiate this class
directly; instead, they use one of the static factory methods of TimeZone to obtain a suitable TimeZone
subclass. The only reason to instantiate this class directly is if you need to support a time zone with non-
standard-daylight-savings-time rules. In that case, you can call setStartRule() and
setEndRule() to specify the starting and ending dates of daylight-savings time for the time zone.

public class SimpleTimeZone extends TimeZone {

// Public Constructors

public SimpleTimeZone (int rawOffset, String ID);

public SimpleTimeZone (int rawOffset, String ID, int startMonth, int startDay, int
startDayOfWeek, int startTime, int endMonth, int endDay, int endDayOfWeek, int
endTime);

public SimpleTimeZone (int rawOffset, String ID, int startMonth, int startDay, int
startDayOfWeek, int startTime, int endMonth, int endDay, int endDayOfWeek, int
endTime, int dstSavings);

// Public Instance Methods

1.2 public int getDSTSavings ();

1.2 public void setDSTSavings (int millisSavedDuringDST);

1.2 public void setEndRule (int month, int dayOfMonth, int time);

public void setEndRule (int month, int dayOfWeekInMonth, int dayOfWeek, int time);

file:///C|/orielly/jnut/ch23_01.htm (56 of 72) [2/5/2003 7:51:54 PM]

The java.util Package (Java in a Nutshell)

1.2
public void setEndRule (int month, int dayOfMonth, int dayOfWeek, int time, boolean
after);

1.2 public void setStartRule (int month, int dayOfMonth, int time);

public void setStartRule (int month, int dayOfWeekInMonth, int dayOfWeek, int time);

1.2
public void setStartRule (int month, int dayOfMonth, int dayOfWeek, int time, boolean
after);

public void setStartYear (int year);

// Public Methods Overriding TimeZone

public Object clone ();

public int getOffset (int era, int year, int month, int day, int dayOfWeek, int millis);

public int getRawOffset ();

1.2 public boolean hasSameRules (TimeZone other);

public boolean inDaylightTime (java.util.Date date);

public void setRawOffset (int offsetMillis);

public boolean useDaylightTime ();

// Public Methods Overriding Object

public boolean equals (Object obj);

public int hashCode (); synchronized

public String toString ();

}

Hierarchy: Object-->TimeZone(Cloneable,Serializable)-->SimpleTimeZone

SortedMap Java 1.2

java.util collection

This interface represents a Map object that keeps its set of key objects in sorted order. As with Map, it is
conventional that all implementations of this interface define a no-argument constructor to create an
empty map and a copy constructor that accepts a Map object that specifies the initial contents of the
SortedMap. Furthermore, when creating a SortedMap, there should be a way to specify a
Comparator object to sort the key objects of the map. If no Comparator is specified, all key objects
must implement the java.lang.Comparable interface so they can be sorted in their natural order.
See also Map, TreeMap, and SortedSet.

The inherited keySet(), values(), and entrySet() methods return collections that can be iterated

file:///C|/orielly/jnut/ch23_01.htm (57 of 72) [2/5/2003 7:51:54 PM]

The java.util Package (Java in a Nutshell)

in the sorted order. firstKey() and lastKey() return the lowest and highest key values in the
SortedMap. subMap() returns a SortedMap that contains only mappings for keys from (and
including) the first specified key up to (but not including) the second specified key. headMap() returns
a SortedMap that contains mappings whose keys are less than (but not equal to) the specified key.
tailMap() returns a SortedMap that contains mappings whose keys are greater than or equal to the
specified key. subMap(), headMap(), and tailMap() return SortedMap objects that are simply
views of the original SortedMap; any changes in the original map are reflected in the returned map and
vice versa.

public interface SortedMap extends Map {

// Public Instance Methods

public abstract Comparator comparator ();

public abstract Object firstKey ();

public abstract SortedMap headMap (Object toKey);

public abstract Object lastKey ();

public abstract SortedMap subMap (Object fromKey, Object toKey);

public abstract SortedMap tailMap (Object fromKey);

}

Hierarchy: (SortedMap(Map))

Implementations: TreeMap

Passed To: Collections.{synchronizedSortedMap(), unmodifiableSortedMap()},
TreeMap.TreeMap()

Returned By: Collections.{synchronizedSortedMap(),
unmodifiableSortedMap()}, SortedMap.{headMap(), subMap(), tailMap()},
TreeMap.{headMap(), subMap(), tailMap()}

SortedSet Java 1.2

java.util collection

This interface is a Set that sorts its elements and guarantees that its iterator() method returns an
Iterator that enumerates the elements of the set in sorted order. As with the Set interface, it is
conventional for all implementations of SortedSet to provide a no-argument constructor that creates an
empty set and a copy constructor that expects a Collection object specifying the initial (unsorted)

file:///C|/orielly/jnut/ch23_01.htm (58 of 72) [2/5/2003 7:51:54 PM]

The java.util Package (Java in a Nutshell)

contents of the set. Furthermore, when creating a SortedSet, there should be a way to specify a
Comparator object that compares and sorts the elements of the set. If no Comparator is specified,
the elements of the set must all implement java.lang.Comparable so they can be sorted in their
natural order. See also Set, TreeSet, and SortedMap.

SortedSet defines a few methods in addition to those it inherits from the Set interface. first() and
last() return the lowest and highest objects in the set. headSet() returns all elements from the
beginning of the set up to (but not including) the specified element. tailSet() returns all elements
between (and including) the specified element and the end of the set. subSet() returns all elements of
the set from (and including) the first specified element up to (but excluding) the second specified element.
Note that all three methods return a SortedSet that is implemented as a view onto the original
SortedSet. Changes in the original set are visible through the returned set and vice versa.

public interface SortedSet extends Set {

// Public Instance Methods

public abstract Comparator comparator ();

public abstract Object first ();

public abstract SortedSet headSet (Object toElement);

public abstract Object last ();

public abstract SortedSet subSet (Object fromElement, Object toElement);

public abstract SortedSet tailSet (Object fromElement);

}

Hierarchy: (SortedSet(Set(Collection)))

Implementations: TreeSet

Passed To: Collections.{synchronizedSortedSet(), unmodifiableSortedSet()},
TreeSet.TreeSet()

Returned By: Collections.{synchronizedSortedSet(),
unmodifiableSortedSet()}, SortedSet.{headSet(), subSet(), tailSet()},
TreeSet.{headSet(), subSet(), tailSet()}

Stack Java 1.0

java.util cloneable serializable collection PJ1.1

file:///C|/orielly/jnut/ch23_01.htm (59 of 72) [2/5/2003 7:51:54 PM]

The java.util Package (Java in a Nutshell)

This class implements a last-in-first-out (LIFO) stack of objects. push() puts an object on the top of the
stack. pop() removes and returns the top object from the stack. peek() returns the top object without
removing it. In Java 1.2, you can instead use a LinkedList as a stack.

public class Stack extends Vector {

// Public Constructors

public Stack ();

// Public Instance Methods

public boolean empty ();

public Object peek (); synchronized

public Object pop (); synchronized

public Object push (Object item);

public int search (Object o); synchronized

}

Hierarchy: Object-->AbstractCollection(Collection)--
>AbstractList(java.util.List(Collection))--
>Vector(Cloneable,java.util.List(Collection),Serializable)-->Stack

StringTokenizer Java 1.0

java.util PJ1.1

When a StringTokenizer is instantiated with a String, it breaks the string up into tokens separated
by any of the characters in the specified string of delimiters. (For example, words separated by space and
tab characters are tokens.) The hasMoreTokens() and nextToken() methods obtain the tokens in
order. countTokens() returns the number of tokens in the string. StringTokenizer implements
the Enumeration interface, so you may also access the tokens with the familiar
hasMoreElements() and nextElement() methods. When you create a StringTokenizer,
you can specify a string of delimiter characters to use for the entire string, or you can rely on the default
whitespace delimiters. You can also specify whether the delimiters themselves should be returned as
tokens. Finally, you can optionally specify a new string of delimiter characters when you call
nextToken().

public class StringTokenizer implements Enumeration {

// Public Constructors

public StringTokenizer (String str);

file:///C|/orielly/jnut/ch23_01.htm (60 of 72) [2/5/2003 7:51:54 PM]

The java.util Package (Java in a Nutshell)

public StringTokenizer (String str, String delim);

public StringTokenizer (String str, String delim, boolean returnDelims);

// Public Instance Methods

public int countTokens ();

public boolean hasMoreTokens ();

public String nextToken ();

public String nextToken (String delim);

// Methods Implementing Enumeration

public boolean hasMoreElements ();

public Object nextElement ();

}

Hierarchy: Object-->StringTokenizer(Enumeration)

Timer Java 1.3 Beta

java.util

This class implements a timer: its methods allow you to schedule one or more runnable TimerTask
objects to be executed (once or repetitively) by a background thread at a specified time in the future. You
can create a timer with the Timer() constructor. The no-argument version of this constructor creates a
regular non-daemon background thread, which means that the Java VM will not terminate while the timer
thread is running. Pass true to the constructor if you want the background thread to be a daemon thread.

Once you have created a Timer, you can schedule TimerTask objects to be run in the future with the
various schedule() and scheduleAtFixedRate() methods. To schedule a task for a single
execution, use one of the two-argument schedule() methods and specify the desired execution time
either as a number of milliseconds in the future or as an absolute Date. If the number of milliseconds is
0, or if the Date object represents a time already passed, the task is scheduled for immediate execution.

To schedule a repeating task, use one of the three-argument versions of schedule() or
scheduleAtFixedRate(). These methods are passed an argument that specifies the time (either as a
number of milliseconds or as a Date object) of the first execution of the task and another argument,
period, that specifies the number of milliseconds between repeated executions of the task. The
schedule() methods schedule the task for fixed-interval execution. That is, each execution is
scheduled for period milliseconds after the previous execution ends. Use schedule() for tasks such as
animation, where it is important to have a relatively constant interval between executions. The
scheduleAtFixedRate() methods, on the other hand, schedule tasks for fixed-rate execution. That

file:///C|/orielly/jnut/ch23_01.htm (61 of 72) [2/5/2003 7:51:54 PM]

The java.util Package (Java in a Nutshell)

is, each repetition of the task is scheduled for period milliseconds after the previous execution begins. Use
scheduleAtFixedRate() for tasks, such as updating a clock display, that must occur at specific
absolute times rather than at fixed intervals.

A single Timer object can comfortably schedule many TimerTask objects. Note, however, that all
tasks scheduled by a single Timer share a single thread. If you are scheduling many rapidly repeating
tasks, or if some tasks take a long time to execute, other tasks may have their scheduled executions
delayed.

When you are done with a Timer, call cancel() to stop its associated thread from running. This is
particularly important when you are using a timer whose associated thread is not a daemon thread,
because otherwise the timer thread can prevent the Java VM from exiting. To cancel the execution of a
particular task, use the cancel() method of TimerTask.

public class Timer {

// Public Constructors

public Timer ();

public Timer (boolean isDaemon);

// Public Instance Methods

public void cancel ();

public void schedule (TimerTask task, long delay);

public void schedule (TimerTask task, java.util.Date time);

public void schedule (TimerTask task, java.util.Date firstTime, long period);

public void schedule (TimerTask task, long delay, long period);

public void scheduleAtFixedRate (TimerTask task, long delay, long period);

public void scheduleAtFixedRate (TimerTask task, java.util.Date firstTime, long period);

}

TimerTask Java 1.3 Beta

java.util runnable

This abstract Runnable class represents a task that is scheduled with a Timer object for one-time or
repeated execution in the future. You can define a task by subclassing TimerTask and implementing the
abstract run() method. Schedule the task for future execution by passing an instance of your subclass to
one of the schedule() or scheduleAtFixedRate() methods of Timer. The Timer object will
then invoke the run() method at the scheduled time or times.

file:///C|/orielly/jnut/ch23_01.htm (62 of 72) [2/5/2003 7:51:54 PM]

The java.util Package (Java in a Nutshell)

Call cancel() to cancel the one-time or repeated execution of a TimerTask(). This method returns
true if a pending execution was actually canceled. It returns false if the task has already been
canceled, was never scheduled, or was scheduled for one-time execution and has already been executed.
scheduledExecutionTime() returns the time in milliseconds at which the most recent execution of
the TimerTask was scheduled to occur. When the host system is heavily loaded, the run() method
may not be invoked exactly when scheduled. Some tasks may choose to do nothing if they are not
invoked on time. The run() method can compare the return values of
scheduledExecutionTime() and System.currentTimeMillis() to determine whether the
current invocation is sufficiently timely.

public abstract class TimerTask implements Runnable {

// Protected Constructors

public TimerTask ();

// Public Instance Methods

public boolean cancel ();

public long scheduledExecutionTime ();

// Methods Implementing Runnable

public abstract void run ();

}

Hierarchy: Object-->TimerTask(Runnable)

Passed To: java.util.Timer.{schedule(), scheduleAtFixedRate()}

TimeZone Java 1.1

java.util cloneable serializable PJ1.1

The TimeZone class represents a time zone; it is used with the Calendar and DateFormat classes.
As an abstract class, TimeZone cannot be directly instantiated. Instead, you should call the static
getDefault() method to obtain a TimeZone object that represents the time zone inherited from the
host operating system. Or you can call the static getTimeZone() method with the name of the desired
zone. You can obtain a list of the supported time-zone names by calling the static
getAvailableIDs() method.

Once you have a TimeZone object, you can call inDaylightTime() to determine whether, for a
given Date, daylight-savings time is in effect for that time zone. Call getID() to obtain the name of
the time zone. Call getOffset() for a given date to determine the number of milliseconds to add to

file:///C|/orielly/jnut/ch23_01.htm (63 of 72) [2/5/2003 7:51:54 PM]

The java.util Package (Java in a Nutshell)

GMT to convert to the time zone.

public abstract class TimeZone implements Cloneable, Serializable {

// Public Constructors

public TimeZone ();

// Public Constants

1.2 public static final int LONG ; =1

1.2 public static final int SHORT ; =0

// Public Class Methods

public static String[] getAvailableIDs (); synchronized

public static String[] getAvailableIDs (int rawOffset); synchronized

public static TimeZone getDefault (); synchronized

public static TimeZone getTimeZone (String ID); synchronized

public static void setDefault (TimeZone zone); synchronized

// Property Accessor Methods (by property name)

1.2 public final String getDisplayName ();

1.2 public final String getDisplayName (Locale locale);

1.2 public final String getDisplayName (boolean daylight, int style);

1.2 public String getDisplayName (boolean daylight, int style, Locale locale);

public String getID ();

public void setID (String ID);

public abstract int getRawOffset ();

public abstract void setRawOffset (int offsetMillis);

// Public Instance Methods

public abstract int getOffset (int era, int year, int month, int day, int dayOfWeek, int
milliseconds);

1.2 public boolean hasSameRules (TimeZone other);

public abstract boolean inDaylightTime (java.util.Date date);

public abstract boolean useDaylightTime ();

// Public Methods Overriding Object

public Object clone ();

}

Hierarchy: Object-->TimeZone(Cloneable,Serializable)

Subclasses: SimpleTimeZone

file:///C|/orielly/jnut/ch23_01.htm (64 of 72) [2/5/2003 7:51:54 PM]

The java.util Package (Java in a Nutshell)

Passed To: java.text.DateFormat.setTimeZone(), Calendar.{Calendar(),
getInstance(), setTimeZone()}, GregorianCalendar.GregorianCalendar(),
SimpleTimeZone.hasSameRules(), TimeZone.{hasSameRules(), setDefault()}

Returned By: java.text.DateFormat.getTimeZone(), Calendar.getTimeZone(),
TimeZone.{getDefault(), getTimeZone()}

TooManyListenersException Java 1.1

java.util serializable checked PJ1.1

Signals that an AWT component, JavaBeans component, or Swing component can have only one
EventListener object registered for some specific type of event. That is, it signals that a particular
event is a unicast event rather than a multicast event. This exception type serves a formal purpose in the
Java event model; its presence in the throws clause of an EventListener registration method (even
if the method never actually throws the exception) signals that an event is a unicast event.

public class TooManyListenersException extends Exception {

// Public Constructors

public TooManyListenersException ();

public TooManyListenersException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception--
>TooManyListenersException

Thrown By: java.awt.dnd.DragGestureRecognizer.addDragGestureListener(),
java.awt.dnd.DragSourceContext.addDragSourceListener(),
java.awt.dnd.DropTarget.addDropTargetListener(),
java.beans.beancontext.BeanContextServices.getService(),
java.beans.beancontext.BeanContextServicesSupport.getService()

TreeMap Java 1.2

java.util cloneable serializable collection

file:///C|/orielly/jnut/ch23_01.htm (65 of 72) [2/5/2003 7:51:54 PM]

The java.util Package (Java in a Nutshell)

This class implements the SortedMap interface using an internal Red-Black tree data structure and
guarantees that the keys and values of the mapping can be enumerated in ascending order of keys.
TreeMap supports all optional Map methods. The objects used as keys in a TreeMap must all be
mutually Comparable, or an appropriate Comparator must be provided when the TreeMap is
created. Because TreeMap is based on a binary tree data structure, the get(), put(), remove(), and
containsKey() methods operate in relatively efficient logarithmic time. If you do not need the sorting
capability of TreeMap, however, use HashMap instead, as it is even more efficient. See Map and
SortedMap for details on the methods of TreeMap. See also the related TreeSet class.

In order for a TreeMap to work correctly, the comparison method from the Comparable or
Comparator interface must be consistent with the equals() method. That is, the equals() method
must compare two objects as equal if and only if the comparison method also indicates those two objects
are equal.

The methods of TreeMap are not synchronized. If you are working in a multithreaded environment,
you must explicitly synchronize all code that modifies the TreeMap, or obtain a synchronized wrapper
with Collections.synchronizedMap().

public class TreeMap extends AbstractMap implements Cloneable, Serializable, SortedMap {

// Public Constructors

public TreeMap ();

public TreeMap (Map m);

public TreeMap (SortedMap m);

public TreeMap (Comparator c);

// Methods Implementing Map

public void clear ();

public boolean containsKey (Object key);

public boolean containsValue (Object value);

public Set entrySet ();

public Object get (Object key);

public Set keySet ();

public Object put (Object key, Object value);

public void putAll (Map map);

public Object remove (Object key);

public int size ();

public Collection values ();

// Methods Implementing SortedMap

public Comparator comparator ();

file:///C|/orielly/jnut/ch23_01.htm (66 of 72) [2/5/2003 7:51:54 PM]

The java.util Package (Java in a Nutshell)

public Object firstKey ();

public SortedMap headMap (Object toKey);

public Object lastKey ();

public SortedMap subMap (Object fromKey, Object toKey);

public SortedMap tailMap (Object fromKey);

// Public Methods Overriding Object

public Object clone ();

}

Hierarchy: Object-->AbstractMap(Map)--
>TreeMap(Cloneable,Serializable,SortedMap(Map))

TreeSet Java 1.2

java.util cloneable serializable collection

This class implements SortedSet, provides support for all optional methods, and guarantees that the
elements of the set can be enumerated in ascending order. In order to be sorted, the elements of the set
must all be mutually Comparable objects, or they must all be compatible with a Comparator object
that is specified when the TreeSet is created. TreeSet is implemented on top of a TreeMap, so its
add(), remove(), and contains() methods all operate in relatively efficient logarithmic time. If
you do not need the sorting capability of TreeSet, however, use HashSet instead, as it is significantly
more efficient. See Set, SortedSet, and Collection for details on the methods of TreeSet.

In order for a TreeSet to operate correctly, the Comparable or Comparator comparison method
must be consistent with the equals() method. That is, the equals() method must compare two
objects as equal if and only if the comparison method also indicates those two objects are equal.

The methods of TreeSet are not synchronized. If you are working in a multithreaded environment,
you must explicitly synchronize code that modifies the contents of the set,x or obtain a synchronized
wrapper with Collections.synchronizedSet().

public class TreeSet extends AbstractSet implements Cloneable, Serializable, SortedSet {

// Public Constructors

public TreeSet ();

public TreeSet (SortedSet s);

public TreeSet (Comparator c);

file:///C|/orielly/jnut/ch23_01.htm (67 of 72) [2/5/2003 7:51:54 PM]

The java.util Package (Java in a Nutshell)

public TreeSet (Collection c);

// Methods Implementing Set

public boolean add (Object o);

public boolean addAll (Collection c);

public void clear ();

public boolean contains (Object o);

public boolean isEmpty (); default:true

public Iterator iterator ();

public boolean remove (Object o);

public int size ();

// Methods Implementing SortedSet

public Comparator comparator ();

public Object first ();

public SortedSet headSet (Object toElement);

public Object last ();

public SortedSet subSet (Object fromElement, Object toElement);

public SortedSet tailSet (Object fromElement);

// Public Methods Overriding Object

public Object clone ();

}

Hierarchy: Object-->AbstractCollection(Collection)--
>AbstractSet(Set(Collection))--
>TreeSet(Cloneable,Serializable,SortedSet(Set(Collection)))

Vector Java 1.0

java.util cloneable serializable collection PJ1.1

This class implements an ordered collection--essentially an array--of objects that can grow or shrink as
necessary. Vector is useful when you need to keep track of a number of objects, but do not know in
advance how many there will be. Use setElementAt() to set the object at a given index of a
Vector. Use elementAt() to retrieve the object stored at a specified index. Note that you typically
must cast the Object returned by elementAt() to the desired type. Call add() to append an object
to the end of the Vector or to insert an object at any specified position. Use removeElementAt() to
delete the element at a specified index or removeElement() to remove a specified object from the

file:///C|/orielly/jnut/ch23_01.htm (68 of 72) [2/5/2003 7:51:54 PM]

The java.util Package (Java in a Nutshell)

vector. size() returns the number of objects currently in the Vector. elements() returns an
Enumeration that allows you to iterate through those objects. capacity() is not the same as
size(); it returns the maximum number of objects a Vector can hold before its internal storage must
be resized. Vector automatically resizes its internal storage for you, but if you know in advance how
many objects a Vector will contain, you can increase its efficiency by pre-allocating this many elements
with ensureCapacity().

Vector has been part of the java.util package since Java 1.0, but in Java 1.2 it has been enhanced
to implement the List interface. List defines new names for many of the methods already present in
Vector; see List for details on those methods. Vector is quite similar to the ArrayList class,
except that the methods of Vector are synchronized, which makes them thread-safe but increases
the overhead of calling them. If you need thread safety or need to be compatible with Java 1.0 or Java 1.1,
use Vector; otherwise, use ArrayList.

public class Vector extends AbstractList, implements Cloneable, java.util.List, Serializable {

// Public Constructors

public Vector ();

1.2 public Vector (Collection c);

public Vector (int initialCapacity);

public Vector (int initialCapacity, int capacityIncrement);

// Public Instance Methods

public void addElement (Object obj); synchronized

public int capacity ();

public void copyInto (Object[] anArray); synchronized

public Object elementAt (int index); synchronized

public Enumeration elements ();

public void ensureCapacity (int minCapacity); synchronized

public Object firstElement (); synchronized

public int indexOf (Object elem, int index); synchronized

public void insertElementAt (Object obj, int index); synchronized

public Object lastElement (); synchronized

public int lastIndexOf (Object elem, int index); synchronized

public void removeAllElements (); synchronized

public boolean removeElement (Object obj); synchronized

public void removeElementAt (int index); synchronized

public void setElementAt (Object obj, int index); synchronized

public void setSize (int newSize); synchronized

file:///C|/orielly/jnut/ch23_01.htm (69 of 72) [2/5/2003 7:51:54 PM]

The java.util Package (Java in a Nutshell)

public void trimToSize (); synchronized

// Methods Implementing List

1.2 public boolean add (Object o); synchronized

1.2 public void add (int index, Object element);

1.2 public boolean addAll (Collection c); synchronized

1.2 public boolean addAll (int index, Collection c); synchronized

1.2 public void clear ();

public boolean contains (Object elem);

1.2 public boolean containsAll (Collection c); synchronized

1.2 public boolean equals (Object o); synchronized

1.2 public Object get (int index); synchronized

1.2 public int hashCode (); synchronized

public int indexOf (Object elem);

public boolean isEmpty (); default:true

public int lastIndexOf (Object elem);

1.2 public boolean remove (Object o);

1.2 public Object remove (int index); synchronized

1.2 public boolean removeAll (Collection c); synchronized

1.2 public boolean retainAll (Collection c); synchronized

1.2 public Object set (int index, Object element); synchronized

public int size ();

1.2 public java.util.List subList (int fromIndex, int toIndex);

1.2 public Object[] toArray (); synchronized

1.2 public Object[] toArray (Object[] a); synchronized

// Protected Methods Overriding AbstractList

1.2 protected void removeRange (int fromIndex, int toIndex);

// Public Methods Overriding AbstractCollection

public String toString (); synchronized

// Public Methods Overriding Object

public Object clone (); synchronized

// Protected Instance Fields

protected int capacityIncrement ;

protected int elementCount ;

protected Object[] elementData ;

}

file:///C|/orielly/jnut/ch23_01.htm (70 of 72) [2/5/2003 7:51:54 PM]

The java.util Package (Java in a Nutshell)

Hierarchy: Object-->AbstractCollection(Collection)--
>AbstractList(java.util.List(Collection))--
>Vector(Cloneable,java.util.List(Collection),Serializable)

Subclasses: Stack

Passed To: Too many methods to list.

Returned By: java.awt.image.BufferedImage.getSources(),
java.awt.image.RenderedImage.getSources(),
java.awt.image.renderable.ParameterBlock.{getParameters(),
getSources()}, java.awt.image.renderable.RenderableImage.getSources(),
java.awt.image.renderable.RenderableImageOp.getSources(),
javax.swing.table.DefaultTableModel.{convertToVector(),
getDataVector()}, javax.swing.text.GapContent.getPositionsInRange(),
javax.swing.text.StringContent.getPositionsInRange()

Type Of: Too many fields to list.

WeakHashMap Java 1.2

java.util collection

This class implements Map using an internal hashtable. It is similar in features and performance to
HashMap, except that it uses the capabilities of the java.lang.ref package, so that the key-to-value
mappings it maintains do not prevent the key objects from being reclaimed by the garbage collector.
When there are no more references to a key object except for the weak reference maintained by the
WeakHashMap, the garbage collector reclaims the object, and the WeakHashMap deletes the mapping
between the reclaimed key and its associated value. If there are no references to the value object except
for the one maintained by the WeakHashMap, the value object also becomes available for garbage
collection. Thus, you can use a WeakHashMap to associate an auxiliary value with an object without
preventing either the object (the key) or the auxiliary value from being reclaimed. See HashMap for a
discussion of the implementation features of this class. See Map for a description of the methods it
defines.

WeakHashMap is primarily useful with objects whose equals() methods use the == operator for
comparison. It is less useful with key objects of type String, for example, because there can be multiple
String objects that are equal to one another and, even if the original key value has been reclaimed by
the garbage collector, it is always possible to pass a String with the same value to the get() method.

file:///C|/orielly/jnut/ch23_01.htm (71 of 72) [2/5/2003 7:51:54 PM]

The java.util Package (Java in a Nutshell)

public class WeakHashMap extends AbstractMap implements Map {

// Public Constructors

public WeakHashMap ();

1.3 public WeakHashMap (Map t);

public WeakHashMap (int initialCapacity);

public WeakHashMap (int initialCapacity, float loadFactor);

// Methods Implementing Map

public void clear ();

public boolean containsKey (Object key);

public Set entrySet ();

public Object get (Object key);

public boolean isEmpty (); default:true

public Object put (Object key, Object value);

public Object remove (Object key);

public int size ();

}

Hierarchy: Object-->AbstractMap(Map)-->WeakHashMap(Map)

22.1. The java.text Package 24. The java.util.jar Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch23_01.htm (72 of 72) [2/5/2003 7:51:54 PM]

file:///C|/orielly/jnut/copyrght.htm

The java.util.jar Package (Java in a Nutshell)

Part 2: API Quick Reference

Chapter 24. The java.util.jar Package
The java.util.jar package contains classes for reading and writing Java archive, or JAR, files. A
JAR file is nothing more than a ZIP file whose first entry is a specially named manifest file that contains
attributes and digital signatures for the ZIP file entries that follow it. Many of the classes in this package
are relatively simple extensions of classes from the java.util.zip package. Figure 24-1 shows the
class hierarchy of this package.

Figure 24-1. The java.util.jar package

The easiest way to read a JAR file is with the random-access JarFile class. This class allows you to
obtain the JarEntry that describes any named file within the JAR archive. It also allows you to obtain
an enumeration of all entries in the archive and an InputStream for reading the bytes of a specific
JarEntry. Each JarEntry describes a single entry in the archive and allows access to the
Attributes and the digital signatures associated with the entry. The JarFile also provides access
to the Manifest object for the JAR archive; this object contains Attributes for all entries in the

file:///C|/orielly/jnut/ch24_01.htm (1 of 10) [2/5/2003 7:51:59 PM]

The java.util.jar Package (Java in a Nutshell)

JAR file. Attributes is a mapping of attribute name/value pairs, of course, and the inner class
Attributes.Name defines constants for various standard attribute names.

You can also read a JAR file with JarInputStream. This class requires to you read each entry of the
file sequentially, however. JarOutputStream allows you to write out a JAR file sequentially.
Finally, you can also read an entry within a JAR file and manifest attributes for that entry with a
java.net.JarURLConnection object.

Attributes Java 1.2

java.util.jar cloneable collection

This class is a java.util.Map that maps the attribute names of a JAR file manifest to arbitrary string
values. The JAR manifest format specifies that attribute names can contain only the ASCII characters A
to Z (uppercase and lowercase), the digits 0 through 9, and the hyphen and underscore characters. Thus,
this class uses Attributes.Name as the type of attribute names, in addition to the more general
String class. Although you can create your own Attributes objects, you more commonly obtain
Attributes objects from a Manifest.

public class Attributes implements Cloneablejava.util.Map {

// Public Constructors

public Attributes ();

public Attributes (java.util.jar.Attributes attr);

public Attributes (int size);

// Inner Classes

;

// Public Instance Methods

public String getValue (Attributes.Name name);

public String getValue (String name);

public String putValue (String name, String value);

// Methods Implementing Map

public void clear ();

public boolean containsKey (Object name);

public boolean containsValue (Object value);

public java.util.Set entrySet ();

public boolean equals (Object o);

file:///C|/orielly/jnut/ch24_01.htm (2 of 10) [2/5/2003 7:51:59 PM]

The java.util.jar Package (Java in a Nutshell)

public Object get (Object name);

public int hashCode ();

public boolean isEmpty (); default:true

public java.util.Set keySet ();

public Object put (Object name, Object value);

public void putAll (java.util.Map attr);

public Object remove (Object name);

public int size ();

public java.util.Collection values ();

// Public Methods Overriding Object

public Object clone ();

// Protected Instance Fields

protected java.util.Map map ;

}

Hierarchy: Object-->java.util.jar.Attributes(Cloneable,java.util.Map)

Passed To: java.util.jar.Attributes.Attributes()

Returned By: java.net.JarURLConnection.{getAttributes(),
getMainAttributes()}, JarEntry.getAttributes(),
Manifest.{getAttributes(), getMainAttributes()}

Attributes.Name Java 1.2

java.util.jar

This class represents the name of an attribute in an Attributes object. It defines constants for the
various standard attribute names used in JAR file manifests. Attribute names can contain only ASCII
letters, digits, and the hyphen and underscore characters. Any other Unicode characters are illegal.

public static class Attributes.Name {

// Public Constructors

public Name (String name);

// Public Constants

file:///C|/orielly/jnut/ch24_01.htm (3 of 10) [2/5/2003 7:51:59 PM]

The java.util.jar Package (Java in a Nutshell)

public static final Attributes.Name CLASS_PATH ;

public static final Attributes.Name CONTENT_TYPE ;

1.3 public static final Attributes.Name EXTENSION_INSTALLATION ;

1.3 public static final Attributes.Name EXTENSION_LIST ;

1.3 public static final Attributes.Name EXTENSION_NAME ;

public static final Attributes.Name IMPLEMENTATION_TITLE ;

1.3 public static final Attributes.Name IMPLEMENTATION_URL ;

public static final Attributes.Name IMPLEMENTATION_VENDOR ;

1.3 public static final Attributes.Name IMPLEMENTATION_VENDOR_ID ;

public static final Attributes.Name IMPLEMENTATION_VERSION ;

public static final Attributes.Name MAIN_CLASS ;

public static final Attributes.Name MANIFEST_VERSION ;

public static final Attributes.Name SEALED ;

public static final Attributes.Name SIGNATURE_VERSION ;

public static final Attributes.Name SPECIFICATION_TITLE ;

public static final Attributes.Name SPECIFICATION_VENDOR ;

public static final Attributes.Name SPECIFICATION_VERSION ;

// Public Methods Overriding Object

public boolean equals (Object o);

public int hashCode ();

public String toString ();

}

Passed To: java.util.jar.Attributes.getValue()

Type Of: Too many fields to list.

JarEntry Java 1.2

java.util.jar cloneable

This class extends java.util.zip.ZipEntry; it represents a single file in a JAR archive and the
manifest attributes and digital signatures associated with that file. JarEntry objects can be read from a
JAR file with JarFile or JarInputStream, and they can be written to a JAR file with
JarOutputStream. Use getAttributes() to obtain the Attributes for the entry. Use

file:///C|/orielly/jnut/ch24_01.htm (4 of 10) [2/5/2003 7:51:59 PM]

The java.util.jar Package (Java in a Nutshell)

getCertificates() to obtain a java.security.cert.Certificate array that contains the
certificate chains for all digital signatures associated with the file.

public class JarEntry extends java.util.zip.ZipEntry {

// Public Constructors

public JarEntry (JarEntry je);

public JarEntry (String name);

public JarEntry (java.util.zip.ZipEntry ze);

// Public Instance Methods

public java.util.jar.Attributes getAttributes () throws java.io.IOException;

public java.security.cert.Certificate[] getCertificates ();

}

Hierarchy: Object--
>java.util.zip.ZipEntry(Cloneable,java.util.zip.ZipConstants)--
>JarEntry

Passed To: JarEntry.JarEntry()

Returned By: java.net.JarURLConnection.getJarEntry(),
JarFile.getJarEntry(), JarInputStream.getNextJarEntry()

JarException Java 1.2

java.util.jar serializable checked

Signals an error while reading or writing a JAR file.

public class JarException extends java.util.zip.ZipException {

// Public Constructors

public JarException ();

public JarException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception--
>java.io.IOException-->java.util.zip.ZipException-->JarException

file:///C|/orielly/jnut/ch24_01.htm (5 of 10) [2/5/2003 7:51:59 PM]

The java.util.jar Package (Java in a Nutshell)

JarFile Java 1.2

java.util.jar

This class represents a JAR file and allows the manifest, file list, and individual files to be read from the
JAR file. It extends java.util.zip.ZipFile, and its use is similar to that of its superclass. Create
a JarFile by specifying a filename or File object. If you do not want JarFile to attempt to verify
any digital signatures contained in the JarFile, pass an optional boolean argument of false to the
JarFile() constructor. In Java 1.3, temporary JAR files can be automatically deleted when they are
closed. To take advantage of this feature, pass ZipFile.OPEN_READ|ZipFile.OPEN_DELETE as
the mode argument to the JarFile() constructor.

Once you have created a JarFile object, obtain the JAR Manifest with getManifest(). Obtain
an enumeration of the java.util.zip.ZipEntry objects in the file with entries(). Get the
JarEntry for a specified file in the JAR file with getJarEntry(). To read the contents of a
specific entry in the JAR file, obtain the JarEntry or ZipEntry object that represents that entry, pass
it to getInputStream(), and then read until the end of that stream. JarFile does not support the
creation of new JAR files or the modification of existing files.

public class JarFile extends java.util.zip.ZipFile {

// Public Constructors

public JarFile (java.io.File file) throws java.io.IOException;

public JarFile (String name) throws java.io.IOException;

public JarFile (java.io.File file, boolean verify) throws
java.io.IOException;

public JarFile (String name, boolean verify) throws
java.io.IOException;

1.3
public JarFile (java.io.File file, boolean verify, int mode) throws
java.io.IOException;

// Public Constants

public static final String MANIFEST_NAME ; ="META-INF/MANIFEST.MF"

// Public Instance Methods

public JarEntry getJarEntry (String name);

public Manifest getManifest () throws java.io.IOException;

// Public Methods Overriding ZipFile

public java.util.Enumeration entries ();

file:///C|/orielly/jnut/ch24_01.htm (6 of 10) [2/5/2003 7:51:59 PM]

The java.util.jar Package (Java in a Nutshell)

public java.util.zip.ZipEntry getEntry (String name);

public java.io.InputStream getInputStream (java.util.zip.ZipEntry
ze) throws java.io.IOException;

synchronized

}

Hierarchy: Object-->java.util.zip.ZipFile(java.util.zip.ZipConstants)--
>JarFile

Returned By: java.net.JarURLConnection.getJarFile()

JarInputStream Java 1.2

java.util.jar

This class allows a JAR file to be read from an input stream. It extends
java.util.ZipInputStream and is used much like that class is used. To create a
JarInputStream, simply specify the InputStream from which to read. If you do not want the
JarInputStream to attempt to verify any digital signatures contained in the JAR file, pass false as
the second argument to the JarInputStream() constructor. The JarInputStream() constructor
first reads the JAR manifest entry, if one exists. The manifest must be the first entry in the JAR file.
getManifest() returns the Manifest object for the JAR file.

Once you have created a JarInputStream, call getNextJarEntry() or getNextEntry() to
obtain the JarEntry or java.util.zip.ZipEntry object that describes the next entry in the JAR
file. Then, call a read() method (including the inherited versions) to read the contents of that entry.
When the stream reaches the end of file, call getNextJarEntry() again to start reading the next
entry in the file. When all entries have been read from the JAR file, getNextJarEntry() and
getNextEntry() return null.

public class JarInputStream extends java.util.zip.ZipInputStream {

// Public Constructors

public JarInputStream (java.io.InputStream in) throws java.io.IOException;

public JarInputStream (java.io.InputStream in, boolean verify) throws java.io.IOException;

// Public Instance Methods

public Manifest getManifest ();

public JarEntry getNextJarEntry () throws java.io.IOException;

// Public Methods Overriding ZipInputStream

file:///C|/orielly/jnut/ch24_01.htm (7 of 10) [2/5/2003 7:51:59 PM]

The java.util.jar Package (Java in a Nutshell)

public java.util.zip.ZipEntry getNextEntry () throws java.io.IOException;

public int read (byte[] b, int off, int len) throws java.io.IOException;

// Protected Methods Overriding ZipInputStream

protected java.util.zip.ZipEntry createZipEntry (String name);

}

Hierarchy: Object-->java.io.InputStream-->java.io.FilterInputStream--
>java.util.zip.InflaterInputStream--
>java.util.zip.ZipInputStream(java.util.zip.ZipConstants)--
>JarInputStream

JarOutputStream Java 1.2

java.util.jar

This class can write a JAR file to an arbitrary OutputStream. JarOutputStream extends
java.util.zip.ZipOutputStream and is used much like that class is used. Create a
JarOutputStream by specifying the stream to write to and, optionally, the Manifest object for the
JAR file. The JarOutputStream() constructor starts by writing the contents of the Manifest
object into an appropriate JAR file entry. It is the programmer's responsibility to ensure that the contents
of the JAR entries written subsequently match those specified in the Manifest object. This class
provides no explicit support for attaching digital signatures to entries in the JAR file.

After creating a JarOutputStream, call putNextEntry() to specify the JarEntry or
java.util.zip.ZipEntry to be written to the stream. Then, call any of the inherited write()
methods to write the contents of the entry to the stream. When that entry is finished, call
putNextEntry() again to begin writing the next entry. When you have written all JAR file entries in
this way, call close(). Before writing any entry, you may call the inherited setMethod() and
setLevel() methods to specify how the entry should be compressed. See
java.util.zip.ZipOutputStream.

public class JarOutputStream extends java.util.zip.ZipOutputStream {

// Public Constructors

public JarOutputStream (java.io.OutputStream out) throws java.io.IOException;

public JarOutputStream (java.io.OutputStream out, Manifest man) throws java.io.IOException;

// Public Methods Overriding ZipOutputStream

public void putNextEntry (java.util.zip.ZipEntry ze) throws java.io.IOException;

file:///C|/orielly/jnut/ch24_01.htm (8 of 10) [2/5/2003 7:51:59 PM]

The java.util.jar Package (Java in a Nutshell)

}

Hierarchy: Object-->java.io.OutputStream-->java.io.FilterOutputStream--
>java.util.zip.DeflaterOutputStream--
>java.util.zip.ZipOutputStream(java.util.zip.ZipConstants)--
>JarOutputStream

Manifest Java 1.2

java.util.jar cloneable

This class represents the manifest entry of a JAR file. getMainAttributes() returns an
Attributes object that represents the manifest attributes that apply to the entire JAR file.
getAttributes() returns an Attributes object that represents the manifest attributes specified
for a single file in the JAR file. getEntries() returns a java.util.Map that maps the names of
entries in the JAR file to the Attributes objects associated with those entries. getEntries()
returns the Map object used internally by the Manifest. You can edit the contents of the Manifest
by adding, deleting, or editing entries in the Map. read() reads manifest entries from an input stream,
merging them into the current set of entries. write() writes the Manifest out to the specified output
stream.

public class Manifest implements Cloneable {

// Public Constructors

public Manifest ();

public Manifest (Manifest man);

public Manifest (java.io.InputStream is) throws java.io.IOException;

// Public Instance Methods

public void clear ();

public java.util.jar.Attributes getAttributes (String name);

public java.util.Map getEntries (); default:HashMap

public java.util.jar.Attributes getMainAttributes ();

public void read (java.io.InputStream is) throws java.io.IOException;

public void write (java.io.OutputStream out) throws java.io.IOException;

// Public Methods Overriding Object

public Object clone ();

public boolean equals (Object o);

file:///C|/orielly/jnut/ch24_01.htm (9 of 10) [2/5/2003 7:51:59 PM]

The java.util.jar Package (Java in a Nutshell)

public int hashCode ();

}

Hierarchy: Object-->Manifest(Cloneable)

Passed To: java.net.URLClassLoader.definePackage(),
JarOutputStream.JarOutputStream(), Manifest.Manifest()

Returned By: java.net.JarURLConnection.getManifest(),
JarFile.getManifest(), JarInputStream.getManifest()

23.3. The java.util Package 25. The java.util.zip Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch24_01.htm (10 of 10) [2/5/2003 7:51:59 PM]

file:///C|/orielly/jnut/copyrght.htm

The java.util.zip Package (Java in a Nutshell)

Part 2: API Quick Reference

Chapter 25. The java.util.zip Package
The java.util.zip package contains classes for data compression and decompression. It is new as
of Java 1.1. Figure 25-1 shows the class hierarchy of the package. The Deflater and Inflater
classes perform data compression and decompression. DeflaterOutputStream and
InflaterInputStream apply that functionality to byte streams; the subclasses of these streams
implement both the GZIP and ZIP compression formats. The Adler32 and CRC32 classes implement
the Checksum interface and compute the checksums required for data compression.

Figure 25-1. The java.util.zip package

Adler32 Java 1.1

file:///C|/orielly/jnut/ch25_01.htm (1 of 18) [2/5/2003 7:52:05 PM]

The java.util.zip Package (Java in a Nutshell)

java.util.zip PJ1.1(opt)

This class implements the Checksum interface and computes a checksum on a stream of data using the
Adler-32 algorithm. This algorithm is significantly faster than the CRC-32 algorithm and is almost as
reliable. The CheckedInputStream and CheckedOutputStream classes provide a higher-level
interface to computing checksums on streams of data.

public class Adler32 implements Checksum {

// Public Constructors

public Adler32 ();

// Public Instance Methods

public void update (byte[] b);

// Methods Implementing Checksum

public long getValue (); default:1

public void reset ();

public void update (int b);

public void update (byte[] b, int off, int len);

}

Hierarchy: Object-->Adler32(Checksum)

CheckedInputStream Java 1.1

java.util.zip PJ1.1

This class is a subclass of java.io.FilterInputStream; it allows a stream to be read and a
checksum computed on its contents at the same time. This is useful when you want to check the integrity
of a stream of data against a published checksum value. To create a CheckedInputStream, you must
specify both the stream it should read and a Checksum object, such as CRC32, that implements the
particular checksum algorithm you desire. The read() and skip() methods are the same as those of
other input streams. As bytes are read, they are incorporated into the checksum that is being computed.
The getChecksum() method does not return the checksum value itself, but rather the Checksum
object. You must call the getValue() method of this object to obtain the checksum value.

public class CheckedInputStream extends java.io.FilterInputStream {

file:///C|/orielly/jnut/ch25_01.htm (2 of 18) [2/5/2003 7:52:05 PM]

The java.util.zip Package (Java in a Nutshell)

// Public Constructors

public CheckedInputStream (java.io.InputStream in, Checksum cksum);

// Public Instance Methods

public Checksum getChecksum ();

// Public Methods Overriding FilterInputStream

public int read () throws java.io.IOException;

public int read (byte[] buf, int off, int len) throws java.io.IOException;

public long skip (long n) throws java.io.IOException;

}

Hierarchy: Object-->java.io.InputStream-->java.io.FilterInputStream--
>CheckedInputStream

CheckedOutputStream Java 1.1

java.util.zip PJ1.1

This class is a subclass of java.io.FilterOutputStream that allows data to be written to a
stream and a checksum computed on that data at the same time. To create a CheckedOutputStream,
you must specify both the output stream to write its data to and a Checksum object, such as an instance
of Adler32, that implements the particular checksum algorithm you desire. The write() methods are
similar to those of other OutputStream classes. The getChecksum() method returns the
Checksum object. You must call getValue() on this object in order to obtain the actual checksum
value.

public class CheckedOutputStream extends java.io.FilterOutputStream {

// Public Constructors

public CheckedOutputStream (java.io.OutputStream out, Checksum cksum);

// Public Instance Methods

public Checksum getChecksum ();

// Public Methods Overriding FilterOutputStream

public void write (int b) throws java.io.IOException;

public void write (byte[] b, int off, int len) throws java.io.IOException;

}

Hierarchy: Object-->java.io.OutputStream-->java.io.FilterOutputStream--

file:///C|/orielly/jnut/ch25_01.htm (3 of 18) [2/5/2003 7:52:05 PM]

The java.util.zip Package (Java in a Nutshell)

>CheckedOutputStream

Checksum Java 1.1

java.util.zip PJ1.1

This interface defines the methods required to compute a checksum on a stream of data. The checksum is
computed based on the bytes of data supplied by the update() methods; the current value of the
checksum can be obtained at any time with the getValue() method. reset() resets the checksum to
its default value; use this method before beginning a new stream of data. The checksum value computed
by a Checksum object and returned through the getValue() method must fit into a long value.
Therefore, this interface is not suitable for the cryptographic checksum algorithms used in cryptography
and security. The classes CheckedInputStream and CheckedOutputStream provide a higher-
level API for computing a checksum on a stream of data. See also
java.security.MessageDigest.

public interface Checksum {

// Public Instance Methods

public abstract long getValue ();

public abstract void reset ();

public abstract void update (int b);

public abstract void update (byte[] b, int off, int len);

}

Implementations: Adler32, CRC32

Passed To: CheckedInputStream.CheckedInputStream(),
CheckedOutputStream.CheckedOutputStream()

Returned By: CheckedInputStream.getChecksum(),
CheckedOutputStream.getChecksum()

CRC32 Java 1.1

java.util.zip PJ1.1

file:///C|/orielly/jnut/ch25_01.htm (4 of 18) [2/5/2003 7:52:05 PM]

The java.util.zip Package (Java in a Nutshell)

This class implements the Checksum interface and computes a checksum on a stream of data using the
CRC-32 algorithm. The CheckedInputStream and CheckedOutputStream classes provide a
higher-level interface to computing checksums on streams of data.

public class CRC32 implements Checksum {

// Public Constructors

public CRC32 ();

// Public Instance Methods

public void update (byte[] b);

// Methods Implementing Checksum

public long getValue (); default:0

public void reset ();

public void update (int b);

public void update (byte[] b, int off, int len);

}

Hierarchy: Object-->CRC32(Checksum)

Type Of: GZIPInputStream.crc, GZIPOutputStream.crc

DataFormatException Java 1.1

java.util.zip serializable checked PJ1.1

Signals that invalid or corrupt data has been encountered while uncompressing data.

public class DataFormatException extends Exception {

// Public Constructors

public DataFormatException ();

public DataFormatException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception--
>DataFormatException

Thrown By: Inflater.inflate()

file:///C|/orielly/jnut/ch25_01.htm (5 of 18) [2/5/2003 7:52:05 PM]

The java.util.zip Package (Java in a Nutshell)

Deflater Java 1.1

java.util.zip PJ1.1(opt)

This class implements the general ZLIB data-compression algorithm used by the gzip and PKZip
compression programs. The constants defined by this class are used to specify the compression strategy
and the compression speed/strength tradeoff level to be used. If you set the nowrap argument to the
constructor to true, the ZLIB header and checksum data are omitted from the compressed output,
which is the format both gzip and PKZip use.

The important methods of this class are setInput(), which specifies input data to be compressed, and
deflate(), which compresses the data and returns the compressed output. The remaining methods
exist so that Deflater can be used for stream-based compression, as it is in higher-level classes, such
as GZIPOutputStream and ZipOutputStream. These stream classes are sufficient in most cases.
Most applications do not need to use Deflater directly. The Inflater class uncompresses data
compressed with a Deflater object.

public class Deflater {

// Public Constructors

public Deflater ();

public Deflater (int level);

public Deflater (int level, boolean nowrap);

// Public Constants

public static final int BEST_COMPRESSION ; =9

public static final int BEST_SPEED ; =1

public static final int DEFAULT_COMPRESSION ; =-1

public static final int DEFAULT_STRATEGY ; =0

public static final int DEFLATED ; =8

public static final int FILTERED ; =1

public static final int HUFFMAN_ONLY ; =2

public static final int NO_COMPRESSION ; =0

// Property Accessor Methods (by property name)

public int getAdler (); synchronized default:1

public int getTotalIn (); synchronized default:0

public int getTotalOut (); synchronized default:0

file:///C|/orielly/jnut/ch25_01.htm (6 of 18) [2/5/2003 7:52:05 PM]

The java.util.zip Package (Java in a Nutshell)

// Public Instance Methods

public int deflate (byte[] b);

public int deflate (byte[] b, int off, int len); synchronized

public void end (); synchronized

public void finish (); synchronized

public boolean finished (); synchronized

public boolean needsInput ();

public void reset (); synchronized

public void setDictionary (byte[] b);

public void setDictionary (byte[] b, int off, int len); synchronized

public void setInput (byte[] b);

public void setInput (byte[] b, int off, int len); synchronized

public void setLevel (int level); synchronized

public void setStrategy (int strategy); synchronized

// Protected Methods Overriding Object

protected void finalize ();

}

Passed To: DeflaterOutputStream.DeflaterOutputStream()

Type Of: DeflaterOutputStream.def

DeflaterOutputStream Java 1.1

java.util.zip PJ1.1(opt)

This class is a subclass of java.io.FilterOutputStream; it filters a stream of data by
compressing (deflating) it and then writing the compressed data to another output stream. To create a
DeflaterOutputStream, you must specify both the stream it is to write to and a Deflater object
to perform the compression. You can set various options on the Deflater object to specify just what
type of compression is to be performed. Once a DeflaterOutputStream is created, its write()
and close() methods are the same as those of other output streams. The InflaterInputStream
class can read data written with a DeflaterOutputStream. A DeflaterOutputStream writes
raw compressed data; applications often prefer one of its subclasses, GZIPOutputStream or
ZipOutputStream, that wraps the raw compressed data within a standard file format.

file:///C|/orielly/jnut/ch25_01.htm (7 of 18) [2/5/2003 7:52:05 PM]

The java.util.zip Package (Java in a Nutshell)

public class DeflaterOutputStream extends java.io.FilterOutputStream {

// Public Constructors

public DeflaterOutputStream (java.io.OutputStream out);

public DeflaterOutputStream (java.io.OutputStream out, Deflater def);

public DeflaterOutputStream (java.io.OutputStream out, Deflater def, int size);

// Public Instance Methods

public void finish () throws java.io.IOException;

// Public Methods Overriding FilterOutputStream

public void close () throws java.io.IOException;

public void write (int b) throws java.io.IOException;

public void write (byte[] b, int off, int len) throws java.io.IOException;

// Protected Instance Methods

protected void deflate () throws java.io.IOException;

// Protected Instance Fields

protected byte[] buf ;

protected Deflater def ;

}

Hierarchy: Object-->java.io.OutputStream-->java.io.FilterOutputStream--
>DeflaterOutputStream

Subclasses: GZIPOutputStream, ZipOutputStream

GZIPInputStream Java 1.1

java.util.zip PJ1.1

This class is a subclass of InflaterInputStream that reads and uncompresses data compressed in
gzip format. To create a GZIPInputStream, simply specify the InputStream to read compressed
data from and, optionally, a buffer size for the internal decompression buffer. Once a
GZIPInputStream is created, you can use the read() and close() methods as you would with
any input stream.

public class GZIPInputStream extends InflaterInputStream {

// Public Constructors

file:///C|/orielly/jnut/ch25_01.htm (8 of 18) [2/5/2003 7:52:05 PM]

The java.util.zip Package (Java in a Nutshell)

public GZIPInputStream (java.io.InputStream in) throws java.io.IOException;

public GZIPInputStream (java.io.InputStream in, int size) throws java.io.IOException;

// Public Constants

public static final int GZIP_MAGIC ; =35615

// Public Methods Overriding InflaterInputStream

public void close () throws java.io.IOException;

public int read (byte[] buf, int off, int len) throws java.io.IOException;

// Protected Instance Fields

protected CRC32 crc ;

protected boolean eos ;

}

Hierarchy: Object-->java.io.InputStream-->java.io.FilterInputStream--
>InflaterInputStream-->GZIPInputStream

GZIPOutputStream Java 1.1

java.util.zip PJ1.1(opt)

This class is a subclass of DeflaterOutputStream that compresses and writes data using the gzip
file format. To create a GZIPOutputStream, specify the OutputStream to write to and, optionally,
a size for the internal compression buffer. Once the GZIPOutputStream is created, you can use the
write() and close() methods as you would any output stream.

public class GZIPOutputStream extends DeflaterOutputStream {

// Public Constructors

public GZIPOutputStream (java.io.OutputStream out) throws java.io.IOException;

public GZIPOutputStream (java.io.OutputStream out, int size) throws
java.io.IOException;

// Public Methods Overriding DeflaterOutputStream

public void close () throws java.io.IOException;

public void finish () throws java.io.IOException;

public void write (byte[] buf, int off, int len) throws java.io.IOException; synchronized

// Protected Instance Fields

protected CRC32 crc ;

file:///C|/orielly/jnut/ch25_01.htm (9 of 18) [2/5/2003 7:52:05 PM]

The java.util.zip Package (Java in a Nutshell)

}

Hierarchy: Object-->java.io.OutputStream-->java.io.FilterOutputStream--
>DeflaterOutputStream-->GZIPOutputStream

Inflater Java 1.1

java.util.zip PJ1.1(mod)

This class implements the general ZLIB data-decompression algorithm used by gzip, PKZip, and other
data-compression applications. It decompresses or inflates data compressed through the Deflater
class. The important methods of this class are setInput(), which specifies input data to be
decompressed, and inflate(), which decompresses the input data into an output buffer. A number of
other methods exist so that this class can be used for stream-based decompression, as it is in the higher-
level classes, such as GZIPInputStream and ZipInputStream. These stream-based classes are
sufficient in most cases. Most applications do not need to use Inflater directly.

public class Inflater {

// Public Constructors

public Inflater ();

public Inflater (boolean nowrap);

// Property Accessor Methods (by property name)

public int getAdler (); synchronized default:1

public int getRemaining (); synchronized default:0

public int getTotalIn (); synchronized default:0

public int getTotalOut (); synchronized default:0

// Public Instance Methods

public void end (); synchronized

public boolean finished (); synchronized

public int inflate (byte[] b) throws DataFormatException;

public int inflate (byte[] b, int off, int len) throws DataFormatException; synchronized

public boolean needsDictionary (); synchronized

public boolean needsInput (); synchronized

public void reset (); synchronized

public void setDictionary (byte[] b);

file:///C|/orielly/jnut/ch25_01.htm (10 of 18) [2/5/2003 7:52:05 PM]

The java.util.zip Package (Java in a Nutshell)

public void setDictionary (byte[] b, int off, int len); synchronized

public void setInput (byte[] b);

public void setInput (byte[] b, int off, int len); synchronized

// Protected Methods Overriding Object

protected void finalize ();

}

Passed To: InflaterInputStream.InflaterInputStream()

Type Of: InflaterInputStream.inf

InflaterInputStream Java 1.1

java.util.zip PJ1.1

This class is a subclass of java.io.FilterInputStream; it reads a specified stream of
compressed input data (typically one that was written with DeflaterOutputStream or a subclass)
and filters that data by uncompressing (inflating) it. To create an InflaterInputStream, specify
both the input stream to read from and an Inflater object to perform the decompression. Once an
InflaterInputStream is created, the read() and skip() methods are the same as those of
other input streams. The InflaterInputStream uncompresses raw data. Applications often prefer
one of its subclasses, GZIPInputStream or ZipInputStream, that work with compressed data
written in the standard gzip and PKZip file formats.

public class InflaterInputStream extends java.io.FilterInputStream {

// Public Constructors

public InflaterInputStream (java.io.InputStream in);

public InflaterInputStream (java.io.InputStream in, Inflater inf);

public InflaterInputStream (java.io.InputStream in, Inflater inf, int size);

// Public Methods Overriding FilterInputStream

1.2 public int available () throws java.io.IOException;

1.2 public void close () throws java.io.IOException;

public int read () throws java.io.IOException;

public int read (byte[] b, int off, int len) throws java.io.IOException;

public long skip (long n) throws java.io.IOException;

// Protected Instance Methods

file:///C|/orielly/jnut/ch25_01.htm (11 of 18) [2/5/2003 7:52:05 PM]

The java.util.zip Package (Java in a Nutshell)

protected void fill () throws java.io.IOException;

// Protected Instance Fields

protected byte[] buf ;

protected Inflater inf ;

protected int len ;

}

Hierarchy: Object-->java.io.InputStream-->java.io.FilterInputStream--
>InflaterInputStream

Subclasses: GZIPInputStream, ZipInputStream

ZipEntry Java 1.1

java.util.zip cloneable PJ1.1

This class describes a single entry (typically a compressed file) stored within a ZIP file. The various
methods get and set various pieces of information about the entry. The ZipEntry class is used by
ZipFile and ZipInputStream, which read ZIP files, and by ZipOutputStream, which writes
ZIP files.

When you are reading a ZIP file, a ZipEntry object returned by ZipFile or ZipInputStream
contains the name, size, modification time, and other information about an entry in the file. When writing
a ZIP file, on the other hand, you must create your own ZipEntry objects and initialize them to contain
the entry name and other appropriate information before writing the contents of the entry.

public class ZipEntry implements Cloneable {

// Public Constructors

1.2 public ZipEntry (ZipEntry e);

public ZipEntry (String name);

// Public Constants

public static final int DEFLATED ; =8

public static final int STORED ; =0

// Property Accessor Methods (by property name)

public String getComment ();

public void setComment (String comment);

file:///C|/orielly/jnut/ch25_01.htm (12 of 18) [2/5/2003 7:52:05 PM]

The java.util.zip Package (Java in a Nutshell)

public long getCompressedSize ();

1.2 public void setCompressedSize (long csize);

public long getCrc ();

public void setCrc (long crc);

public boolean isDirectory ();

public byte[] getExtra ();

public void setExtra (byte[] extra);

public int getMethod ();

public void setMethod (int method);

public String getName ();

public long getSize ();

public void setSize (long size);

public long getTime ();

public void setTime (long time);

// Public Methods Overriding Object

1.2 public Object clone ();

1.2 public int hashCode ();

public String toString ();

}

Hierarchy: Object-->ZipEntry(Cloneable,ZipConstants)

Subclasses: java.util.jar.JarEntry

Passed To: java.util.jar.JarEntry.JarEntry(),
java.util.jar.JarFile.getInputStream(),
java.util.jar.JarOutputStream.putNextEntry(), ZipEntry.ZipEntry(),
ZipFile.getInputStream(), ZipOutputStream.putNextEntry()

Returned By: java.util.jar.JarFile.getEntry(),
java.util.jar.JarInputStream.{createZipEntry(), getNextEntry()},
ZipFile.getEntry(), ZipInputStream.{createZipEntry(), getNextEntry()}

ZipException Java 1.1

file:///C|/orielly/jnut/ch25_01.htm (13 of 18) [2/5/2003 7:52:05 PM]

The java.util.zip Package (Java in a Nutshell)

java.util.zip serializable checked PJ1.1

Signals that an error has occurred in reading or writing a ZIP file.

public class ZipException extends java.io.IOException {

// Public Constructors

public ZipException ();

public ZipException (String s);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception--
>java.io.IOException-->ZipException

Subclasses: java.util.jar.JarException

Thrown By: ZipFile.ZipFile()

ZipFile Java 1.1

java.util.zip PJ1.1(opt)

This class reads the contents of ZIP files. It uses a random-access file internally so that the entries of the
ZIP file do not have to be read sequentially, as they do with the ZipInputStream class. A ZipFile
object can be created by specifying the ZIP file to be read either as a String filename or as a File
object. In Java 1.3, temporary ZIP files can be marked for automatic deletion when they are closed. To
take advantage of this feature, pass ZipFile.OPEN_READ|ZipFile.OPEN_DELETE as the mode
argument to the ZipFile() constructor.

Once a ZipFile is created, the getEntry() method returns a ZipEntry object for a named entry,
and the entries() method returns an Enumeration object that allows you to loop through all the
ZipEntry objects for the file. To read the contents of a specific ZipEntry within the ZIP file, pass
the ZipEntry to getInputStream(); this returns an InputStream object from which you can
read the entry's contents.

public class ZipFile {

// Public Constructors

file:///C|/orielly/jnut/ch25_01.htm (14 of 18) [2/5/2003 7:52:05 PM]

The java.util.zip Package (Java in a Nutshell)

public ZipFile (String name) throws java.io.IOException;

public ZipFile (java.io.File file) throws ZipExceptionjava.io.IOException;

1.3 public ZipFile (java.io.File file, int mode) throws java.io.IOException;

// Public Constants

1.3 public static final int OPEN_DELETE ; =4

1.3 public static final int OPEN_READ ; =1

// Public Instance Methods

public void close () throws java.io.IOException;

public java.util.Enumeration entries ();

public ZipEntry getEntry (String name);

public java.io.InputStream getInputStream (ZipEntry entry) throws java.io.IOException;

public String getName ();

1.2 public int size ();

}

Hierarchy: Object-->ZipFile(ZipConstants)

Subclasses: java.util.jar.JarFile

ZipInputStream Java 1.1

java.util.zip PJ1.1

This class is a subclass of InflaterInputStream that reads the entries of a ZIP file in sequential
order. Create a ZipInputStream by specifying the InputStream from which it is to read the
contents of the ZIP file. Once the ZipInputStream is created, you can use getNextEntry() to
begin reading data from the next entry in the ZIP file. This method must be called before read() is
called to begin reading the first entry. getNextEntry() returns a ZipEntry object that describes
the entry being read, or null when there are no more entries to be read from the ZIP file.

The read() methods of ZipInputStream read until the end of the current entry and then return -1,
indicating that there is no more data to read. To continue with the next entry in the ZIP file, you must call
getNextEntry() again. Similarly, the skip() method only skips bytes within the current entry.
closeEntry() can be called to skip the remaining data in the current entry, but it is usually easier
simply to call getNextEntry() to begin the next entry.

file:///C|/orielly/jnut/ch25_01.htm (15 of 18) [2/5/2003 7:52:05 PM]

The java.util.zip Package (Java in a Nutshell)

public class ZipInputStream extends InflaterInputStream {

// Public Constructors

public ZipInputStream (java.io.InputStream in);

// Public Instance Methods

public void closeEntry () throws java.io.IOException;

public ZipEntry getNextEntry () throws java.io.IOException;

// Public Methods Overriding InflaterInputStream

1.2 public int available () throws java.io.IOException;

public void close () throws java.io.IOException;

public int read (byte[] b, int off, int len) throws java.io.IOException;

public long skip (long n) throws java.io.IOException;

// Protected Instance Methods

1.2 protected ZipEntry createZipEntry (String name);

}

Hierarchy: Object-->java.io.InputStream-->java.io.FilterInputStream--
>InflaterInputStream-->ZipInputStream(ZipConstants)

Subclasses: java.util.jar.JarInputStream

ZipOutputStream Java 1.1

java.util.zip PJ1.1(opt)

This class is a subclass of DeflaterOutputStream that writes data in ZIP file format to an output
stream. Before writing any data to the ZipOutputStream, you must begin an entry within the ZIP file
with putNextEntry(). The ZipEntry object passed to this method should specify at least a name
for the entry. Once you have begun an entry with putNextEntry(), you can write the contents of that
entry with the write() methods. When you reach the end of an entry, you can begin a new one by
calling putNextEntry() again, you can close the current entry with closeEntry(), or you can
close the stream itself with close().

Before beginning an entry with putNextEntry(), you can set the compression method and level with
setMethod() and setLevel(). The constants DEFLATED and STORED are the two legal values for
setMethod(). If you use STORED, the entry is stored in the ZIP file without any compression. If you
use DEFLATED, you can also specify the compression speed/strength tradeoff by passing a number from
1 to 9 to setLevel(), where 9 gives the strongest and slowest level of compression. You can also use

file:///C|/orielly/jnut/ch25_01.htm (16 of 18) [2/5/2003 7:52:05 PM]

The java.util.zip Package (Java in a Nutshell)

the constants Deflater.BEST_SPEED, Deflater.BEST_COMPRESSION, and
Deflater.DEFAULT_COMPRESSION with the setLevel() method.

If you are storing an entry without compression, the ZIP file format requires that you specify, in advance,
the entry size and CRC-32 checksum in the ZipEntry object for the entry. An exception is thrown if
these values are not specified or specified incorrectly.

public class ZipOutputStream extends DeflaterOutputStream {

// Public Constructors

public ZipOutputStream (java.io.OutputStream out);

// Public Constants

public static final int DEFLATED ; =8

public static final int STORED ; =0

// Public Instance Methods

public void closeEntry () throws java.io.IOException;

public void putNextEntry (ZipEntry e) throws java.io.IOException;

public void setComment (String comment);

public void setLevel (int level);

public void setMethod (int method);

// Public Methods Overriding DeflaterOutputStream

public void close () throws java.io.IOException;

public void finish () throws java.io.IOException;

public void write (byte[] b, int off, int len) throws java.io.IOException; synchronized

}

Hierarchy: Object-->java.io.OutputStream-->java.io.FilterOutputStream--
>DeflaterOutputStream-->ZipOutputStream(ZipConstants)

Subclasses: java.util.jar.JarOutputStream

24.1. The java.util.jar
Package

26. The javax.crypto Package

file:///C|/orielly/jnut/ch25_01.htm (17 of 18) [2/5/2003 7:52:05 PM]

The java.util.zip Package (Java in a Nutshell)

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch25_01.htm (18 of 18) [2/5/2003 7:52:05 PM]

file:///C|/orielly/jnut/copyrght.htm

The javax.crypto Package (Java in a Nutshell)

Part 2: API Quick Reference

Chapter 26. The javax.crypto Package
The javax.crypto package defines classes and interfaces for various cryptographic operations. Figure 26-1 shows the class hierarchy of this package. The central
class is Cipher, which is used to encrypt and decrypt data. CipherInputStream and CipherOutputStream are utility classes that use a Cipher object to
encrypt or decrypt streaming data. SealedObject is another important utility class that uses a Cipher object to encrypt an arbitrary serializable Java object.

file:///C|/orielly/jnut/ch26_01.htm (1 of 20) [2/5/2003 7:52:11 PM]

The javax.crypto Package (Java in a Nutshell)

Figure 26-1. The javax.crypto package

The KeyGenerator class creates the SecretKey objects used by Cipher for encryption and decryption. SecretKeyFactory encodes and decodes
SecretKey objects. The KeyAgreement class enables two or more parties to agree on a SecretKey in such a way that an eavesdropper cannot determine the
key. The Mac class computes a message authentication code (MAC) that can ensure the integrity of a transmission between two parties who share a SecretKey. A
MAC is akin to a digital signature, except that it is based on a secret key instead of a public/private key pair.

Like the java.security package, the javax.crypto package is provider-based, so that arbitrary cryptographic implementations may be plugged into any Java
installation. Various classes in this package have names that end in "Spi". These classes define a service-provider interface and must be implemented by each
cryptographic provider that wishes to provide an implementation of a particular cryptographic service or algorithm.

This package is part of the Java Cryptography Extension (JCE). Sun distributes the JCE within the United States and Canada, but, unfortunately, U.S. export
regulations prohibit the export of cryptographic technology to other countries. If you are not a resident of the United States or Canada, you have to obtain and use a
third-party implementation of the JCE developed outside of the United States. The JCE is distributed with a cryptographic provider named "SunJCE" that includes a
robust set of implementations for Cipher, KeyAgreement, Mac, and other classes. Installing the JCE extension is not the same, however, as installing the SunJCE
provider. To make the SunJCE provider permanently available on a Java installation, you must edit the ${java.home}/lib/security/java.security file in the Java
installation to add a line such as the following:

security.provider.2=com.sun.crypto.provider.SunJCE

The digit 2 in the line above specifies the preference order of the provider; you can use a different number.

If the SunJCE provider is not statically installed as above, you can dynamically install it in an application with code such as the following:

import java.security.*;
Provider sunjce = new com.sun.crypto.provider.SunJCE();
Security.addProvider(sunjce);

A full tutorial on cryptography is beyond the scope of this chapter and of this book. In order to use this package, you need to have a basic understanding of
cryptographic algorithms such as DES. In order to take full advantage of this package, you also need to have a detailed understanding of things like feedback modes,
padding schemes, the Diffie-Hellman key-agreement protocol, and so on. For a good introduction to modern cryptography in Java, see Java Cryptography by Jonathan
Knudsen (O'Reilly). For more in-depth coverage, not specific to Java, see Applied Cryptography by Bruce Schneier (Wiley).

BadPaddingException JCE 1.2

file:///C|/orielly/jnut/ch26_01.htm (2 of 20) [2/5/2003 7:52:11 PM]

The javax.crypto Package (Java in a Nutshell)

javax.crypto serializable checked

Signals that input data to a Cipher is not padded correctly.

public class BadPaddingException extends java.security.GeneralSecurityException {

// Public Constructors

public BadPaddingException ();

public BadPaddingException (String msg);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->java.security.GeneralSecurityException--
>BadPaddingException

Thrown By: Cipher.doFinal(), CipherSpi.engineDoFinal(), SealedObject.getObject()

Cipher JCE 1.2

javax.crypto

This class performs encryption and decryption of byte arrays. Cipher is provider-based, so to obtain a Cipher object, you must call the static getInstance()
factory method. The arguments to this method are a string that describes the type of encryption desired and, optionally, the name of the provider whose
implementation should be used. To specify the desired type of encryption, you can simply specify the name of an encryption algorithm, such as "DES". Or you can
specify a three-part name that includes the encryption algorithm, the algorithm operating mode, and the padding scheme. These three parts are separated by slash
characters, as in "DES/CBC/PKCS5Padding". Finally, if you are requesting a block cipher algorithm in a stream mode, you can specify the number of bits to be
processed at a time by following the name of the feedback mode with a number of bits. For example: "DES/CFB8/NoPadding".

The "SunJCE" provider supports the following cryptographic algorithms:

"DES"

The Digital Encryption Standard.

"DESede"

Triple DES encryption, also known as "TripleDES".

"Blowfish"
file:///C|/orielly/jnut/ch26_01.htm (3 of 20) [2/5/2003 7:52:11 PM]

The javax.crypto Package (Java in a Nutshell)

The Blowfish block cipher designed by Bruce Schneier.

"PBEWithMD5AndDES"

A password-based encryption scheme specified in PKCS#5. This algorithm implicitly uses "CBC" mode and the "PKCS5Padding" padding; it cannot be used
with other modes or padding schemes.

"PBEWithMD5AndTripleDES"

Password-based encryption as above, but using DESede instead of DES.

SunJCE supports the following operating modes:

"ECB"

Electronic Codebook mode

"CBC"

Cipher Block Chaining mode

"CFB"

Cipher Feedback mode

"OFB"

Output Feedback mode

"PCBC"

Plaintext Cipher Block Chaining mode

Finally, the "SunJCE" provider also supports two padding schemes: "NoPadding" and "PKCS5Padding". The name "SSL3Padding" is reserved, but this padding
scheme is not implemented in the current release of "SunJCE".

Once you have obtained a Cipher object for the desired cryptographic algorithm, mode, and padding scheme, you must initialize it by calling one of the init()
methods. The first argument to init() is one of the constants ENCRYPT_MODE or DECRYPT_MODE. The second argument is a java.security.Key object
that performs the encryption or decryption. If you use one of the symmetric (i.e., non-public key) encryption algorithms supported by the "SunJCE" provider, this Key

file:///C|/orielly/jnut/ch26_01.htm (4 of 20) [2/5/2003 7:52:11 PM]

The javax.crypto Package (Java in a Nutshell)

object is a SecretKey implementation. You can optionally pass a java.security.SecureRandom object to init() to provide a source of randomness. If
you do not, the Cipher implementation provides its own pseudo-random number generator.

Some cryptographic algorithms require additional initialization parameters; these can be passed to init() as a java.security.AlgorithmParameters
object or as a java.security.spec.AlgorithmParameterSpec object. When encrypting, you can omit these parameters, and the Cipher implementation
uses default values or generates appropriate random parameters for you. In this case, you should call getParameters() after performing encryption to obtain the
AlgorithmParameters used to encrypt. These parameters are required in order to decrypt, and must therefore be saved or transferred along with the encrypted
data. Of the algorithms supported by the "SunJCE" provider, the block ciphers "DES", "DESede", and "Blowfish" all require an initialization vector when they are
used in "CBC", "CFB", "OFB", or "PCBC" mode. You can represent an initialization vector with a javax.crypto.spec.IvParameterSpec object and obtain
the raw bytes of the initialization vector used by a Cipher with the getIV() method. The "PBEWithMD5AndDES" algorithm requires a salt and iteration count as
parameters. These can be specified with a javax.crypto.spec.PBEParameterSpec object.

Once you have obtained and initialized a Cipher object, you are ready to use it for encryption or decryption. If you have only a single array of bytes to encrypt or
decrypt, pass that input array to one of the doFinal() methods. Some versions of this method return the encrypted or decrypted bytes as the return value of the
function. Other versions store the encrypted or decrypted bytes to another byte array you specify. If you choose to use one of these latter methods, you should first call
getOutputSize() to determine the required size of the output array. If you want to encrypt or decrypt data from a streaming source or have more than one array
of data, pass the data to one of the update() methods, calling it as many times as necessary. Then pass the last array of data to one of the doFinal() methods. If
you are working with streaming data, consider using the CipherInputStream and CipherOutputStream classes instead.

public class Cipher {

// Protected Constructors

protected Cipher (CipherSpi cipherSpi, java.security.Provider provider, String transformation);

// Public Constants

public static final int DECRYPT_MODE ; =2

public static final int ENCRYPT_MODE ; =1

// Public Class Methods

public static final Cipher getInstance (String transformation) throws java.security.NoSuchAlgorithmExceptionNoSuchPaddingException;

public static final Cipher getInstance (String transformation, String provider) throws
java.security.NoSuchAlgorithmExceptionjava.security.NoSuchProviderExceptionNoSuchPaddingException;

// Property Accessor Methods (by property name)

public final String getAlgorithm ();

public final int getBlockSize ();

public final byte[] getIV ();

public final java.security.AlgorithmParameters getParameters ();

public final java.security.Provider getProvider ();

// Public Instance Methods

public final byte[] doFinal () throws java.lang.IllegalStateExceptionIllegalBlockSizeExceptionBadPaddingException;

public final byte[] doFinal (byte[] input) throws java.lang.IllegalStateExceptionIllegalBlockSizeExceptionBadPaddingException;

file:///C|/orielly/jnut/ch26_01.htm (5 of 20) [2/5/2003 7:52:11 PM]

The javax.crypto Package (Java in a Nutshell)

public final int doFinal (byte[] output, int outputOffset) throws
java.lang.IllegalStateExceptionIllegalBlockSizeExceptionShortBufferExceptionBadPaddingException;

public final byte[] doFinal (byte[] input, int inputOffset, int inputLen) throws
java.lang.IllegalStateExceptionIllegalBlockSizeExceptionBadPaddingException;

public final int doFinal (byte[] input, int inputOffset, int inputLen, byte[] output) throws
java.lang.IllegalStateExceptionShortBufferExceptionIllegalBlockSizeExceptionBadPaddingException;

public final int doFinal (byte[] input, int inputOffset, int inputLen, byte[] output, int outputOffset) throws
java.lang.IllegalStateExceptionShortBufferExceptionIllegalBlockSizeExceptionBadPaddingException;

public final int getOutputSize (int inputLen) throws java.lang.IllegalStateException;

public final void init (int opmode, java.security.Key key) throws java.security.InvalidKeyException;

public final void init (int opmode, java.security.Key key, java.security.SecureRandom random) throws java.security.InvalidKeyException;

public final void init (int opmode, java.security.Key key, java.security.spec.AlgorithmParameterSpec params) throws
java.security.InvalidKeyExceptionjava.security.InvalidAlgorithmParameterException;

public final void init (int opmode, java.security.Key key, java.security.AlgorithmParameters params) throws
java.security.InvalidKeyExceptionjava.security.InvalidAlgorithmParameterException;

public final void init (int opmode, java.security.Key key, java.security.spec.AlgorithmParameterSpec params, java.security.SecureRandom random) throws
java.security.InvalidKeyExceptionjava.security.InvalidAlgorithmParameterException;

public final void init (int opmode, java.security.Key key, java.security.AlgorithmParameters params, java.security.SecureRandom random) throws
java.security.InvalidKeyExceptionjava.security.InvalidAlgorithmParameterException;

public final byte[] update (byte[] input) throws java.lang.IllegalStateException;

public final byte[] update (byte[] input, int inputOffset, int inputLen) throws java.lang.IllegalStateException;

public final int update (byte[] input, int inputOffset, int inputLen, byte[] output) throws java.lang.IllegalStateExceptionShortBufferException;

public final int update (byte[] input, int inputOffset, int inputLen, byte[] output, int outputOffset) throws
java.lang.IllegalStateExceptionShortBufferException;

}

Subclasses: NullCipher

Passed To: CipherInputStream.CipherInputStream(), CipherOutputStream.CipherOutputStream(),
SealedObject.{getObject(), SealedObject()}

Returned By: Cipher.getInstance()

CipherInputStream JCE 1.2

javax.crypto

file:///C|/orielly/jnut/ch26_01.htm (6 of 20) [2/5/2003 7:52:11 PM]

The javax.crypto Package (Java in a Nutshell)

This class is an input stream that uses a Cipher object to encrypt or decrypt the bytes it reads from another stream. You must initialize the Cipher object before
passing it to the CipherInputStream() constructor.

public class CipherInputStream extends java.io.FilterInputStream {

// Public Constructors

public CipherInputStream (java.io.InputStream is, Cipher c);

// Protected Constructors

protected CipherInputStream (java.io.InputStream is);

// Public Methods Overriding FilterInputStream

public int available () throws java.io.IOException;

public void close () throws java.io.IOException;

public boolean markSupported (); constant

public int read () throws java.io.IOException;

public int read (byte[] b) throws java.io.IOException;

public int read (byte[] b, int off, int len) throws java.io.IOException;

public long skip (long n) throws java.io.IOException;

}

Hierarchy: Object-->java.io.InputStream-->java.io.FilterInputStream-->CipherInputStream

CipherOutputStream JCE 1.2

javax.crypto

This class is an output stream that uses a Cipher object to encrypt or decrypt bytes before passing them to another output stream. You must initialize the Cipher
object before passing it to the CipherOutputStream() constructor. If you are using a Cipher with any kind of padding, you must not call flush() until you
are done writing all data to the stream; otherwise decryption fails.

public class CipherOutputStream extends java.io.FilterOutputStream {

// Public Constructors

public CipherOutputStream (java.io.OutputStream os, Cipher c);

// Protected Constructors

protected CipherOutputStream (java.io.OutputStream os);

// Public Methods Overriding FilterOutputStream

file:///C|/orielly/jnut/ch26_01.htm (7 of 20) [2/5/2003 7:52:11 PM]

The javax.crypto Package (Java in a Nutshell)

public void close () throws java.io.IOException;

public void flush () throws java.io.IOException;

public void write (byte[] b) throws java.io.IOException;

public void write (int b) throws java.io.IOException;

public void write (byte[] b, int off, int len) throws java.io.IOException;

}

Hierarchy: Object-->java.io.OutputStream-->java.io.FilterOutputStream-->CipherOutputStream

CipherSpi JCE 1.2

javax.crypto

This abstract class defines the service-provider interface for Cipher. A cryptographic provider must implement a concrete subclass of this class for each encryption
algorithm it supports. A provider can implement a separate class for each combination of algorithm, mode, and padding scheme it supports or implement more general
classes and leave the mode and/or padding scheme to be specified in calls to engineSetMode() and engineSetPadding(). Applications never need to use or
subclass this class.

public abstract class CipherSpi {

// Public Constructors

public CipherSpi ();

// Protected Instance Methods

protected abstract byte[] engineDoFinal (byte[] input, int inputOffset, int inputLen) throws IllegalBlockSizeExceptionBadPaddingException;

protected abstract int engineDoFinal (byte[] input, int inputOffset, int inputLen, byte[] output, int outputOffset) throws
ShortBufferExceptionIllegalBlockSizeExceptionBadPaddingException;

protected abstract int engineGetBlockSize ();

protected abstract byte[] engineGetIV ();

protected abstract int engineGetOutputSize (int inputLen);

protected abstract java.security.AlgorithmParameters engineGetParameters ();

protected abstract void engineInit (int opmode, java.security.Key key, java.security.SecureRandom random) throws java.security.InvalidKeyException;

protected abstract void engineInit (int opmode, java.security.Key key, java.security.spec.AlgorithmParameterSpec params, java.security.SecureRandom random)
throws java.security.InvalidKeyExceptionjava.security.InvalidAlgorithmParameterException;

protected abstract void engineInit (int opmode, java.security.Key key, java.security.AlgorithmParameters params, java.security.SecureRandom random) throws
java.security.InvalidKeyExceptionjava.security.InvalidAlgorithmParameterException;

protected abstract void engineSetMode (String mode) throws java.security.NoSuchAlgorithmException;

file:///C|/orielly/jnut/ch26_01.htm (8 of 20) [2/5/2003 7:52:11 PM]

The javax.crypto Package (Java in a Nutshell)

protected abstract void engineSetPadding (String padding) throws NoSuchPaddingException;

protected abstract byte[] engineUpdate (byte[] input, int inputOffset, int inputLen);

protected abstract int engineUpdate (byte[] input, int inputOffset, int inputLen, byte[] output, int outputOffset) throws ShortBufferException;

}

Passed To: Cipher.Cipher()

IllegalBlockSizeException JCE 1.2

javax.crypto serializable checked

Signals that the length of data provided to a block cipher (as implemented, for example, by Cipher and SealedObject) does not match the block size for the
cipher.

public class IllegalBlockSizeException extends java.security.GeneralSecurityException {

// Public Constructors

public IllegalBlockSizeException ();

public IllegalBlockSizeException (String msg);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->java.security.GeneralSecurityException--
>IllegalBlockSizeException

Thrown By: Cipher.doFinal(), CipherSpi.engineDoFinal(), SealedObject.{getObject(), SealedObject()}

KeyAgreement JCE 1.2

javax.crypto

This class provides an API to a key-agreement protocol that allows two or more parties to agree on a secret key without exchanging any secrets and in such a way that
an eavesdropper listening in on the communication between those parties cannot determine the secret key. The KeyAgreement class is algorithm-independent and
provider-based, so you must obtain a KeyAgreement object by calling one of the static getInstance() factory methods and specifying the name of the desired
key agreement algorithm and, optionally, the name of the desired provider of that algorithm. The "SunJCE" provider implements a single key-agreement algorithm
named "DiffieHellman".

file:///C|/orielly/jnut/ch26_01.htm (9 of 20) [2/5/2003 7:52:11 PM]

The javax.crypto Package (Java in a Nutshell)

To use a KeyAgreement object, each party first calls the init() method and supplies a Key object of its own. Then, each party obtains a Key object from one of
the other parties to the agreement and calls doPhase(). Each party obtains an intermediate Key object as the return value of doPhase(), and these keys are again
exchanged and passed to doPhase(). This process typically repeats n-1 times, where n is the number of parties, but the actual number of repetitions is algorithm-
dependent. When doPhase() is called the last time, the second argument must be true to indicate that it is the last phase of the agreement. After all calls to
doPhase() have been made, each party calls generateSecret() to obtain an array of bytes or a SecretKey object for a named algorithm type. All parties
obtain the same bytes or SecretKey from this method. The KeyAgreement class is not responsible for the transfer of Key objects between parties or for mutual
authentication among the parties. These tasks must be accomplished through some external mechanism.

The most common type of key agreement is "DiffieHellman" key agreement between two parties. It proceeds as follows. First, both parties obtain a
java.security.KeyPairGenerator for the "DiffieHellman" algorithm and use it to generate a java.security.KeyPair of Diffie-Hellman public and
private keys. Each party passes its private key to the init() method of its KeyAgreement object. (The init() method can be passed a
java.security.spec.AlgorithmParameterSpec object, but the Diffie-Hellman protocol does not require any additional parameters.) Next, the two
parties exchange public keys, typically through some kind of networking mechanism (the KeyAgreement class is not responsible for the actual exchange of keys).
Each party passes the public key of the other party to the doPhase() method of its KeyAgreement object. There are only two parties to this agreement, so only
one phase is required, and the second argument to doPhase() is true. At this point, both parties call generateSecret() to obtain the shared secret key.

A three-party Diffie-Hellman key agreement requires two phases and is slightly more complicated. Let's call the three parties Alice, Bob, and Carol. Each generates a
key pair and uses its private key to initialize its KeyAgreement object, as before. Then Alice passes her public key to Bob, Bob passes his to Carol, and Carol
passes hers to Alice. Each party passes this public key to doPhase(). Since this is not the final doPhase(), the second argument is false, and doPhase()
returns an intermediate Key object. The three parties exchange these intermediate keys again in the same way: Alice to Bob, Bob to Carol, and Carol to Alice. Now
each party passes the intermediate key it has received to doPhase() a second time, passing true to indicate that this is the final phase. Finally, all three can call
generateSecret() to obtain a shared key to encrypt future communication.

public class KeyAgreement {

// Protected Constructors

protected KeyAgreement (KeyAgreementSpi keyAgreeSpi, java.security.Provider provider, String algorithm);

// Public Class Methods

public static final KeyAgreement getInstance (String algorithm) throws java.security.NoSuchAlgorithmException;

public static final KeyAgreement getInstance (String algorithm, String provider) throws
java.security.NoSuchAlgorithmExceptionjava.security.NoSuchProviderException;

// Public Instance Methods

public final java.security.Key doPhase (java.security.Key key, boolean lastPhase) throws java.security.InvalidKeyExceptionjava.lang.IllegalStateException;

public final byte[] generateSecret () throws java.lang.IllegalStateException;

public final SecretKey generateSecret (String algorithm) throws
java.lang.IllegalStateExceptionjava.security.NoSuchAlgorithmExceptionjava.security.InvalidKeyException;

public final int generateSecret (byte[] sharedSecret, int offset) throws java.lang.IllegalStateExceptionShortBufferException;

public final String getAlgorithm ();

public final java.security.Provider getProvider ();

public final void init (java.security.Key key) throws java.security.InvalidKeyException;

file:///C|/orielly/jnut/ch26_01.htm (10 of 20) [2/5/2003 7:52:11 PM]

The javax.crypto Package (Java in a Nutshell)

public final void init (java.security.Key key, java.security.spec.AlgorithmParameterSpec params) throws
java.security.InvalidKeyExceptionjava.security.InvalidAlgorithmParameterException;

public final void init (java.security.Key key, java.security.SecureRandom random) throws java.security.InvalidKeyException;

public final void init (java.security.Key key, java.security.spec.AlgorithmParameterSpec params, java.security.SecureRandom random) throws
java.security.InvalidKeyExceptionjava.security.InvalidAlgorithmParameterException;

}

Returned By: KeyAgreement.getInstance()

KeyAgreementSpi JCE 1.2

javax.crypto

This abstract class defines the service-provider interface for KeyAgreement. A cryptographic provider must implement a concrete subclass of this class for each
encryption algorithm it supports. Applications never need to use or subclass this class.

public abstract class KeyAgreementSpi {

// Public Constructors

public KeyAgreementSpi ();

// Protected Instance Methods

protected abstract java.security.Key engineDoPhase (java.security.Key key, boolean lastPhase) throws
java.security.InvalidKeyExceptionjava.lang.IllegalStateException;

protected abstract byte[] engineGenerateSecret () throws java.lang.IllegalStateException;

protected abstract SecretKey engineGenerateSecret (String algorithm) throws
java.lang.IllegalStateExceptionjava.security.NoSuchAlgorithmExceptionjava.security.InvalidKeyException;

protected abstract int engineGenerateSecret (byte[] sharedSecret, int offset) throws java.lang.IllegalStateExceptionShortBufferException;

protected abstract void engineInit (java.security.Key key, java.security.SecureRandom random) throws java.security.InvalidKeyException;

protected abstract void engineInit (java.security.Key key, java.security.spec.AlgorithmParameterSpec params, java.security.SecureRandom random) throws
java.security.InvalidKeyExceptionjava.security.InvalidAlgorithmParameterException;

}

Passed To: KeyAgreement.KeyAgreement()

KeyGenerator JCE 1.2

file:///C|/orielly/jnut/ch26_01.htm (11 of 20) [2/5/2003 7:52:11 PM]

The javax.crypto Package (Java in a Nutshell)

javax.crypto

This class provides an API for generating secret keys for symmetric cryptography. It is similar to java.security.KeyPairGenerator, which generates
public/private key pairs for asymmetric or public-key cryptography. KeyGenerator is algorithm-independent and provider-based, so you must obtain a
KeyGenerator instance by calling one of the static getInstance() factory methods and specifying the name of the cryptographic algorithm for which a key is
desired and, optionally, the name of the security provider whose key-generation implementation is to be used. The "SunJCE" provider includes KeyGenerator
implementations for the "DES", "DESede", and "Blowfish" encryption algorithms, and also for the "HmacMD5" and "HmacSHA1" message authentication (MAC)
algorithms.

Once you have obtained a KeyGenerator, you initialize it with the init() method. You can provide a
java.security.spec.AlgorithmParameterSpec object to provide algorithm-specific initialization parameters or simply specify the desired size (in bits)
of the key to be generated. In either case, you can also specify a source of randomness in the form of a SecureRandom object. If you do not specify a
SecureRandom, the KeyGenerator instantiates one of its own. None of the algorithms supported by the "SunJCE" provider require algorithm-specific
parameters.

After calling getInstance() to obtain a KeyGenerator and init() to initialize it, simply call generateKey() to create a new SecretKey. Remember
that the SecretKey must be kept secret. Take precautions when storing or transmitting the key, so that it does not fall into the wrong hands. You may want to use a
java.security.KeyStore object to store the key in a password-protected form.

public class KeyGenerator {

// Protected Constructors

protected KeyGenerator (KeyGeneratorSpi keyGenSpi, java.security.Provider provider, String algorithm);

// Public Class Methods

public static final KeyGenerator getInstance (String algorithm) throws java.security.NoSuchAlgorithmException;

public static final KeyGenerator getInstance (String algorithm, String provider) throws
java.security.NoSuchAlgorithmExceptionjava.security.NoSuchProviderException;

// Public Instance Methods

public final SecretKey generateKey ();

public final String getAlgorithm ();

public final java.security.Provider getProvider ();

public final void init (java.security.spec.AlgorithmParameterSpec params) throws java.security.InvalidAlgorithmParameterException;

public final void init (java.security.SecureRandom random);

public final void init (int keysize);

public final void init (java.security.spec.AlgorithmParameterSpec params, java.security.SecureRandom random) throws
java.security.InvalidAlgorithmParameterException;

public final void init (int keysize, java.security.SecureRandom random);

}

file:///C|/orielly/jnut/ch26_01.htm (12 of 20) [2/5/2003 7:52:11 PM]

The javax.crypto Package (Java in a Nutshell)

Returned By: KeyGenerator.getInstance()

KeyGeneratorSpi JCE 1.2

javax.crypto

This abstract class defines the service-provider interface for KeyGenerator. A cryptographic provider must implement a concrete subclass of this class for each key-
generation algorithm it supports. Applications never need to use or subclass this class.

public abstract class KeyGeneratorSpi {

// Public Constructors

public KeyGeneratorSpi ();

// Protected Instance Methods

protected abstract SecretKey engineGenerateKey ();

protected abstract void engineInit (java.security.SecureRandom random);

protected abstract void engineInit (java.security.spec.AlgorithmParameterSpec params, java.security.SecureRandom random) throws
java.security.InvalidAlgorithmParameterException;

protected abstract void engineInit (int keysize, java.security.SecureRandom random);

}

Passed To: KeyGenerator.KeyGenerator()

Mac JCE 1.2

javax.crypto cloneable

This class defines an API for computing a message authentication code (MAC) that can check the integrity of information transmitted between two parties that share a
secret key. A MAC is similar to a digital signature, except that it is generated with a secret key rather than with a public/private key pair. The Mac class is algorithm-
independent and provider-based. Obtain a Mac object by calling one of the static getInstance() factory methods and specifying the name of the desired MAC
algorithm and, optionally, the name of the provider of the desired implementation. The "SunJCE" provider implements two algorithms: "HmacMD5" and
"HmacSHA1". These are MAC algorithms based on the MD5 and SHA-1 cryptographic hash functions.

After obtaining a Mac object, initialize it by calling the init() method and specifying a SecretKey and, optionally, a
java.security.spec.AlgorithmParameterSpec object. The "HmacMD5" and "HmacSHA1" algorithms can use any kind of SecretKey; they are not
restricted to a particular cryptographic algorithm. And neither algorithm requires an AlgorithmParameterSpec object.

file:///C|/orielly/jnut/ch26_01.htm (13 of 20) [2/5/2003 7:52:11 PM]

The javax.crypto Package (Java in a Nutshell)

After obtaining and initializing a Mac object, specify the data for which the MAC is to be computed. If the data is contained in a single byte array, simply pass it to
doFinal(). If the data is streaming or is stored in various locations, you can supply the data in multiple calls to update(). End the series of update() calls
with a single call to doFinal(). Note that some versions of doFinal() return the MAC data as the function return value. Another version stores the MAC data in
a byte array you supply. If you use this version of doFinal(), be sure to call getMacLength() to instantiate an array of the correct length.

A call to doFinal() resets the internal state of a Mac object. If you want to compute a MAC for part of your data and then proceed to compute the MAC for the full
data, you should clone() the Mac object before calling doFinal(). Note, however, that Mac implementations are not required to implement Cloneable.

public class Mac implements Cloneable {

// Protected Constructors

protected Mac (MacSpi macSpi, java.security.Provider provider, String algorithm);

// Public Class Methods

public static final Mac getInstance (String algorithm) throws java.security.NoSuchAlgorithmException;

public static final Mac getInstance (String algorithm, String provider) throws java.security.NoSuchAlgorithmExceptionjava.security.NoSuchProviderException;

// Public Instance Methods

public final byte[] doFinal () throws java.lang.IllegalStateException;

public final byte[] doFinal (byte[] input) throws java.lang.IllegalStateException;

public final void doFinal (byte[] output, int outOffset) throws ShortBufferExceptionjava.lang.IllegalStateException;

public final String getAlgorithm ();

public final int getMacLength ();

public final java.security.Provider getProvider ();

public final void init (java.security.Key key) throws java.security.InvalidKeyException;

public final void init (java.security.Key key, java.security.spec.AlgorithmParameterSpec params) throws
java.security.InvalidKeyExceptionjava.security.InvalidAlgorithmParameterException;

public final void reset ();

public final void update (byte[] input) throws java.lang.IllegalStateException;

public final void update (byte input) throws java.lang.IllegalStateException;

public final void update (byte[] input, int offset, int len) throws java.lang.IllegalStateException;

// Public Methods Overriding Object

public final Object clone () throws CloneNotSupportedException;

}

Hierarchy: Object-->Mac(Cloneable)

Returned By: Mac.getInstance()

file:///C|/orielly/jnut/ch26_01.htm (14 of 20) [2/5/2003 7:52:11 PM]

The javax.crypto Package (Java in a Nutshell)

MacSpi JCE 1.2

javax.crypto

This abstract class defines the service-provider interface for Mac. A cryptographic provider must implement a concrete subclass of this class for each MAC algorithm
it supports. Applications never need to use or subclass this class.

public abstract class MacSpi {

// Public Constructors

public MacSpi ();

// Public Methods Overriding Object

public Object clone () throws CloneNotSupportedException;

// Protected Instance Methods

protected abstract byte[] engineDoFinal ();

protected abstract int engineGetMacLength ();

protected abstract void engineInit (java.security.Key key, java.security.spec.AlgorithmParameterSpec params) throws
java.security.InvalidKeyExceptionjava.security.InvalidAlgorithmParameterException;

protected abstract void engineReset ();

protected abstract void engineUpdate (byte input);

protected abstract void engineUpdate (byte[] input, int offset, int len);

}

Passed To: Mac.Mac()

NoSuchPaddingException JCE 1.2

javax.crypto serializable checked

Signals that no implementation of the requested padding scheme can be found.

public class NoSuchPaddingException extends java.security.GeneralSecurityException {

// Public Constructors

public NoSuchPaddingException ();

file:///C|/orielly/jnut/ch26_01.htm (15 of 20) [2/5/2003 7:52:11 PM]

The javax.crypto Package (Java in a Nutshell)

public NoSuchPaddingException (String msg);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->java.security.GeneralSecurityException--
>NoSuchPaddingException

Thrown By: Cipher.getInstance(), CipherSpi.engineSetPadding()

NullCipher JCE 1.2

javax.crypto

This trivial subclass of Cipher implements an identity cipher that does not transform plain text in any way. Unlike Cipher objects returned by
Cipher.getInstance(), a NullCipher must be created with the NullCipher() constructor.

public class NullCipher extends Cipher {

// Public Constructors

public NullCipher ();

}

Hierarchy: Object-->Cipher-->NullCipher

SealedObject JCE 1.2

javax.crypto serializable

This class is a wrapper around a serializable object. It serializes the object and encrypts the resulting data stream, thereby protecting the confidentiality of the object.
Create a SealedObject by specifying the object to be sealed and a Cipher object to perform the encryption. Retrieve the sealed object by calling getObject()
and specifying the Cipher or java.security.Key to use for decryption. The SealedObject keeps track of the encryption algorithm and parameters so that a
Key object alone can decrypt the object.

public class SealedObject implements Serializable {

// Public Constructors

public SealedObject (Serializable object, Cipher c) throws java.io.IOExceptionIllegalBlockSizeException;

file:///C|/orielly/jnut/ch26_01.htm (16 of 20) [2/5/2003 7:52:11 PM]

The javax.crypto Package (Java in a Nutshell)

// Public Instance Methods

public final String getAlgorithm ();

public final Object getObject (java.security.Key key) throws
java.io.IOExceptionClassNotFoundExceptionjava.security.NoSuchAlgorithmExceptionjava.security.InvalidKeyException;

public final Object getObject (Cipher c) throws java.io.IOExceptionClassNotFoundExceptionIllegalBlockSizeExceptionBadPaddingException;

public final Object getObject (java.security.Key key, String provider) throws
java.io.IOExceptionClassNotFoundExceptionjava.security.NoSuchAlgorithmExceptionjava.security.NoSuchProviderExceptionjava.security.InvalidKeyException;

}

Hierarchy: Object-->SealedObject(Serializable)

SecretKey JCE 1.2

javax.crypto serializable

This interface represents a secret key used for symmetric cryptographic algorithms that depend on both the sender and receiver knowing the same secret. SecretKey
extends the java.security.Key interface, but does not add any new methods. The interface exists in order to keep secret keys distinct from the public and
private keys used in public-key, or asymmetric, cryptography. See also java.security.PublicKey and java.security.PrivateKey.

A secret key is nothing more than arrays of bytes and does not require a specialized encoding format. Therefore, an implementation of this interface should return the
format name "RAW" from getFormat() and should return the bytes of the key from getEncoded(). (These two methods are defined by the
java.security.Key interface that SecretKey extends.)

public abstract interface SecretKey extends java.security.Key {

}

Hierarchy: (SecretKey(java.security.Key(Serializable)))

Implementations: javax.crypto.spec.SecretKeySpec

Passed To: SecretKeyFactory.{getKeySpec(), translateKey()}, SecretKeyFactorySpi.{engineGetKeySpec(),
engineTranslateKey()}

Returned By: KeyAgreement.generateSecret(), KeyAgreementSpi.engineGenerateSecret(), KeyGenerator.generateKey(),
KeyGeneratorSpi.engineGenerateKey(), SecretKeyFactory.{generateSecret(), translateKey()},
SecretKeyFactorySpi.{engineGenerateSecret(), engineTranslateKey()}

file:///C|/orielly/jnut/ch26_01.htm (17 of 20) [2/5/2003 7:52:11 PM]

The javax.crypto Package (Java in a Nutshell)

SecretKeyFactory JCE 1.2

javax.crypto

This class defines an API for translating a secret key between its opaque SecretKey representation and its transparent javax.crypto.SecretKeySpec
representation. It is much like java.security.KeyFactory, except that it works with secret (or symmetric) keys rather than with public and private
(asymmetric) keys. SecretKeyFactory is algorithm-independent and provider-based, so you must obtain a SecretKeyFactory object by calling one of the
static getInstance() factory methods and specifying the name of the desired secret-key algorithm and, optionally, the name of the provider whose
implementation is desired. The "SunJCE" provider provides SecretKeyFactory implementations for the "DES", "DESede", and "PBEWithMD5AndDES"
algorithms.

Once you have obtained a SecretKeyFactory, use generateSecret() to create a SecretKey from a java.security.spec.KeySpec (or its
subclass, javax.crypto.spec.SecretKeySpec). Or call getKeySpec() to obtain a KeySpec for a Key object. Because there can be more than one
suitable type of KeySpec, getKeySpec() requires a Class object to specify the type of the KeySpec to be created. See also DESKeySpec,
DESedeKeySpec, and PBEKeySpec in the javax.crypto.spec package.

public class SecretKeyFactory {

// Protected Constructors

protected SecretKeyFactory (SecretKeyFactorySpi keyFacSpi, java.security.Provider provider, String algorithm);

// Public Class Methods

public static final SecretKeyFactory getInstance (String algorithm) throws java.security.NoSuchAlgorithmException;

public static final SecretKeyFactory getInstance (String algorithm, String provider) throws
java.security.NoSuchAlgorithmExceptionjava.security.NoSuchProviderException;

// Public Instance Methods

public final SecretKey generateSecret (java.security.spec.KeySpec keySpec) throws java.security.spec.InvalidKeySpecException;

public final String getAlgorithm ();

public final java.security.spec.KeySpec getKeySpec (SecretKey key, Class keySpec) throws java.security.spec.InvalidKeySpecException;

public final java.security.Provider getProvider ();

public final SecretKey translateKey (SecretKey key) throws java.security.InvalidKeyException;

}

Returned By: SecretKeyFactory.getInstance()

SecretKeyFactorySpi JCE 1.2

file:///C|/orielly/jnut/ch26_01.htm (18 of 20) [2/5/2003 7:52:11 PM]

The javax.crypto Package (Java in a Nutshell)

javax.crypto

This abstract class defines the service-provider interface for SecretKeyFactory. A cryptographic provider must implement a concrete subclass of this class for
each type of secret key it supports. Applications never need to use or subclass this class.

public abstract class SecretKeyFactorySpi {

// Public Constructors

public SecretKeyFactorySpi ();

// Protected Instance Methods

protected abstract SecretKey engineGenerateSecret (java.security.spec.KeySpec keySpec) throws java.security.spec.InvalidKeySpecException;

protected abstract java.security.spec.KeySpec engineGetKeySpec (SecretKey key, Class keySpec) throws java.security.spec.InvalidKeySpecException;

protected abstract SecretKey engineTranslateKey (SecretKey key) throws java.security.InvalidKeyException;

}

Passed To: SecretKeyFactory.SecretKeyFactory()

ShortBufferException JCE 1.2

javax.crypto serializable checked

Signals that an output buffer is too short to hold the results of an operation.

public class ShortBufferException extends java.security.GeneralSecurityException {

// Public Constructors

public ShortBufferException ();

public ShortBufferException (String msg);

}

Hierarchy: Object-->Throwable(Serializable)-->Exception-->java.security.GeneralSecurityException--
>ShortBufferException

Thrown By: Cipher.{doFinal(), update()}, CipherSpi.{engineDoFinal(), engineUpdate()},
KeyAgreement.generateSecret(), KeyAgreementSpi.engineGenerateSecret(), Mac.doFinal()

file:///C|/orielly/jnut/ch26_01.htm (19 of 20) [2/5/2003 7:52:11 PM]

The javax.crypto Package (Java in a Nutshell)

25.1. The java.util.zip
Package

27. The
javax.crypto.interfaces

Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch26_01.htm (20 of 20) [2/5/2003 7:52:11 PM]

file:///C|/orielly/jnut/copyrght.htm

The javax.crypto.interfaces Package (Java in a Nutshell)

Part 2: API Quick Reference

Chapter 27. The javax.crypto.interfaces
Package
The interfaces in the javax.crypto.interfaces package define the methods that must be supported by the
Diffie-Hellman public/private key pairs used in the Diffie-Hellman key-agreement protocol. These interfaces are
typically of interest only to programmers who are implementing a cryptographic provider or who want to implement
cryptographic algorithms themselves. Use of this package requires basic familiarity with the Diffie-Hellman key-
agreement algorithm and the mathematics that underlie it. Figure 27-1 shows the class hierarchy of this package. Note
that the javax.crypto.spec package also contains classes that provide algorithm-specific details about Diffie-
Hellman keys.

Figure 27-1. The javax.crypto.interfaces package

DHKey JCE 1.2

javax.crypto.interfaces

This interface represents a Diffie-Hellman key. The javax.crypto.spec.DHParameterSpec returned by
getParams() specifies the parameters that generate the key; they define a key family. See the subinterfaces
DHPublicKey and DHPrivateKey for the actual key values.

public abstract interface DHKey {

// Public Instance Methods

public abstract javax.crypto.spec.DHParameterSpec getParams ();

}

Implementations: DHPrivateKey, DHPublicKey

file:///C|/orielly/jnut/ch27_01.htm (1 of 3) [2/5/2003 7:52:16 PM]

The javax.crypto.interfaces Package (Java in a Nutshell)

DHPrivateKey JCE 1.2

javax.crypto.interfaces serializable

This interface represents a Diffie-Hellman private key. Note that it extends two interfaces: DHKey and
java.security.PrivateKey. getX() returns the private-key value. If you are working with a PrivateKey
you know is a Diffie-Hellman key, you can cast your PrivateKey to a DHPrivateKey.

public abstract interface DHPrivateKey extends DHKey, java.security.PrivateKey {

// Public Instance Methods

public abstract java.math.BigInteger getX ();

}

Hierarchy:
(DHPrivateKey(DHKey,java.security.PrivateKey(java.security.Key(Serializable))))

DHPublicKey JCE 1.2

javax.crypto.interfaces serializable

This interface represents a Diffie-Hellman public key. Note that it extends two interfaces: DHKey and
java.security.PublicKey. getY() returns the public-key value. If you are working with a PublicKey
you know is a Diffie-Hellman key, you can cast your PublicKey to a DHPublicKey.

public abstract interface DHPublicKey extends DHKey, java.security.PublicKey {

// Public Instance Methods

public abstract java.math.BigInteger getY ();

}

Hierarchy:
(DHPublicKey(DHKey,java.security.PublicKey(java.security.Key(Serializable))))

26.1. The javax.crypto
Package

28. The javax.crypto.spec
Package

file:///C|/orielly/jnut/ch27_01.htm (2 of 3) [2/5/2003 7:52:16 PM]

The javax.crypto.interfaces Package (Java in a Nutshell)

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch27_01.htm (3 of 3) [2/5/2003 7:52:16 PM]

file:///C|/orielly/jnut/copyrght.htm

The javax.crypto.spec Package (Java in a Nutshell)

Part 2: API Quick Reference

Chapter 28. The javax.crypto.spec Package
The javax.crypto.spec package contains classes that define transparent java.security.spec.KeySpec and
java.security.spec.AlgorithmParameterSpec representations of secret keys, Diffie-Hellman public and private keys, and
parameters used by various cryptographic algorithms. The classes in this package are used in conjunction with
java.security.KeyFactory, javax.crypto.SecretKeyFactory and java.security.AlgorithmParameters for
converting opaque Key, and AlgorithmParameters objects to and from transparent representations. Figure 28-1 shows the class hierarchy of
this package. In order to make good use of this package, you must be familiar with the specifications of the various cryptographic algorithms it
supports and the basic mathematics that underlie those algorithms.

Figure 28-1. The javax.crypto.spec package

DESedeKeySpec JCE 1.2

javax.crypto.spec

This class is a transparent representation of a DESede (triple-DES) key. The key is 24 bytes long.

public class DESedeKeySpec implements java.security.spec.KeySpec {

// Public Constructors

public DESedeKeySpec (byte[] key) throws java.security.InvalidKeyException;

public DESedeKeySpec (byte[] key, int offset) throws java.security.InvalidKeyException;

// Public Constants

public static final int DES_EDE_KEY_LEN ; =24

file:///C|/orielly/jnut/ch28_01.htm (1 of 6) [2/5/2003 7:52:21 PM]

The javax.crypto.spec Package (Java in a Nutshell)

// Public Class Methods

public static boolean isParityAdjusted (byte[] key, int offset) throws java.security.InvalidKeyException;

// Public Instance Methods

public byte[] getKey ();

}

Hierarchy: Object-->DESedeKeySpec(java.security.spec.KeySpec)

DESKeySpec JCE 1.2

javax.crypto.spec

This class is a transparent representation of a DES key. The key is eight bytes long.

public class DESKeySpec implements java.security.spec.KeySpec {

// Public Constructors

public DESKeySpec (byte[] key) throws java.security.InvalidKeyException;

public DESKeySpec (byte[] key, int offset) throws java.security.InvalidKeyException;

// Public Constants

public static final int DES_KEY_LEN ; =8

// Public Class Methods

public static boolean isParityAdjusted (byte[] key, int offset) throws java.security.InvalidKeyException;

public static boolean isWeak (byte[] key, int offset) throws java.security.InvalidKeyException;

// Public Instance Methods

public byte[] getKey ();

}

Hierarchy: Object-->DESKeySpec(java.security.spec.KeySpec)

DHGenParameterSpec JCE 1.2

javax.crypto.spec

This class is a transparent representation of the values needed to generate a set of Diffie-Hellman parameters (see DHParameterSpec). An
instance of this class can be passed to the init() method of a java.security.AlgorithmParameterGenerator that computes Diffie-
Hellman parameters.

public class DHGenParameterSpec implements java.security.spec.AlgorithmParameterSpec {

// Public Constructors

public DHGenParameterSpec (int primeSize, int exponentSize);

// Public Instance Methods

public int getExponentSize ();

public int getPrimeSize ();

}

Hierarchy: Object-->DHGenParameterSpec(java.security.spec.AlgorithmParameterSpec)

file:///C|/orielly/jnut/ch28_01.htm (2 of 6) [2/5/2003 7:52:21 PM]

The javax.crypto.spec Package (Java in a Nutshell)

DHParameterSpec JCE 1.2

javax.crypto.spec

This class is a transparent representation of the set of parameters required by the Diffie-Hellman key-agreement algorithm. All parties to the key
agreement must share these parameters and use them to generate a Diffie-Hellman public/private key pair.

public class DHParameterSpec implements java.security.spec.AlgorithmParameterSpec {

// Public Constructors

public DHParameterSpec (java.math.BigInteger p, java.math.BigInteger g);

public DHParameterSpec (java.math.BigInteger p, java.math.BigInteger g, int l);

// Public Instance Methods

public java.math.BigInteger getG ();

public int getL ();

public java.math.BigInteger getP ();

}

Hierarchy: Object-->DHParameterSpec(java.security.spec.AlgorithmParameterSpec)

Returned By: javax.crypto.interfaces.DHKey.getParams()

DHPrivateKeySpec JCE 1.2

javax.crypto.spec

This java.security.spec.KeySpec is a transparent representation of a Diffie-Hellman private key.

public class DHPrivateKeySpec implements java.security.spec.KeySpec {

// Public Constructors

public DHPrivateKeySpec (java.math.BigInteger x, java.math.BigInteger p, java.math.BigInteger g);

// Public Instance Methods

public java.math.BigInteger getG ();

public java.math.BigInteger getP ();

public java.math.BigInteger getX ();

}

Hierarchy: Object-->DHPrivateKeySpec(java.security.spec.KeySpec)

DHPublicKeySpec JCE 1.2

javax.crypto.spec

This java.security.spec.KeySpec is a transparent representation of a Diffie-Hellman public key.

public class DHPublicKeySpec implements java.security.spec.KeySpec {

// Public Constructors

public DHPublicKeySpec (java.math.BigInteger y, java.math.BigInteger p, java.math.BigInteger g);

file:///C|/orielly/jnut/ch28_01.htm (3 of 6) [2/5/2003 7:52:21 PM]

The javax.crypto.spec Package (Java in a Nutshell)

// Public Instance Methods

public java.math.BigInteger getG ();

public java.math.BigInteger getP ();

public java.math.BigInteger getY ();

}

Hierarchy: Object-->DHPublicKeySpec(java.security.spec.KeySpec)

IvParameterSpec JCE 1.2

javax.crypto.spec

This java.security.spec.AlgorithmParameterSpec is a transparent representation of an initialization vector or IV. An IV is
required for block ciphers used in feedback mode, such as DES in CBC mode.

public class IvParameterSpec implements java.security.spec.AlgorithmParameterSpec {

// Public Constructors

public IvParameterSpec (byte[] iv);

public IvParameterSpec (byte[] iv, int offset, int len);

// Public Instance Methods

public byte[] getIV ();

}

Hierarchy: Object-->IvParameterSpec(java.security.spec.AlgorithmParameterSpec)

PBEKeySpec JCE 1.2

javax.crypto.spec

This class is a transparent representation of a password used in password-based encryption (PBE). The password is stored as a char array rather
than as a String, so that the characters of the password can be overwritten when they are no longer needed (for increased security).

public class PBEKeySpec implements java.security.spec.KeySpec {

// Public Constructors

public PBEKeySpec (char[] password);

// Public Instance Methods

public final char[] getPassword ();

}

Hierarchy: Object-->PBEKeySpec(java.security.spec.KeySpec)

PBEParameterSpec JCE 1.2

javax.crypto.spec

This class is a transparent representation of the parameters used with the password-based encryption algorithm defined by PKCS#5.

file:///C|/orielly/jnut/ch28_01.htm (4 of 6) [2/5/2003 7:52:21 PM]

The javax.crypto.spec Package (Java in a Nutshell)

public class PBEParameterSpec implements java.security.spec.AlgorithmParameterSpec {

// Public Constructors

public PBEParameterSpec (byte[] salt, int iterationCount);

// Public Instance Methods

public int getIterationCount ();

public byte[] getSalt ();

}

Hierarchy: Object-->PBEParameterSpec(java.security.spec.AlgorithmParameterSpec)

RC2ParameterSpec JCE 1.2

javax.crypto.spec

This class is a transparent representation of the parameters used by the RC2 encryption algorithm. An object of this class initializes a Cipher
object that implements RC2. Note that the "SunJCE" provider supplied by Sun does not implement RC2.

public class RC2ParameterSpec implements java.security.spec.AlgorithmParameterSpec {

// Public Constructors

public RC2ParameterSpec (int effectiveKeyBits);

public RC2ParameterSpec (int effectiveKeyBits, byte[] iv);

public RC2ParameterSpec (int effectiveKeyBits, byte[] iv, int offset);

// Public Instance Methods

public int getEffectiveKeyBits ();

public byte[] getIV ();

}

Hierarchy: Object-->RC2ParameterSpec(java.security.spec.AlgorithmParameterSpec)

RC5ParameterSpec JCE 1.2

javax.crypto.spec

This class is a transparent representation of the parameters used by the RC5 encryption algorithm. An object of this class initializes a Cipher
object that implements RC5. Note that the "SunJCE" provider supplied by Sun does not implement RC5.

public class RC5ParameterSpec implements java.security.spec.AlgorithmParameterSpec {

// Public Constructors

public RC5ParameterSpec (int version, int rounds, int wordSize);

public RC5ParameterSpec (int version, int rounds, int wordSize, byte[] iv);

public RC5ParameterSpec (int version, int rounds, int wordSize, byte[] iv, int offset);

// Public Instance Methods

public byte[] getIV ();

public int getRounds ();

public int getVersion ();

public int getWordSize ();

}

file:///C|/orielly/jnut/ch28_01.htm (5 of 6) [2/5/2003 7:52:21 PM]

The javax.crypto.spec Package (Java in a Nutshell)

Hierarchy: Object-->RC5ParameterSpec(java.security.spec.AlgorithmParameterSpec)

SecretKeySpec JCE 1.2

javax.crypto.spec serializable

This class is a transparent and algorithm-independent representation of a secret key. This class is useful only for encryption algorithms (such as
DES and DESede) whose secret keys can be represented as arbitrary byte arrays and do not require auxiliary parameters. Note that
SecretKeySpec implements the javax.crypto.SecretKey interface directly, so no algorithm-specific
javax.crypto.SecretKeyFactory object is required.

public class SecretKeySpec implements java.security.spec.KeySpecjavax.crypto.SecretKey {

// Public Constructors

public SecretKeySpec (byte[] key, String algorithm);

public SecretKeySpec (byte[] key, int offset, int len, String algorithm);

// Methods Implementing Key

public String getAlgorithm ();

public byte[] getEncoded ();

public String getFormat ();

// Public Methods Overriding Object

public boolean equals (Object obj);

public int hashCode ();

}

Hierarchy: Object--
>SecretKeySpec(java.security.spec.KeySpec,javax.crypto.SecretKey(java.security.Key(Serializable)))

27.1. The
javax.crypto.interfaces
Package

29. Class, Method, and Field
Index

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch28_01.htm (6 of 6) [2/5/2003 7:52:21 PM]

file:///C|/orielly/jnut/copyrght.htm

Class, Method, and Field Index (Java in a Nutshell)

Part 2: API Quick Reference

Chapter 29. Class, Method, and Field Index
The following index allows you to look up a class or interface and find what package it is defined in. It also
allows you to look up a method or field and find what class it is defined in. Use it when you want to look up a
class but don't know its package, or when you want to look up a method but don't know its class.

A

abs() BigDecimal, BigInteger, Math, StrictMath

ABSTRACT Modifier

AbstractCollection java.util

AbstractList java.util

AbstractMap java.util

AbstractMethodError java.lang

AbstractSequentialList java.util

AbstractSet java.util

accept() FileFilter, FilenameFilter, ServerSocket, SocketImpl

AccessControlContext java.security

AccessControlException java.security

AccessController java.security

AccessibleObject java.lang.reflect

Acl java.security.acl

AclEntry java.security.acl

AclNotFoundException java.security.acl

acos() Math, StrictMath

activate() AppletInitializer

activeCount() Thread, ThreadGroup

activeGroupCount() ThreadGroup

AD GregorianCalendar

file:///C|/orielly/jnut/ch29_01.htm (1 of 78) [2/5/2003 7:52:37 PM]

Class, Method, and Field Index (Java in a Nutshell)

add()

AbstractCollection, AbstractList, AbstractSequentialList,
ArrayList, BeanContextSupport, BigDecimal, BigInteger,
Calendar, Collection, GregorianCalendar, HashSet, LinkedList,
List, ListIterator, PermissionCollection, Permissions, Set,
TreeSet, Vector

addAll()
AbstractCollection, AbstractList, AbstractSequentialList,
ArrayList, BeanContextSupport, Collection, LinkedList, List, Set,
TreeSet, Vector

addAttribute() AttributedString

addAttributes() AttributedString

addBeanContextMembershipListener() BeanContext, BeanContextSupport

addBeanContextServicesListener() BeanContextServices, BeanContextServicesSupport

addCertificate() Identity

addElement() Vector

addEntry() Acl

addFirst() LinkedList

addIdentity() IdentityScope

addLast() LinkedList

addMember() Group

addObserver() Observable

addOwner() Owner

addPermission() AclEntry

addPropertyChangeListener()
BeanContextChild, BeanContextChildSupport, Customizer,
PropertyChangeSupport, PropertyEditor, PropertyEditorSupport

addProvider() Security

address SocketImpl

addService() BeanContextServices, BeanContextServicesSupport

addShutdownHook() Runtime

addURL() URLClassLoader

addVetoableChangeListener()
BeanContextChild, BeanContextChildSupport,
VetoableChangeSupport

Adler32 java.util.zip

after() Calendar, Date

AlgorithmParameterGenerator java.security

AlgorithmParameterGeneratorSpi java.security

AlgorithmParameters java.security

file:///C|/orielly/jnut/ch29_01.htm (2 of 78) [2/5/2003 7:52:37 PM]

Class, Method, and Field Index (Java in a Nutshell)

AlgorithmParameterSpec java.security.spec

AlgorithmParametersSpi java.security

aliases() KeyStore

allowThreadSuspension() ThreadGroup

allowUserInteraction URLConnection

AllPermission java.security

ALPHABETIC_PRESENTATION_FORMS UnicodeBlock

AM Calendar

AM_PM Calendar

AM_PM_FIELD DateFormat

and() BigInteger, BitSet

andNot() BigInteger, BitSet

annotateClass() ObjectOutputStream

annotateProxyClass() ObjectOutputStream

Annotation java.text

append() StringBuffer

AppletInitializer java.beans

applyLocalizedPattern() DecimalFormat, SimpleDateFormat

applyPattern()
ChoiceFormat, DecimalFormat, MessageFormat,
SimpleDateFormat

appRandom SignatureSpi

APRIL Calendar

ARABIC UnicodeBlock

ARABIC_PRESENTATION_FORMS_A UnicodeBlock

ARABIC_PRESENTATION_FORMS_B UnicodeBlock

areFieldsSet Calendar

ArithmeticException java.lang

ARMENIAN UnicodeBlock

Array java.lang.reflect

arraycopy() System

ArrayIndexOutOfBoundsException java.lang

ArrayList java.util

Arrays java.util

ArrayStoreException java.lang

file:///C|/orielly/jnut/ch29_01.htm (3 of 78) [2/5/2003 7:52:37 PM]

Class, Method, and Field Index (Java in a Nutshell)

ARROWS UnicodeBlock

asin() Math, StrictMath

asList() Arrays

atan() Math, StrictMath

atan2() Math, StrictMath

Attribute java.text.AttributedCharacterIterator

AttributedCharacterIterator java.text

AttributedCharacterIterator.Attribute java.text

AttributedString java.text

attributeNames() FeatureDescriptor

Attributes java.util.jar

Attributes.Name java.util.jar

AUGUST Calendar

Authenticator java.net

available()

BufferedInputStream, ByteArrayInputStream,
CipherInputStream, FileInputStream, FilterInputStream,
InflaterInputStream, InputStream, LineNumberInputStream,
ObjectInput, ObjectInputStream, PipedInputStream,
PushbackInputStream, SequenceInputStream, SocketImpl,
StringBufferInputStream, ZipInputStream

avoidingGui() BeanContextSupport, Visibility

B

BadPaddingException javax.crypto

baseWireHandle ObjectStreamConstants

BASIC_LATIN UnicodeBlock

BasicPermission java.security

BC GregorianCalendar

bcmListeners BeanContextSupport

BCSChild java.beans.beancontext.BeanContextSupport

bcsChildren() BeanContextSupport

BCSIterator java.beans.beancontext.BeanContextSupport

bcsListeners BeanContextServicesSupport

bcsPreDeserializationHook() BeanContextServicesSupport, BeanContextSupport

file:///C|/orielly/jnut/ch29_01.htm (4 of 78) [2/5/2003 7:52:37 PM]

Class, Method, and Field Index (Java in a Nutshell)

bcsPreSerializationHook() BeanContextServicesSupport, BeanContextSupport

BCSSChild java.beans.beancontext.BeanContextServicesSupport

BCSSProxyServiceProvider java.beans.beancontext.BeanContextServicesSupport

BCSSServiceProvider java.beans.beancontext.BeanContextServicesSupport

beanContext BeanContextChildSupport

BeanContext java.beans.beancontext

BeanContextChild java.beans.beancontext

BeanContextChildComponentProxy java.beans.beancontext

beanContextChildPeer BeanContextChildSupport

BeanContextChildSupport java.beans.beancontext

BeanContextContainerProxy java.beans.beancontext

BeanContextEvent java.beans.beancontext

BeanContextMembershipEvent java.beans.beancontext

BeanContextMembershipListener java.beans.beancontext

BeanContextProxy java.beans.beancontext

BeanContextServiceAvailableEvent java.beans.beancontext

BeanContextServiceProvider java.beans.beancontext

BeanContextServiceProviderBeanInfo java.beans.beancontext

BeanContextServiceRevokedEvent java.beans.beancontext

BeanContextServiceRevokedListener java.beans.beancontext

BeanContextServices java.beans.beancontext

BeanContextServicesListener java.beans.beancontext

BeanContextServicesSupport java.beans.beancontext

BeanContextServicesSupport.BCSSChild java.beans.beancontext

BeanContextServicesSupport.BCSSProxyServiceProvider java.beans.beancontext

BeanContextServicesSupport.BCSSServiceProvider java.beans.beancontext

BeanContextSupport java.beans.beancontext

BeanContextSupport.BCSChild java.beans.beancontext

BeanContextSupport.BCSIterator java.beans.beancontext

BeanDescriptor java.beans

BeanInfo java.beans

Beans java.beans

before() Calendar, Date

BENGALI UnicodeBlock

file:///C|/orielly/jnut/ch29_01.htm (5 of 78) [2/5/2003 7:52:37 PM]

Class, Method, and Field Index (Java in a Nutshell)

BEST_COMPRESSION Deflater

BEST_SPEED Deflater

BigDecimal java.math

BigInteger java.math

binarySearch() Arrays, Collections

bind() DatagramSocketImpl, SocketImpl

BindException java.net

bitCount() BigInteger

bitLength() BigInteger

BitSet java.util

BLOCK_ELEMENTS UnicodeBlock

Boolean java.lang

booleanValue() Boolean

BOPOMOFO UnicodeBlock

BOX_DRAWING UnicodeBlock

BreakIterator java.text

buf

BufferedInputStream, BufferedOutputStream,
ByteArrayInputStream, ByteArrayOutputStream,
CharArrayReader, CharArrayWriter,
DeflaterOutputStream, InflaterInputStream,
PushbackInputStream

buffer PipedInputStream, StringBufferInputStream

BufferedInputStream java.io

BufferedOutputStream java.io

BufferedReader java.io

BufferedWriter java.io

Byte java.lang

ByteArrayInputStream java.io

ByteArrayOutputStream java.io

bytesTransferred InterruptedIOException

byteValue() Byte, Double, Float, Integer, Long, Number, Short

C

Calendar java.util

file:///C|/orielly/jnut/ch29_01.htm (6 of 78) [2/5/2003 7:52:37 PM]

Class, Method, and Field Index (Java in a Nutshell)

calendar DateFormat

CANADA Locale

CANADA_FRENCH Locale

cancel() Timer, TimerTask

CANONICAL_DECOMPOSITION Collator

canRead() File

canWrite() File

capacity() StringBuffer, Vector

capacityIncrement Vector

CASE_INSENSITIVE_ORDER String

ceil() Math, StrictMath

Certificate java.security, java.security.cert

Certificate.CertificateRep java.security.cert

CertificateEncodingException java.security.cert

CertificateException java.security.cert

CertificateExpiredException java.security.cert

CertificateFactory java.security.cert

CertificateFactorySpi java.security.cert

CertificateNotYetValidException java.security.cert

CertificateParsingException java.security.cert

CertificateRep java.security.cert.Certificate

certificates() Identity

Character java.lang

Character.Subset java.lang

Character.UnicodeBlock java.lang

CharacterIterator java.text

CharArrayReader java.io

CharArrayWriter java.io

charAt() String, StringBuffer

CharConversionException java.io

charValue() Character

checkAccept() SecurityManager

checkAccess() SecurityManager, Thread, ThreadGroup

checkAwtEventQueueAccess() SecurityManager

file:///C|/orielly/jnut/ch29_01.htm (7 of 78) [2/5/2003 7:52:37 PM]

Class, Method, and Field Index (Java in a Nutshell)

checkConnect() SecurityManager

checkCreateClassLoader() SecurityManager

checkDelete() SecurityManager

CheckedInputStream java.util.zip

CheckedOutputStream java.util.zip

checkError() PrintStream, PrintWriter

checkExec() SecurityManager

checkExit() SecurityManager

checkGuard() Guard, Permission

checkLink() SecurityManager

checkListen() SecurityManager

checkMemberAccess() SecurityManager

checkMulticast() SecurityManager

checkPackageAccess() SecurityManager

checkPackageDefinition() SecurityManager

checkPermission()
AccessControlContext, AccessController, Acl, AclEntry,
SecurityManager

checkPrintJobAccess() SecurityManager

checkPropertiesAccess() SecurityManager

checkPropertyAccess() SecurityManager

checkRead() SecurityManager

checkSecurityAccess() SecurityManager

checkSetFactory() SecurityManager

Checksum java.util.zip

checkSystemClipboardAccess() SecurityManager

checkTopLevelWindow() SecurityManager

checkValidity() X509Certificate

checkWrite() SecurityManager

childDeserializedHook() BeanContextSupport

childJustAddedHook() BeanContextSupport

childJustRemovedHook() BeanContextServicesSupport, BeanContextSupport

children BeanContextMembershipEvent, BeanContextSupport

childrenAdded() BeanContextMembershipListener

childrenRemoved() BeanContextMembershipListener

file:///C|/orielly/jnut/ch29_01.htm (8 of 78) [2/5/2003 7:52:37 PM]

Class, Method, and Field Index (Java in a Nutshell)

childValue() InheritableThreadLocal

CHINA Locale

CHINESE Locale

ChoiceFormat java.text

Cipher javax.crypto

CipherInputStream javax.crypto

CipherOutputStream javax.crypto

CipherSpi javax.crypto

CJK_COMPATIBILITY UnicodeBlock

CJK_COMPATIBILITY_FORMS UnicodeBlock

CJK_COMPATIBILITY_IDEOGRAPHS UnicodeBlock

CJK_SYMBOLS_AND_PUNCTUATION UnicodeBlock

CJK_UNIFIED_IDEOGRAPHS UnicodeBlock

Class java.lang

CLASS_PATH Name

ClassCastException java.lang

ClassCircularityError java.lang

classDepth() SecurityManager

classEquals() BeanContextSupport

ClassFormatError java.lang

ClassLoader java.lang

classLoaderDepth() SecurityManager

classname InvalidClassException

ClassNotFoundException java.lang

clear()

AbstractCollection, AbstractList, AbstractMap, ArrayList,
Attributes, BeanContextSupport, BitSet, Calendar, Collection,
HashMap, HashSet, Hashtable, LinkedList, List, Manifest, Map,
Provider, Reference, Set, TreeMap, TreeSet, Vector,
WeakHashMap

clearBit() BigInteger

clearChanged() Observable

file:///C|/orielly/jnut/ch29_01.htm (9 of 78) [2/5/2003 7:52:37 PM]

Class, Method, and Field Index (Java in a Nutshell)

clone()

AclEntry, ArrayList, Attributes, BitSet, BreakIterator, Calendar,
CharacterIterator, ChoiceFormat, Collator, Date, DateFormat,
DateFormatSymbols, DecimalFormat, DecimalFormatSymbols,
Format, HashMap, HashSet, Hashtable, LinkedList, Locale, Mac,
MacSpi, Manifest, MessageDigest, MessageDigestSpi,
MessageFormat, NumberFormat, Object, RuleBasedCollator,
Signature, SignatureSpi, SimpleDateFormat, SimpleTimeZone,
StringCharacterIterator, TimeZone, TreeMap, TreeSet, Vector,
ZipEntry

Cloneable java.lang

CloneNotSupportedException java.lang

close()

BufferedInputStream, BufferedReader, BufferedWriter,
ByteArrayInputStream, ByteArrayOutputStream,
CharArrayReader, CharArrayWriter, CipherInputStream,
CipherOutputStream, DatagramSocket, DatagramSocketImpl,
DeflaterOutputStream, FileInputStream, FileOutputStream,
FilterInputStream, FilterOutputStream, FilterReader, FilterWriter,
GZIPInputStream, GZIPOutputStream, InflaterInputStream,
InputStream, InputStreamReader, ObjectInput, ObjectInputStream,
ObjectOutput, ObjectOutputStream, OutputStream,
OutputStreamWriter, PipedInputStream, PipedOutputStream,
PipedReader, PipedWriter, PrintStream, PrintWriter,
PushbackInputStream, PushbackReader, RandomAccessFile,
Reader, SequenceInputStream, ServerSocket, Socket, SocketImpl,
StringReader, StringWriter, Writer, ZipFile, ZipInputStream,
ZipOutputStream

closeEntry() ZipInputStream, ZipOutputStream

CodeSource java.security

CollationElementIterator java.text

CollationKey java.text

Collator java.text

Collection java.util

Collections java.util

combine() DomainCombiner

COMBINING_DIACRITICAL_MARKS UnicodeBlock

COMBINING_HALF_MARKS UnicodeBlock

COMBINING_MARKS_FOR_SYMBOLS UnicodeBlock

COMBINING_SPACING_MARK Character

command() Compiler

commentChar() StreamTokenizer

file:///C|/orielly/jnut/ch29_01.htm (10 of 78) [2/5/2003 7:52:37 PM]

Class, Method, and Field Index (Java in a Nutshell)

CompactShortArray.Iterator java.text

Comparable java.lang

Comparator java.util

comparator() SortedMap, SortedSet, TreeMap, TreeSet

compare() Collator, Comparator, RuleBasedCollator

compareTo()
BigDecimal, BigInteger, Byte, Character, CollationKey,
Comparable, Date, Double, File, Float, Integer, Long,
ObjectStreamField, Short, String

compareToIgnoreCase() String

compileClass() Compiler

compileClasses() Compiler

Compiler java.lang

complete() Calendar

computeFields() Calendar, GregorianCalendar

computeTime() Calendar, GregorianCalendar

concat() String

ConcurrentModificationException java.util

connect()
DatagramSocket, PipedInputStream, PipedOutputStream,
PipedReader, PipedWriter, SocketImpl, URLConnection

connected URLConnection

ConnectException java.net

CONNECTOR_PUNCTUATION Character

Constructor java.lang.reflect

contains()
AbstractCollection, ArrayList, BeanContextMembershipEvent,
BeanContextSupport, Collection, HashSet, Hashtable, LinkedList,
List, Set, TreeSet, Vector

containsAlias() KeyStore

containsAll()
AbstractCollection, BeanContextSupport, Collection, List, Set,
Vector

containsKey()
AbstractMap, Attributes, BeanContextSupport, HashMap,
Hashtable, Map, TreeMap, WeakHashMap

containsValue() AbstractMap, Attributes, HashMap, Hashtable, Map, TreeMap

CONTENT_TYPE Name

ContentHandler java.net

ContentHandlerFactory java.net

CONTROL Character

file:///C|/orielly/jnut/ch29_01.htm (11 of 78) [2/5/2003 7:52:37 PM]

Class, Method, and Field Index (Java in a Nutshell)

CONTROL_PICTURES UnicodeBlock

copy() Collections

copyChildren() BeanContextSupport

copyInto() Vector

copyValueOf() String

cos() Math, StrictMath

count
BufferedInputStream, BufferedOutputStream,
ByteArrayInputStream, ByteArrayOutputStream,
CharArrayReader, CharArrayWriter, StringBufferInputStream

countObservers() Observable

countStackFrames() Thread

countTokens() StringTokenizer

crc GZIPInputStream, GZIPOutputStream

CRC32 java.util.zip

create() DatagramSocketImpl, SocketImpl

createBCSChild() BeanContextServicesSupport, BeanContextSupport

createBCSSServiceProvider() BeanContextServicesSupport

createContentHandler() ContentHandlerFactory

createDatagramSocketImpl() DatagramSocketImplFactory

createNewFile() File

createSocketImpl() SocketImplFactory

createTempFile() File

createURLStreamHandler() URLStreamHandlerFactory

createZipEntry() JarInputStream, ZipInputStream

CRL java.security.cert

CRLException java.security.cert

CURRENCY_SYMBOL Character

CURRENCY_SYMBOLS UnicodeBlock

current() BreakIterator, CharacterIterator, StringCharacterIterator

currentClassLoader() SecurityManager

currentLoadedClass() SecurityManager

currentThread() Thread

currentTimeMillis() System

Customizer java.beans

CYRILLIC UnicodeBlock

file:///C|/orielly/jnut/ch29_01.htm (12 of 78) [2/5/2003 7:52:37 PM]

Class, Method, and Field Index (Java in a Nutshell)

D

DASH_PUNCTUATION Character

DataFormatException java.util.zip

DatagramPacket java.net

DatagramSocket java.net

DatagramSocketImpl java.net

DatagramSocketImplFactory java.net

DataInput java.io

DataInputStream java.io

DataOutput java.io

DataOutputStream java.io

Date java.util

DATE Calendar

DATE_FIELD DateFormat

DateFormat java.text

DateFormatSymbols java.text

DAY_OF_MONTH Calendar

DAY_OF_WEEK Calendar

DAY_OF_WEEK_FIELD DateFormat

DAY_OF_WEEK_IN_MONTH Calendar

DAY_OF_WEEK_IN_MONTH_FIELD DateFormat

DAY_OF_YEAR Calendar

DAY_OF_YEAR_FIELD DateFormat

decapitalize() Introspector

DECEMBER Calendar

DECIMAL_DIGIT_NUMBER Character

DecimalFormat java.text

DecimalFormatSymbols java.text

DECLARED Member

decode() Byte, Certificate, Integer, Long, Short, URLDecoder

DECRYPT_MODE Cipher

def DeflaterOutputStream

file:///C|/orielly/jnut/ch29_01.htm (13 of 78) [2/5/2003 7:52:37 PM]

Class, Method, and Field Index (Java in a Nutshell)

DEFAULT DateFormat

DEFAULT_COMPRESSION Deflater

DEFAULT_STRATEGY Deflater

defaulted() GetField

defaultReadObject() ObjectInputStream

defaults Properties

defaultWriteObject() ObjectOutputStream

defineClass() ClassLoader, SecureClassLoader

definePackage() ClassLoader, URLClassLoader

deflate() Deflater, DeflaterOutputStream

DEFLATED Deflater, ZipEntry, ZipOutputStream

Deflater java.util.zip

DeflaterOutputStream java.util.zip

delete() File, StringBuffer

deleteCharAt() StringBuffer

deleteEntry() KeyStore

deleteObserver() Observable

deleteObservers() Observable

deleteOnExit() File

deleteOwner() Owner

DES_EDE_KEY_LEN DESedeKeySpec

DES_KEY_LEN DESKeySpec

DESedeKeySpec javax.crypto.spec

deserialize() BeanContextSupport

DesignMode java.beans

designTime BeanContextSupport

DESKeySpec javax.crypto.spec

destroy() Process, Thread, ThreadGroup

detail WriteAbortedException

DEVANAGARI UnicodeBlock

DHGenParameterSpec javax.crypto.spec

DHKey javax.crypto.interfaces

DHParameterSpec javax.crypto.spec

DHPrivateKey javax.crypto.interfaces

file:///C|/orielly/jnut/ch29_01.htm (14 of 78) [2/5/2003 7:52:37 PM]

Class, Method, and Field Index (Java in a Nutshell)

DHPrivateKeySpec javax.crypto.spec

DHPublicKey javax.crypto.interfaces

DHPublicKeySpec javax.crypto.spec

Dictionary java.util

digest DigestInputStream, DigestOutputStream

digest() MessageDigest

DigestException java.security

DigestInputStream java.security

DigestOutputStream java.security

digit() Character

DINGBATS UnicodeBlock

disable() Compiler

disconnect() DatagramSocket, HttpURLConnection

divide() BigDecimal, BigInteger

divideAndRemainder() BigInteger

doFinal() Cipher, Mac

doInput URLConnection

DomainCombiner java.security

DONE BreakIterator, CharacterIterator

dontUseGui() BeanContextSupport, Visibility

doOutput URLConnection

doPhase() KeyAgreement

doPrivileged() AccessController

Double java.lang

doubleToLongBits() Double

doubleToRawLongBits() Double

doubleValue()
BigDecimal, BigInteger, Byte, Double, Float, Integer, Long, Number,
Short

drain() ObjectOutputStream

DSAKey java.security.interfaces

DSAKeyPairGenerator java.security.interfaces

DSAParameterSpec java.security.spec

DSAParams java.security.interfaces

DSAPrivateKey java.security.interfaces

file:///C|/orielly/jnut/ch29_01.htm (15 of 78) [2/5/2003 7:52:37 PM]

Class, Method, and Field Index (Java in a Nutshell)

DSAPrivateKeySpec java.security.spec

DSAPublicKey java.security.interfaces

DSAPublicKeySpec java.security.spec

DST_OFFSET Calendar

dumpStack() Thread

E

E Math, StrictMath

elementAt() Vector

elementCount Vector

elementData Vector

elements()
Dictionary, Hashtable, PermissionCollection, Permissions,
Vector

empty() Stack

EMPTY_LIST Collections

EMPTY_MAP Collections

EMPTY_SET Collections

EmptyStackException java.util

enable() Compiler

enableReplaceObject() ObjectOutputStream

enableResolveObject() ObjectInputStream

ENCLOSED_ALPHANUMERICS UnicodeBlock

ENCLOSED_CJK_LETTERS_AND_MONTHS UnicodeBlock

ENCLOSING_MARK Character

encode() Certificate, URLEncoder

EncodedKeySpec java.security.spec

ENCRYPT_MODE Cipher

end() Deflater, Inflater

END_PUNCTUATION Character

endsWith() String

engineAliases() KeyStoreSpi

engineContainsAlias() KeyStoreSpi

engineDeleteEntry() KeyStoreSpi

file:///C|/orielly/jnut/ch29_01.htm (16 of 78) [2/5/2003 7:52:37 PM]

Class, Method, and Field Index (Java in a Nutshell)

engineDigest() MessageDigestSpi

engineDoFinal() CipherSpi, MacSpi

engineDoPhase() KeyAgreementSpi

engineGenerateCertificate() CertificateFactorySpi

engineGenerateCertificates() CertificateFactorySpi

engineGenerateCRL() CertificateFactorySpi

engineGenerateCRLs() CertificateFactorySpi

engineGenerateKey() KeyGeneratorSpi

engineGenerateParameters() AlgorithmParameterGeneratorSpi

engineGeneratePrivate() KeyFactorySpi

engineGeneratePublic() KeyFactorySpi

engineGenerateSecret() KeyAgreementSpi, SecretKeyFactorySpi

engineGenerateSeed() SecureRandomSpi

engineGetBlockSize() CipherSpi

engineGetCertificate() KeyStoreSpi

engineGetCertificateAlias() KeyStoreSpi

engineGetCertificateChain() KeyStoreSpi

engineGetCreationDate() KeyStoreSpi

engineGetDigestLength() MessageDigestSpi

engineGetEncoded() AlgorithmParametersSpi

engineGetIV() CipherSpi

engineGetKey() KeyStoreSpi

engineGetKeySpec() KeyFactorySpi, SecretKeyFactorySpi

engineGetMacLength() MacSpi

engineGetOutputSize() CipherSpi

engineGetParameter() SignatureSpi

engineGetParameters() CipherSpi

engineGetParameterSpec() AlgorithmParametersSpi

engineInit()
AlgorithmParameterGeneratorSpi, AlgorithmParametersSpi,
CipherSpi, KeyAgreementSpi, KeyGeneratorSpi, MacSpi

engineInitSign() SignatureSpi

engineInitVerify() SignatureSpi

engineIsCertificateEntry() KeyStoreSpi

engineIsKeyEntry() KeyStoreSpi

file:///C|/orielly/jnut/ch29_01.htm (17 of 78) [2/5/2003 7:52:37 PM]

Class, Method, and Field Index (Java in a Nutshell)

engineLoad() KeyStoreSpi

engineNextBytes() SecureRandomSpi

engineReset() MacSpi, MessageDigestSpi

engineSetCertificateEntry() KeyStoreSpi

engineSetKeyEntry() KeyStoreSpi

engineSetMode() CipherSpi

engineSetPadding() CipherSpi

engineSetParameter() SignatureSpi

engineSetSeed() SecureRandomSpi

engineSign() SignatureSpi

engineSize() KeyStoreSpi

engineStore() KeyStoreSpi

engineToString() AlgorithmParametersSpi

engineTranslateKey() KeyFactorySpi, SecretKeyFactorySpi

engineUpdate() CipherSpi, MacSpi, MessageDigestSpi, SignatureSpi

engineVerify() SignatureSpi

ENGLISH Locale

enqueue() Reference

ensureCapacity() ArrayList, StringBuffer, Vector

entries() Acl, JarFile, ZipFile

Entry java.util.Map

entrySet()
AbstractMap, Attributes, HashMap, Hashtable, Map,
Provider, TreeMap, WeakHashMap

enumerate() Thread, ThreadGroup

Enumeration java.util

enumeration() Collections

eof OptionalDataException

EOFException java.io

eolIsSignificant() StreamTokenizer

eos GZIPInputStream

file:///C|/orielly/jnut/ch29_01.htm (18 of 78) [2/5/2003 7:52:37 PM]

Class, Method, and Field Index (Java in a Nutshell)

equals()

AbstractList, AbstractMap, AbstractSet,
AccessControlContext, AllPermission, Arrays, Attribute,
Attributes, BasicPermission, BigDecimal, BigInteger, BitSet,
Boolean, Byte, Calendar, Certificate, Character,
ChoiceFormat, CodeSource, CollationKey, Collator,
Collection, Comparator, Constructor, Date, DateFormat,
DateFormatSymbols, DecimalFormat,
DecimalFormatSymbols, Double, Entry, Field, FieldPosition,
File, FilePermission, Float, GregorianCalendar, Hashtable,
Identity, InetAddress, Integer, List, Locale, Long, Manifest,
Map, MessageFormat, Method, Name, NumberFormat,
Object, ParsePosition, Permission, Principal,
PropertyPermission, RuleBasedCollator, SecretKeySpec, Set,
Short, SimpleDateFormat, SimpleTimeZone,
SocketPermission, String, StringCharacterIterator, Subset,
UnresolvedPermission, URL, URLStreamHandler, Vector,
X509CRL, X509CRLEntry

equalsIgnoreCase() String

ERA Calendar

ERA_FIELD DateFormat

err FileDescriptor, System

Error java.lang

EventListener java.util

EventObject java.util

EventSetDescriptor java.beans

Exception java.lang

ExceptionInInitializerError java.lang

exec() Runtime

exists() File

exit() Runtime, System

exitValue() Process

exp() Math, StrictMath

EXTENSION_INSTALLATION Name

EXTENSION_LIST Name

EXTENSION_NAME Name

Externalizable java.io

F

file:///C|/orielly/jnut/ch29_01.htm (19 of 78) [2/5/2003 7:52:37 PM]

Class, Method, and Field Index (Java in a Nutshell)

F0 RSAKeyGenParameterSpec

F4 RSAKeyGenParameterSpec

FALSE Boolean

fd DatagramSocketImpl, SocketImpl

FeatureDescriptor java.beans

FEBRUARY Calendar

Field java.lang.reflect

FIELD_COUNT Calendar

FieldPosition java.text

fields Calendar

File java.io

FileDescriptor java.io

FileFilter java.io

FileInputStream java.io

FilenameFilter java.io

FileNameMap java.net

FileNotFoundException java.io

FileOutputStream java.io

FilePermission java.io

FileReader java.io

FileWriter java.io

fill() Arrays, Collections, InflaterInputStream

fillInStackTrace() Throwable

FILTERED Deflater

FilterInputStream java.io

FilterOutputStream java.io

FilterReader java.io

FilterWriter java.io

FINAL Modifier

finalize() Deflater, FileInputStream, FileOutputStream, Inflater, Object

findClass() ClassLoader, URLClassLoader

findEditor() PropertyEditorManager

findLibrary() ClassLoader

findLoadedClass() ClassLoader

file:///C|/orielly/jnut/ch29_01.htm (20 of 78) [2/5/2003 7:52:37 PM]

Class, Method, and Field Index (Java in a Nutshell)

findResource() ClassLoader, URLClassLoader

findResources() ClassLoader, URLClassLoader

findSystemClass() ClassLoader

finish() Deflater, DeflaterOutputStream, GZIPOutputStream, ZipOutputStream

finished() Deflater, Inflater

fireChildrenAdded() BeanContextSupport

fireChildrenRemoved() BeanContextSupport

firePropertyChange() BeanContextChildSupport, PropertyChangeSupport, PropertyEditorSupport

fireServiceAdded() BeanContextServicesSupport

fireServiceRevoked() BeanContextServicesSupport

fireVetoableChange() BeanContextChildSupport, VetoableChangeSupport

first() BreakIterator, CharacterIterator, SortedSet, StringCharacterIterator, TreeSet

firstElement() Vector

firstKey() SortedMap, TreeMap

flipBit() BigInteger

Float java.lang

floatToIntBits() Float

floatToRawIntBits() Float

floatValue() BigDecimal, BigInteger, Byte, Double, Float, Integer, Long, Number, Short

floor() Math, StrictMath

flush()

BufferedOutputStream, BufferedWriter, CharArrayWriter, CipherOutputStream,
DataOutputStream, FilterOutputStream, FilterWriter, ObjectOutput,
ObjectOutputStream, OutputStream, OutputStreamWriter, PipedOutputStream,
PipedWriter, PrintStream, PrintWriter, StringWriter, Writer

flushCaches() Introspector

flushFromCaches() Introspector

following() BreakIterator

forClass() ObjectStreamClass

forDigit() Character

FORMAT Character

Format java.text

format()
ChoiceFormat, DateFormat, DecimalFormat, Format, MessageFormat,
NumberFormat, SimpleDateFormat

forName() Class

FRACTION_FIELD NumberFormat

file:///C|/orielly/jnut/ch29_01.htm (21 of 78) [2/5/2003 7:52:37 PM]

Class, Method, and Field Index (Java in a Nutshell)

FRANCE Locale

freeMemory() Runtime

FRENCH Locale

FRIDAY Calendar

FULL DateFormat

FULL_DECOMPOSITION Collator

G

gc() Runtime, System

gcd() BigInteger

GENERAL_PUNCTUATION UnicodeBlock

GeneralSecurityException java.security

generateCertificate() CertificateFactory

generateCertificates() CertificateFactory

generateCRL() CertificateFactory

generateCRLs() CertificateFactory

generateKey() KeyGenerator

generateKeyPair() KeyPairGenerator, KeyPairGeneratorSpi

generateParameters() AlgorithmParameterGenerator

generatePrivate() KeyFactory

generatePublic() KeyFactory

generateSecret() KeyAgreement, SecretKeyFactory

generateSeed() SecureRandom

genKeyPair() KeyPairGenerator

GEOMETRIC_SHAPES UnicodeBlock

GEORGIAN UnicodeBlock

GERMAN Locale

GERMANY Locale

get()

AbstractList, AbstractMap, AbstractSequentialList, Array,
ArrayList, Attributes, BitSet, Calendar, Dictionary, Field,
GetField, HashMap, Hashtable, LinkedList, List, Map,
PhantomReference, Reference, SoftReference, ThreadLocal,
TreeMap, Vector, WeakHashMap

get2DigitYearStart() SimpleDateFormat

file:///C|/orielly/jnut/ch29_01.htm (22 of 78) [2/5/2003 7:52:37 PM]

Class, Method, and Field Index (Java in a Nutshell)

getAbsoluteFile() File

getAbsolutePath() File

getActions()
AllPermission, BasicPermission, FilePermission, Permission,
PropertyPermission, SocketPermission, UnresolvedPermission

getActualMaximum() Calendar, GregorianCalendar

getActualMinimum() Calendar, GregorianCalendar

getAdditionalBeanInfo() BeanInfo, SimpleBeanInfo

getAddListenerMethod() EventSetDescriptor

getAddress() DatagramPacket, InetAddress

getAdler() Deflater, Inflater

getAlgorithm()

AlgorithmParameterGenerator, AlgorithmParameters, Cipher,
Key, KeyAgreement, KeyFactory, KeyGenerator,
KeyPairGenerator, Mac, MessageDigest, SealedObject,
SecretKeyFactory, SecretKeySpec, Signature, SignedObject

getAlgorithmProperty() Security

getAllAttributeKeys() AttributedCharacterIterator

getAllByName() InetAddress

getAllowUserInteraction() URLConnection

getAmPmStrings() DateFormatSymbols

getAsText() PropertyEditor, PropertyEditorSupport

getAttribute() AttributedCharacterIterator

getAttributes()
AttributedCharacterIterator, JarEntry, JarURLConnection,
Manifest

getAuthority() URL

getAvailableIDs() TimeZone

getAvailableLocales()
BreakIterator, Calendar, Collator, DateFormat, Locale,
NumberFormat

getBasicConstraints() X509Certificate

getBeanClass() BeanDescriptor

getBeanContext() BeanContextChild, BeanContextChildSupport, BeanContextEvent

getBeanContextChildPeer() BeanContextChildSupport

getBeanContextPeer() BeanContextSupport

getBeanContextProxy() BeanContextProxy

getBeanContextServicesPeer() BeanContextServicesSupport

getBeanDescriptor() BeanInfo, SimpleBeanInfo

getBeanInfo() Introspector

file:///C|/orielly/jnut/ch29_01.htm (23 of 78) [2/5/2003 7:52:37 PM]

Class, Method, and Field Index (Java in a Nutshell)

getBeanInfoSearchPath() Introspector

getBeginIndex() CharacterIterator, FieldPosition, StringCharacterIterator

getBlockSize() Cipher

getBoolean() Array, Boolean, Field

getBuffer() StringWriter

getBundle() ResourceBundle

getByName() InetAddress

getByte() Array, Field

getBytes() String

getCalendar() DateFormat

getCanonicalFile() File

getCanonicalPath() File

getCertificate() KeyStore

getCertificateAlias() KeyStore

getCertificateChain() KeyStore

getCertificates() CodeSource, JarEntry, JarURLConnection

getChar() Array, Field

getCharacterInstance() BreakIterator

getChars() String, StringBuffer

getChecksum() CheckedInputStream, CheckedOutputStream

getChildBeanContextChild() BeanContextSupport

getChildBeanContextMembershipListener() BeanContextSupport

getChildBeanContextServicesListener() BeanContextServicesSupport

getChildPropertyChangeListener() BeanContextSupport

getChildSerializable() BeanContextSupport

getChildVetoableChangeListener() BeanContextSupport

getChildVisibility() BeanContextSupport

getClass() Object

getClassContext() SecurityManager

getClasses() Class

getClassLoader() Class

getClassName() MissingResourceException

getCodeSource() ProtectionDomain

getCollationElementIterator() RuleBasedCollator

file:///C|/orielly/jnut/ch29_01.htm (24 of 78) [2/5/2003 7:52:37 PM]

Class, Method, and Field Index (Java in a Nutshell)

getCollationKey() Collator, RuleBasedCollator

getComment() ZipEntry

getComponent() BeanContextChildComponentProxy

getComponentType() Class

getCompressedSize() ZipEntry

getConstructor() Class

getConstructors() Class

getContainer() BeanContextContainerProxy

getContent() ContentHandler, URL, URLConnection

getContentEncoding() URLConnection

getContentLength() URLConnection

getContents() ListResourceBundle

getContentType() URLConnection

getContentTypeFor() FileNameMap

getContext() AccessController

getContextClassLoader() Thread

getCountry() Locale

getCrc() ZipEntry

getCreationDate() KeyStore

getCriticalExtensionOIDs() X509Certificate, X509CRL, X509CRLEntry, X509Extension

getCrtCoefficient() RSAPrivateCrtKey, RSAPrivateCrtKeySpec

getCurrencyInstance() NumberFormat

getCurrencySymbol() DecimalFormatSymbols

getCurrentServiceClasses() BeanContextServices, BeanContextServicesSupport

getCurrentServiceSelectors()
BCSSProxyServiceProvider, BeanContextServiceAvailableEvent,
BeanContextServiceProvider, BeanContextServices,
BeanContextServicesSupport

getCustomEditor() PropertyEditor, PropertyEditorSupport

getCustomizerClass() BeanDescriptor

getData() DatagramPacket

getDate() Date, URLConnection

getDateFormatSymbols() SimpleDateFormat

getDateInstance() DateFormat

getDateTimeInstance() DateFormat

getDay() Date

file:///C|/orielly/jnut/ch29_01.htm (25 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

getDecimalFormatSymbols() DecimalFormat

getDecimalSeparator() DecimalFormatSymbols

getDeclaredClasses() Class

getDeclaredConstructor() Class

getDeclaredConstructors() Class

getDeclaredField() Class

getDeclaredFields() Class

getDeclaredMethod() Class

getDeclaredMethods() Class

getDeclaringClass() Class, Constructor, Field, Member, Method

getDecomposition() Collator

getDefault() Locale, TimeZone

getDefaultAllowUserInteraction() URLConnection

getDefaultEventIndex() BeanInfo, SimpleBeanInfo

getDefaultPort() URLStreamHandler

getDefaultPropertyIndex() BeanInfo, SimpleBeanInfo

getDefaultRequestProperty() URLConnection

getDefaultType() KeyStore

getDefaultUseCaches() URLConnection

getDigestLength() MessageDigest

getDigit() DecimalFormatSymbols

getDisplayCountry() Locale

getDisplayLanguage() Locale

getDisplayName() FeatureDescriptor, Locale, TimeZone

getDisplayVariant() Locale

getDoInput() URLConnection

getDomainCombiner() AccessControlContext

getDoOutput() URLConnection

getDouble() Array, Field

getDSTSavings() SimpleTimeZone

getEditorSearchPath() PropertyEditorManager

getEffectiveKeyBits() RC2ParameterSpec

getEncoded()
AlgorithmParameters, Certificate, EncodedKeySpec, Key,
PKCS8EncodedKeySpec, SecretKeySpec, X509CRL,
X509CRLEntry, X509EncodedKeySpec

file:///C|/orielly/jnut/ch29_01.htm (26 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

getEncoding() InputStreamReader, OutputStreamWriter

getEndIndex() CharacterIterator, FieldPosition, StringCharacterIterator

getEntries() Manifest

getEntry() JarFile, ZipFile

getEntryName() JarURLConnection

getenv() System

getEras() DateFormatSymbols

getErrorIndex() ParsePosition

getErrorOffset() ParseException

getErrorStream() HttpURLConnection, Process

getEventSetDescriptors() BeanInfo, SimpleBeanInfo

getException()
ClassNotFoundException, ExceptionInInitializerError,
PrivilegedActionException

getExceptionTypes() Constructor, Method

getExpiration() URLConnection

getExponentSize() DHGenParameterSpec

getExtensionValue() X509Certificate, X509CRL, X509CRLEntry, X509Extension

getExtra() ZipEntry

getFD() FileInputStream, FileOutputStream, RandomAccessFile

GetField java.io.ObjectInputStream

getField() Class, FieldPosition, ObjectStreamClass

getFields() Class, ObjectStreamClass

getFile() URL

getFileDescriptor() DatagramSocketImpl, SocketImpl

getFileNameMap() URLConnection

getFilePointer() RandomAccessFile

getFirst() LinkedList

getFirstDayOfWeek() Calendar

getFloat() Array, Field

getFollowRedirects() HttpURLConnection

getFormat()
Certificate, EncodedKeySpec, Key, PKCS8EncodedKeySpec,
SecretKeySpec, X509EncodedKeySpec

getFormats() ChoiceFormat, MessageFormat

file:///C|/orielly/jnut/ch29_01.htm (27 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

getG()
DHParameterSpec, DHPrivateKeySpec, DHPublicKeySpec,
DSAParameterSpec, DSAParams, DSAPrivateKeySpec,
DSAPublicKeySpec

getGreatestMinimum() Calendar, GregorianCalendar

getGregorianChange() GregorianCalendar

getGroupingSeparator() DecimalFormatSymbols

getGroupingSize() DecimalFormat

getGuarantor() Certificate

getHeaderField() URLConnection

getHeaderFieldDate() HttpURLConnection, URLConnection

getHeaderFieldInt() URLConnection

getHeaderFieldKey() URLConnection

getHost() URL

getHostAddress() InetAddress, URLStreamHandler

getHostName() InetAddress

getHours() Date

getIcon() BeanInfo, SimpleBeanInfo

getID() TimeZone

getIdentity() IdentityScope

getIfModifiedSince() URLConnection

getImplementationTitle() Package

getImplementationVendor() Package

getImplementationVersion() Package

getInCheck() SecurityManager

getIndex() CharacterIterator, ParsePosition, StringCharacterIterator

getIndexedPropertyType() IndexedPropertyDescriptor

getIndexedReadMethod() IndexedPropertyDescriptor

getIndexedWriteMethod() IndexedPropertyDescriptor

getInetAddress() DatagramSocket, ServerSocket, Socket, SocketImpl

getInfinity() DecimalFormatSymbols

getInfo() Identity, Provider

getInputStream() JarFile, Process, Socket, SocketImpl, URLConnection, ZipFile

file:///C|/orielly/jnut/ch29_01.htm (28 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

getInstance()

AlgorithmParameterGenerator, AlgorithmParameters, Calendar,
CertificateFactory, Cipher, Collator, DateFormat, KeyAgreement,
KeyFactory, KeyGenerator, KeyPairGenerator, KeyStore, Mac,
MessageDigest, NumberFormat, SecretKeyFactory,
SecureRandom, Signature

getInstanceOf() Beans

getInt() Array, Field

getInteger() Integer

getInterface() MulticastSocket

getInterfaces() Class

getInternationalCurrencySymbol() DecimalFormatSymbols

getInvocationHandler() Proxy

getISO3Country() Locale

getISO3Language() Locale

getISOCountries() Locale

getISOLanguages() Locale

getIssuerDN() X509Certificate, X509CRL

getIssuerUniqueID() X509Certificate

getIterationCount() PBEParameterSpec

getIterator() AttributedString

getIV() Cipher, IvParameterSpec, RC2ParameterSpec, RC5ParameterSpec

getJarEntry() JarFile, JarURLConnection

getJarFile() JarURLConnection

getJarFileURL() JarURLConnection

getJavaInitializationString() PropertyEditor, PropertyEditorSupport

getKeepAlive() Socket

getKey()
DESedeKeySpec, DESKeySpec, Entry, KeyStore,
MissingResourceException

getKeys() ListResourceBundle, PropertyResourceBundle, ResourceBundle

getKeysize() RSAKeyGenParameterSpec

getKeySpec() KeyFactory, SecretKeyFactory

getKeyUsage() X509Certificate

getL() DHParameterSpec

getLanguage() Locale

getLast() LinkedList

file:///C|/orielly/jnut/ch29_01.htm (29 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

getLastModified() URLConnection

getLeastMaximum() Calendar, GregorianCalendar

getLength() Array, DatagramPacket

getLimits() ChoiceFormat

getLineInstance() BreakIterator

getLineNumber() LineNumberInputStream, LineNumberReader

getListenerMethodDescriptors() EventSetDescriptor

getListenerMethods() EventSetDescriptor

getListenerType() EventSetDescriptor

getLocalAddress() DatagramSocket, Socket

getLocale() BeanContextSupport, MessageFormat, ResourceBundle

getLocalHost() InetAddress

getLocalizedInputStream() Runtime

getLocalizedMessage() Throwable

getLocalizedOutputStream() Runtime

getLocalPatternChars() DateFormatSymbols

getLocalPort()
DatagramSocket, DatagramSocketImpl, ServerSocket, Socket,
SocketImpl

getLocation() CodeSource

getLong() Array, Field, Long

getLowestSetBit() BigInteger

getMacLength() Mac

getMainAttributes() JarURLConnection, Manifest

getManifest() JarFile, JarInputStream, JarURLConnection

getMaxExpansion() CollationElementIterator

getMaximum() Calendar, GregorianCalendar

getMaximumFractionDigits() NumberFormat

getMaximumIntegerDigits() NumberFormat

getMaxPriority() ThreadGroup

getMessage() InvalidClassException, Throwable, WriteAbortedException

getMessageDigest() DigestInputStream, DigestOutputStream

getMethod() Class, MethodDescriptor, ZipEntry

getMethodDescriptors() BeanInfo, SimpleBeanInfo

getMethods() Class

file:///C|/orielly/jnut/ch29_01.htm (30 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

getMinimalDaysInFirstWeek() Calendar

getMinimum() Calendar, GregorianCalendar

getMinimumFractionDigits() NumberFormat

getMinimumIntegerDigits() NumberFormat

getMinusSign() DecimalFormatSymbols

getMinutes() Date

getModifiers() Class, Constructor, Field, Member, Method

getModulus() RSAKey, RSAPrivateKeySpec, RSAPublicKeySpec

getMonetaryDecimalSeparator() DecimalFormatSymbols

getMonth() Date

getMonths() DateFormatSymbols

getMultiplier() DecimalFormat

getName()

Acl, Attribute, Class, Constructor, FeatureDescriptor, Field, File,
Identity, Member, Method, ObjectStreamClass,
ObjectStreamField, Package, Permission, Principal, Provider,
Thread, ThreadGroup, ZipEntry, ZipFile

getNaN() DecimalFormatSymbols

getNegativePrefix() DecimalFormat

getNegativeSuffix() DecimalFormat

getNewValue() PropertyChangeEvent

getNextEntry() JarInputStream, ZipInputStream

getNextJarEntry() JarInputStream

getNextUpdate() X509CRL

getNonCriticalExtensionOIDs() X509Certificate, X509CRL, X509CRLEntry, X509Extension

getNotAfter() X509Certificate

getNotBefore() X509Certificate

getNumberFormat() DateFormat

getNumberInstance() NumberFormat

getNumericValue() Character

getObject() GuardedObject, ResourceBundle, SealedObject, SignedObject

getObjectStreamClass() GetField

getOffset()
CollationElementIterator, DatagramPacket, ObjectStreamField,
SimpleTimeZone, TimeZone

getOldValue() PropertyChangeEvent

getOption() DatagramSocketImpl, SocketImpl, SocketOptions

file:///C|/orielly/jnut/ch29_01.htm (31 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

getOutputSize() Cipher

getOutputStream() Process, Socket, SocketImpl, URLConnection

getP()
DHParameterSpec, DHPrivateKeySpec, DHPublicKeySpec,
DSAParameterSpec, DSAParams, DSAPrivateKeySpec,
DSAPublicKeySpec

getPackage() Class, ClassLoader, Package

getPackages() ClassLoader, Package

getParameter() Signature

getParameterDescriptors() MethodDescriptor

getParameters() Cipher

getParameterSpec() AlgorithmParameters

getParameterTypes() Constructor, Method

getParams() DHKey, DSAKey

getParent() ClassLoader, File, ThreadGroup

getParentFile() File

getPassword() PasswordAuthentication, PBEKeySpec

getPasswordAuthentication() Authenticator

getPath() File, URL

getPatternSeparator() DecimalFormatSymbols

getPercent() DecimalFormatSymbols

getPercentInstance() NumberFormat

getPerMill() DecimalFormatSymbols

getPermission() AccessControlException, HttpURLConnection, URLConnection

getPermissions()
Acl, Policy, ProtectionDomain, SecureClassLoader,
URLClassLoader

getPolicy() Policy

getPort() DatagramPacket, DatagramSocket, Socket, SocketImpl, URL

getPositivePrefix() DecimalFormat

getPositiveSuffix() DecimalFormat

getPrimeExponentP() RSAPrivateCrtKey, RSAPrivateCrtKeySpec

getPrimeExponentQ() RSAPrivateCrtKey, RSAPrivateCrtKeySpec

getPrimeP() RSAPrivateCrtKey, RSAPrivateCrtKeySpec

getPrimeQ() RSAPrivateCrtKey, RSAPrivateCrtKeySpec

getPrimeSize() DHGenParameterSpec

getPrincipal() AclEntry, Certificate

file:///C|/orielly/jnut/ch29_01.htm (32 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

getPriority() Thread

getPrivate() KeyPair

getPrivateExponent() RSAPrivateKey, RSAPrivateKeySpec

getPrivateKey() Signer

getPropagatedFrom() BeanContextEvent

getPropagationId() PropertyChangeEvent

getProperties() System

getProperty() Properties, Security, System

getPropertyChangeEvent() PropertyVetoException

getPropertyDescriptors() BeanInfo, SimpleBeanInfo

getPropertyEditorClass() PropertyDescriptor

getPropertyName() PropertyChangeEvent

getPropertyType() PropertyDescriptor

getProtectionDomain() Class

getProtocol() URL

getProvider()

AlgorithmParameterGenerator, AlgorithmParameters,
CertificateFactory, Cipher, KeyAgreement, KeyFactory,
KeyGenerator, KeyPairGenerator, KeyStore, Mac, MessageDigest,
SecretKeyFactory, SecureRandom, Security, Signature

getProviders() Security

getProxyClass() Proxy

getPublic() KeyPair

getPublicExponent()
RSAKeyGenParameterSpec, RSAPrivateCrtKey,
RSAPrivateCrtKeySpec, RSAPublicKey, RSAPublicKeySpec

getPublicKey() Certificate, Identity

getQ()
DSAParameterSpec, DSAParams, DSAPrivateKeySpec,
DSAPublicKeySpec

getQuery() URL

getRawOffset() SimpleTimeZone, TimeZone

getReadMethod() PropertyDescriptor

getReceiveBufferSize() DatagramSocket, Socket

getRef() URL

getRemaining() Inflater

getRemoveListenerMethod() EventSetDescriptor

getRequestingPort() Authenticator

file:///C|/orielly/jnut/ch29_01.htm (33 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

getRequestingPrompt() Authenticator

getRequestingProtocol() Authenticator

getRequestingScheme() Authenticator

getRequestingSite() Authenticator

getRequestMethod() HttpURLConnection

getRequestProperty() URLConnection

getResource() BeanContext, BeanContextSupport, Class, ClassLoader

getResourceAsStream() BeanContext, BeanContextSupport, Class, ClassLoader

getResources() ClassLoader

getResponseCode() HttpURLConnection

getResponseMessage() HttpURLConnection

getReturnType() Method

getRevocationDate() X509CRLEntry

getRevokedCertificate() X509CRL

getRevokedCertificates() X509CRL

getRounds() RC5ParameterSpec

getRules() RuleBasedCollator

getRunLimit() AttributedCharacterIterator

getRunStart() AttributedCharacterIterator

getRuntime() Runtime

getSalt() PBEParameterSpec

getScope() Identity

getSeconds() Date

getSecurityContext() SecurityManager

getSecurityManager() System

getSeed() SecureRandom

getSendBufferSize() DatagramSocket, Socket

getSentenceInstance() BreakIterator

getSerialNumber() X509Certificate, X509CRLEntry

getSerialVersionUID() ObjectStreamClass

getService()
BCSSProxyServiceProvider, BeanContextServiceProvider,
BeanContextServices, BeanContextServicesSupport

getServiceClass()
BeanContextServiceAvailableEvent,
BeanContextServiceRevokedEvent

getServiceProvider() BCSSServiceProvider

file:///C|/orielly/jnut/ch29_01.htm (34 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

getServicesBeanInfo() BeanContextServiceProviderBeanInfo

getShort() Array, Field

getShortDescription() FeatureDescriptor

getShortMonths() DateFormatSymbols

getShortWeekdays() DateFormatSymbols

getSigAlgName() X509Certificate, X509CRL

getSigAlgOID() X509Certificate, X509CRL

getSigAlgParams() X509Certificate, X509CRL

getSignature() SignedObject, X509Certificate, X509CRL

getSigners() Class

getSize() ZipEntry

getSoLinger() Socket

getSoTimeout() DatagramSocket, ServerSocket, Socket

getSource() EventObject

getSourceAsBeanContextServices()
BeanContextServiceAvailableEvent,
BeanContextServiceRevokedEvent

getSourceString() CollationKey

getSpecificationTitle() Package

getSpecificationVendor() Package

getSpecificationVersion() Package

getStrength() Collator

getString() ResourceBundle

getStringArray() ResourceBundle

getSubjectDN() X509Certificate

getSubjectUniqueID() X509Certificate

getSuperclass() Class

getSystemClassLoader() ClassLoader

getSystemResource() ClassLoader

getSystemResourceAsStream() ClassLoader

getSystemResources() ClassLoader

getSystemScope() IdentityScope

getTags() PropertyEditor, PropertyEditorSupport

getTargetException() InvocationTargetException

getTBSCertificate() X509Certificate

file:///C|/orielly/jnut/ch29_01.htm (35 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

getTBSCertList() X509CRL

getTcpNoDelay() Socket

getText() BreakIterator

getThisUpdate() X509CRL

getThreadGroup() SecurityManager, Thread

getTime() Calendar, Date, ZipEntry

getTimeInMillis() Calendar

getTimeInstance() DateFormat

getTimeToLive() DatagramSocketImpl, MulticastSocket

getTimeZone() Calendar, DateFormat, TimeZone

getTimezoneOffset() Date

getTotalIn() Deflater, Inflater

getTotalOut() Deflater, Inflater

getTTL() DatagramSocketImpl, MulticastSocket

getType()
Certificate, CertificateFactory, Character, CRL, Field, KeyStore,
ObjectStreamField

getTypeCode() ObjectStreamField

getTypeString() ObjectStreamField

getUndeclaredThrowable() UndeclaredThrowableException

getURL() URLConnection

getURLs() URLClassLoader

getUseCaches() URLConnection

getUserInfo() URL

getUserName() PasswordAuthentication

getValue()
Adler32, Annotation, Attributes, Checksum, CRC32, Entry,
FeatureDescriptor, PropertyEditor, PropertyEditorSupport

getVariant() Locale

getVersion() Provider, RC5ParameterSpec, X509Certificate, X509CRL

getWeekdays() DateFormatSymbols

getWordInstance() BreakIterator

getWordSize() RC5ParameterSpec

getWriteMethod() PropertyDescriptor

getX()
DHPrivateKey, DHPrivateKeySpec, DSAPrivateKey,
DSAPrivateKeySpec

file:///C|/orielly/jnut/ch29_01.htm (36 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

getY()
DHPublicKey, DHPublicKeySpec, DSAPublicKey,
DSAPublicKeySpec

getYear() Date

getZeroDigit() DecimalFormatSymbols

getZoneStrings() DateFormatSymbols

globalHierarchyLock BeanContext

GREEK UnicodeBlock

GREEK_EXTENDED UnicodeBlock

GregorianCalendar java.util

Group java.security.acl

Guard java.security

GuardedObject java.security

guessContentTypeFromName() URLConnection

guessContentTypeFromStream() URLConnection

GUJARATI UnicodeBlock

GURMUKHI UnicodeBlock

GZIP_MAGIC GZIPInputStream

GZIPInputStream java.util.zip

GZIPOutputStream java.util.zip

H

h Proxy

HALFWIDTH_AND_FULLWIDTH_FORMS UnicodeBlock

halt() Runtime

handleGetObject()
ListResourceBundle, PropertyResourceBundle,
ResourceBundle

HANGUL_COMPATIBILITY_JAMO UnicodeBlock

HANGUL_JAMO UnicodeBlock

HANGUL_SYLLABLES UnicodeBlock

hasChanged() Observable

hasExtensions() X509CRLEntry

file:///C|/orielly/jnut/ch29_01.htm (37 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

hashCode()

AbstractList, AbstractMap, AbstractSet, AccessControlContext,
AllPermission, Attribute, Attributes, BasicPermission,
BigDecimal, BigInteger, BitSet, Boolean, Byte, Calendar,
Certificate, Character, ChoiceFormat, CodeSource,
CollationKey, Collator, Collection, Constructor, Date,
DateFormat, DateFormatSymbols, DecimalFormat,
DecimalFormatSymbols, Double, Entry, Field, FieldPosition,
File, FilePermission, Float, GregorianCalendar, Hashtable,
Identity, InetAddress, Integer, List, Locale, Long, Manifest,
Map, MessageFormat, Method, Name, NumberFormat, Object,
Package, ParsePosition, Permission, Principal,
PropertyPermission, RuleBasedCollator, SecretKeySpec, Set,
Short, SimpleDateFormat, SimpleTimeZone, SocketPermission,
String, StringCharacterIterator, Subset, UnresolvedPermission,
URL, URLStreamHandler, Vector, X509CRL, X509CRLEntry,
ZipEntry

HashMap java.util

HashSet java.util

Hashtable java.util

hasListeners() PropertyChangeSupport, VetoableChangeSupport

hasMoreElements() Enumeration, StringTokenizer

hasMoreTokens() StringTokenizer

hasNext() BCSIterator, Iterator, ListIterator

hasPrevious() ListIterator

hasSameRules() SimpleTimeZone, TimeZone

hasService() BeanContextServices, BeanContextServicesSupport

hasUnsupportedCriticalExtension() X509Certificate, X509CRL, X509CRLEntry, X509Extension

headMap() SortedMap, TreeMap

headSet() SortedSet, TreeSet

HEBREW UnicodeBlock

HIRAGANA UnicodeBlock

hostsEqual() URLStreamHandler

HOUR Calendar

HOUR0_FIELD DateFormat

HOUR1_FIELD DateFormat

HOUR_OF_DAY Calendar

HOUR_OF_DAY0_FIELD DateFormat

HOUR_OF_DAY1_FIELD DateFormat

file:///C|/orielly/jnut/ch29_01.htm (38 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

HTTP_ACCEPTED HttpURLConnection

HTTP_BAD_GATEWAY HttpURLConnection

HTTP_BAD_METHOD HttpURLConnection

HTTP_BAD_REQUEST HttpURLConnection

HTTP_CLIENT_TIMEOUT HttpURLConnection

HTTP_CONFLICT HttpURLConnection

HTTP_CREATED HttpURLConnection

HTTP_ENTITY_TOO_LARGE HttpURLConnection

HTTP_FORBIDDEN HttpURLConnection

HTTP_GATEWAY_TIMEOUT HttpURLConnection

HTTP_GONE HttpURLConnection

HTTP_INTERNAL_ERROR HttpURLConnection

HTTP_LENGTH_REQUIRED HttpURLConnection

HTTP_MOVED_PERM HttpURLConnection

HTTP_MOVED_TEMP HttpURLConnection

HTTP_MULT_CHOICE HttpURLConnection

HTTP_NO_CONTENT HttpURLConnection

HTTP_NOT_ACCEPTABLE HttpURLConnection

HTTP_NOT_AUTHORITATIVE HttpURLConnection

HTTP_NOT_FOUND HttpURLConnection

HTTP_NOT_IMPLEMENTED HttpURLConnection

HTTP_NOT_MODIFIED HttpURLConnection

HTTP_OK HttpURLConnection

HTTP_PARTIAL HttpURLConnection

HTTP_PAYMENT_REQUIRED HttpURLConnection

HTTP_PRECON_FAILED HttpURLConnection

HTTP_PROXY_AUTH HttpURLConnection

HTTP_REQ_TOO_LONG HttpURLConnection

HTTP_RESET HttpURLConnection

HTTP_SEE_OTHER HttpURLConnection

HTTP_SERVER_ERROR HttpURLConnection

HTTP_UNAUTHORIZED HttpURLConnection

HTTP_UNAVAILABLE HttpURLConnection

HTTP_UNSUPPORTED_TYPE HttpURLConnection

file:///C|/orielly/jnut/ch29_01.htm (39 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

HTTP_USE_PROXY HttpURLConnection

HTTP_VERSION HttpURLConnection

HttpURLConnection java.net

HUFFMAN_ONLY Deflater

I

ICON_COLOR_16x16 BeanInfo

ICON_COLOR_32x32 BeanInfo

ICON_MONO_16x16 BeanInfo

ICON_MONO_32x32 BeanInfo

IDENTICAL Collator

identities() IdentityScope

Identity java.security

identityEquals() Identity

identityHashCode() System

IdentityScope java.security

IEEEremainder() Math, StrictMath

ifModifiedSince URLConnection

IGNORE_ALL_BEANINFO Introspector

IGNORE_IMMEDIATE_BEANINFO Introspector

IllegalAccessError java.lang

IllegalAccessException java.lang

IllegalArgumentException java.lang

IllegalBlockSizeException javax.crypto

IllegalMonitorStateException java.lang

IllegalStateException java.lang

IllegalThreadStateException java.lang

implAccept() ServerSocket

IMPLEMENTATION_TITLE Name

IMPLEMENTATION_URL Name

IMPLEMENTATION_VENDOR Name

IMPLEMENTATION_VENDOR_ID Name

IMPLEMENTATION_VERSION Name

file:///C|/orielly/jnut/ch29_01.htm (40 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

implies()
AllPermission, BasicPermission, CodeSource, FilePermission,
Permission, PermissionCollection, Permissions, PropertyPermission,
ProtectionDomain, SocketPermission, UnresolvedPermission

in
FileDescriptor, FilterInputStream, FilterReader, PipedInputStream,
System

inCheck SecurityManager

inClass() SecurityManager

inClassLoader() SecurityManager

IncompatibleClassChangeError java.lang

inDaylightTime() SimpleTimeZone, TimeZone

IndexedPropertyDescriptor java.beans

indexOf() AbstractList, ArrayList, LinkedList, List, String, Vector

IndexOutOfBoundsException java.lang

InetAddress java.net

inf InflaterInputStream

inflate() Inflater

Inflater java.util.zip

InflaterInputStream java.util.zip

InheritableThreadLocal java.lang

init()
AlgorithmParameterGenerator, AlgorithmParameters, Cipher,
KeyAgreement, KeyGenerator, Mac

initialize()
AppletInitializer, BeanContextServicesSupport, BeanContextSupport,
DSAKeyPairGenerator, KeyPairGenerator, KeyPairGeneratorSpi

initializeBeanContextResources() BeanContextChildSupport, BeanContextServicesSupport

initialValue() ThreadLocal

initSign() Signature

initVerify() Signature

INPUT_METHOD_SEGMENT Attribute

InputStream java.io

InputStreamReader java.io

insert() StringBuffer

insertElementAt() Vector

insertProviderAt() Security

instantiate() Beans

instantiateChild() BeanContext, BeanContextSupport

file:///C|/orielly/jnut/ch29_01.htm (41 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

InstantiationError java.lang

InstantiationException java.lang

intBitsToFloat() Float

Integer java.lang

INTEGER_FIELD NumberFormat

INTERFACE Modifier

intern() String

InternalError java.lang

internalGet() Calendar

interrupt() Thread, ThreadGroup

interrupted() Thread

InterruptedException java.lang

InterruptedIOException java.io

IntrospectionException java.beans

Introspector java.beans

intValue()
BigDecimal, BigInteger, Byte, Double, Float, Integer, Long, Number,
Short

InvalidAlgorithmParameterException java.security

InvalidClassException java.io

InvalidKeyException java.security

InvalidKeySpecException java.security.spec

InvalidObjectException java.io

InvalidParameterException java.security

InvalidParameterSpecException java.security.spec

InvocationHandler java.lang.reflect

InvocationTargetException java.lang.reflect

invoke() InvocationHandler, Method

IOException java.io

IP_MULTICAST_IF SocketOptions

IPA_EXTENSIONS UnicodeBlock

isAbsolute() File

isAbstract() Modifier

isAccessible() AccessibleObject

isAlive() Thread

file:///C|/orielly/jnut/ch29_01.htm (42 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

isArray() Class

isAssignableFrom() Class

isBound() PropertyDescriptor

isBoundary() BreakIterator

isCertificateEntry() KeyStore

isCompatibleWith() Package

isConstrained() PropertyDescriptor

isCurrentServiceInvalidNow() BeanContextServiceRevokedEvent

isDaemon() Thread, ThreadGroup

isDecimalSeparatorAlwaysShown() DecimalFormat

isDefined() Character

isDelegated() BeanContextChildSupport

isDesignTime() BeanContextSupport, Beans, DesignMode

isDestroyed() ThreadGroup

isDigit() Character

isDirectory() File, ZipEntry

isEmpty()
AbstractCollection, AbstractMap, ArrayList, Attributes,
BeanContextSupport, Collection, Dictionary, HashMap, HashSet,
Hashtable, List, Map, Set, TreeSet, Vector, WeakHashMap

isEnqueued() Reference

isEqual() MessageDigest

isExpert() FeatureDescriptor

isFile() File

isFinal() Modifier

isGroupingUsed() NumberFormat

isGuiAvailable() Beans

isHidden() FeatureDescriptor, File

isIdentifierIgnorable() Character

isInDefaultEventSet() EventSetDescriptor

isInfinite() Double, Float

isInstance() Class

isInstanceOf() Beans

isInterface() Class, Modifier

isInterrupted() Thread

isISOControl() Character

file:///C|/orielly/jnut/ch29_01.htm (43 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

isJavaIdentifierPart() Character

isJavaIdentifierStart() Character

isJavaLetter() Character

isJavaLetterOrDigit() Character

isKeyEntry() KeyStore

isLeapYear() GregorianCalendar

isLenient() Calendar, DateFormat

isLetter() Character

isLetterOrDigit() Character

isLowerCase() Character

isMember() Group

isMulticastAddress() InetAddress

isNaN() Double, Float

isNative() Modifier

isNegative() AclEntry

isOwner() Owner

isPaintable() PropertyEditor, PropertyEditorSupport

isParityAdjusted() DESedeKeySpec, DESKeySpec

isParseIntegerOnly() NumberFormat

isPreferred() FeatureDescriptor

isPrimitive() Class, ObjectStreamField

isPrivate() Modifier

isProbablePrime() BigInteger

isPropagated() BeanContextEvent

isProtected() Modifier

isProxyClass() Proxy

isPublic() Modifier

isReadOnly() PermissionCollection

isRevoked() CRL

isSealed() Package

isSerializing() BeanContextSupport

isServiceClass() BeanContextServiceRevokedEvent

isSet Calendar

isSet() Calendar

file:///C|/orielly/jnut/ch29_01.htm (44 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

isSpace() Character

isSpaceChar() Character

isStatic() Modifier

isStrict() Modifier

isSynchronized() Modifier

isTimeSet Calendar

isTitleCase() Character

isTransient() Modifier

isUnicast() EventSetDescriptor

isUnicodeIdentifierPart() Character

isUnicodeIdentifierStart() Character

isUpperCase() Character

isVolatile() Modifier

isWeak() DESKeySpec

isWhitespace() Character

ITALIAN Locale

ITALY Locale

Iterator java.text.CompactShortArray, java.util

iterator()
AbstractCollection, AbstractList, AbstractSequentialList,
BeanContextMembershipEvent, BeanContextSupport, Collection,
HashSet, List, Set, TreeSet

IvParameterSpec javax.crypto.spec

J

JANUARY Calendar

JAPAN Locale

JAPANESE Locale

JarEntry java.util.jar

JarException java.util.jar

JarFile java.util.jar

jarFileURLConnection JarURLConnection

JarInputStream java.util.jar

JarOutputStream java.util.jar

file:///C|/orielly/jnut/ch29_01.htm (45 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

JarURLConnection java.net

join() DatagramSocketImpl, Thread

joinGroup() MulticastSocket

JULY Calendar

JUNE Calendar

K

KANBUN UnicodeBlock

KANNADA UnicodeBlock

KATAKANA UnicodeBlock

Key java.security

KeyAgreement javax.crypto

KeyAgreementSpi javax.crypto

KeyException java.security

KeyFactory java.security

KeyFactorySpi java.security

KeyGenerator javax.crypto

KeyGeneratorSpi javax.crypto

KeyManagementException java.security

KeyPair java.security

KeyPairGenerator java.security

KeyPairGeneratorSpi java.security

keys() Dictionary, Hashtable

keySet() AbstractMap, Attributes, HashMap, Hashtable, Map, Provider, TreeMap

KeySpec java.security.spec

KeyStore java.security

KeyStoreException java.security

KeyStoreSpi java.security

KOREA Locale

KOREAN Locale

L

file:///C|/orielly/jnut/ch29_01.htm (46 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

LANGUAGE Attribute

LAO UnicodeBlock

last()
BreakIterator, CharacterIterator, SortedSet, StringCharacterIterator,
TreeSet

lastElement() Vector

lastIndexOf() AbstractList, ArrayList, LinkedList, List, String, Vector

lastKey() SortedMap, TreeMap

lastModified() File

LastOwnerException java.security.acl

LATIN_1_SUPPLEMENT UnicodeBlock

LATIN_EXTENDED_A UnicodeBlock

LATIN_EXTENDED_ADDITIONAL UnicodeBlock

LATIN_EXTENDED_B UnicodeBlock

leave() DatagramSocketImpl

leaveGroup() MulticastSocket

len InflaterInputStream

length OptionalDataException

length() BitSet, File, RandomAccessFile, String, StringBuffer

LETTER_NUMBER Character

LETTERLIKE_SYMBOLS UnicodeBlock

LINE_SEPARATOR Character

lineno() StreamTokenizer

LineNumberInputStream java.io

LineNumberReader java.io

LinkageError java.lang

LinkedList java.util

List java.util

list() File, Properties, ThreadGroup

listen() SocketImpl

listFiles() File

ListIterator java.util

listIterator() AbstractList, AbstractSequentialList, LinkedList, List

ListResourceBundle java.util

listRoots() File

file:///C|/orielly/jnut/ch29_01.htm (47 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

load() KeyStore, Properties, Provider, Runtime, System

loadClass() ClassLoader

loadImage() SimpleBeanInfo

loadLibrary() Runtime, System

Locale java.util

locale BeanContextSupport

localport SocketImpl

localPort DatagramSocketImpl

lock Reader, Writer

log() Math, StrictMath

LONG DateFormat, TimeZone

Long java.lang

longBitsToDouble() Double

longValue()
BigDecimal, BigInteger, Byte, Double, Float, Integer, Long, Number,
Short

lookup() ObjectStreamClass

LOWERCASE_LETTER Character

lowerCaseMode() StreamTokenizer

M

Mac javax.crypto

MacSpi javax.crypto

MAIN_CLASS Name

MALAYALAM UnicodeBlock

MalformedURLException java.net

Manifest java.util.jar

MANIFEST_NAME JarFile

MANIFEST_VERSION Name

Map java.util

map Attributes

Map.Entry java.util

mapLibraryName() System

MARCH Calendar

file:///C|/orielly/jnut/ch29_01.htm (48 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

mark ByteArrayInputStream

mark()

BufferedInputStream, BufferedReader, ByteArrayInputStream,
CharArrayReader, FilterInputStream, FilterReader, InputStream,
LineNumberInputStream, LineNumberReader, PushbackReader, Reader,
StringReader

markedPos CharArrayReader

marklimit BufferedInputStream

markpos BufferedInputStream

markSupported()

BufferedInputStream, BufferedReader, ByteArrayInputStream,
CharArrayReader, CipherInputStream, FilterInputStream, FilterReader,
InputStream, PushbackInputStream, PushbackReader, Reader,
StringReader

Math java.lang

MATH_SYMBOL Character

MATHEMATICAL_OPERATORS UnicodeBlock

max() BigDecimal, BigInteger, Collections, Math, StrictMath

MAX_PRIORITY Thread

MAX_RADIX Character

MAX_VALUE Byte, Character, Double, Float, Integer, Long, Short

MAY Calendar

MEDIUM DateFormat

Member java.lang.reflect

members() Group

MessageDigest java.security

MessageDigestSpi java.security

MessageFormat java.text

method HttpURLConnection

Method java.lang.reflect

MethodDescriptor java.beans

MILLISECOND Calendar

MILLISECOND_FIELD DateFormat

min() BigDecimal, BigInteger, Collections, Math, StrictMath

MIN_PRIORITY Thread

MIN_RADIX Character

MIN_VALUE Byte, Character, Double, Float, Integer, Long, Short

MINUTE Calendar

file:///C|/orielly/jnut/ch29_01.htm (49 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

MINUTE_FIELD DateFormat

MISCELLANEOUS_SYMBOLS UnicodeBlock

MISCELLANEOUS_TECHNICAL UnicodeBlock

MissingResourceException java.util

mkdir() File

mkdirs() File

mod() BigInteger

modCount AbstractList

Modifier java.lang.reflect

MODIFIER_LETTER Character

MODIFIER_SYMBOL Character

modInverse() BigInteger

modPow() BigInteger

MONDAY Calendar

MONTH Calendar

MONTH_FIELD DateFormat

movePointLeft() BigDecimal

movePointRight() BigDecimal

MulticastSocket java.net

multiply() BigDecimal, BigInteger

N

Name java.util.jar.Attributes

NaN Double, Float

NATIVE Modifier

nCopies() Collections

needsDictionary() Inflater

needsGui() BeanContextSupport, Visibility

needsInput() Deflater, Inflater

negate() BigDecimal, BigInteger

NEGATIVE_INFINITY Double, Float

NegativeArraySizeException java.lang

NetPermission java.net

file:///C|/orielly/jnut/ch29_01.htm (50 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

newInstance() Array, Class, Constructor, URLClassLoader

newLine() BufferedWriter

newPermissionCollection()
AllPermission, BasicPermission, FilePermission, Permission,
PropertyPermission, SocketPermission, UnresolvedPermission

newProxyInstance() Proxy

next()
BCSIterator, BreakIterator, CharacterIterator, CollationElementIterator, Iterator,
ListIterator, Random, SecureRandom, StringCharacterIterator

nextBoolean() Random

nextBytes() Random, SecureRandom

nextDouble() ChoiceFormat, Random

nextElement() Enumeration, StringTokenizer

nextFloat() Random

nextGaussian() Random

nextIndex() ListIterator

nextInt() Random

nextLong() Random

nextToken() StreamTokenizer, StringTokenizer

NO_COMPRESSION Deflater

NO_DECOMPOSITION Collator

NO_FIELDS ObjectStreamClass

NoClassDefFoundError java.lang

NON_SPACING_MARK Character

NORM_PRIORITY Thread

NoRouteToHostException java.net

NoSuchAlgorithmException java.security

NoSuchElementException java.util

NoSuchFieldError java.lang

NoSuchFieldException java.lang

NoSuchMethodError java.lang

NoSuchMethodException java.lang

NoSuchPaddingException javax.crypto

NoSuchProviderException java.security

not() BigInteger

NotActiveException java.io

notify() Object

file:///C|/orielly/jnut/ch29_01.htm (51 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

notifyAll() Object

notifyObservers() Observable

NotOwnerException java.security.acl

NotSerializableException java.io

NOVEMBER Calendar

NullCipher javax.crypto

NULLORDER CollationElementIterator

NullPointerException java.lang

Number java.lang

NUMBER_FORMS UnicodeBlock

NumberFormat java.text

numberFormat DateFormat

NumberFormatException java.lang

nval StreamTokenizer

O

Object java.lang

ObjectInput java.io

ObjectInputStream java.io

ObjectInputStream.GetField java.io

ObjectInputValidation java.io

ObjectOutput java.io

ObjectOutputStream java.io

ObjectOutputStream.PutField java.io

ObjectStreamClass java.io

ObjectStreamConstants java.io

ObjectStreamException java.io

ObjectStreamField java.io

Observable java.util

Observer java.util

OCTOBER Calendar

of() UnicodeBlock

okToUseGui BeanContextSupport

file:///C|/orielly/jnut/ch29_01.htm (52 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

okToUseGui() BeanContextSupport, Visibility

on() DigestInputStream, DigestOutputStream

ONE BigInteger

OPEN_DELETE ZipFile

OPEN_READ ZipFile

openConnection() URL, URLStreamHandler

openStream() URL

OPTICAL_CHARACTER_RECOGNITION UnicodeBlock

OptionalDataException java.io

or() BigInteger, BitSet

ordinaryChar() StreamTokenizer

ordinaryChars() StreamTokenizer

ORIYA UnicodeBlock

OTHER_LETTER Character

OTHER_NUMBER Character

OTHER_PUNCTUATION Character

OTHER_SYMBOL Character

out
FileDescriptor, FilterOutputStream, FilterWriter,
PipedInputStream, PrintWriter, System

OutOfMemoryError java.lang

OutputStream java.io

OutputStreamWriter java.io

Owner java.security.acl

P

Package java.lang

paintValue() PropertyEditor, PropertyEditorSupport

PARAGRAPH_SEPARATOR Character

ParameterDescriptor java.beans

parent ResourceBundle

parentOf() ThreadGroup

parse()
ChoiceFormat, Date, DateFormat, DecimalFormat, MessageFormat,
NumberFormat, SimpleDateFormat

file:///C|/orielly/jnut/ch29_01.htm (53 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

parseByte() Byte

parseDouble() Double

ParseException java.text

parseFloat() Float

parseInt() Integer

parseLong() Long

parseNumbers() StreamTokenizer

parseObject() DateFormat, Format, MessageFormat, NumberFormat

ParsePosition java.text

parseShort() Short

parseURL() URLStreamHandler

PasswordAuthentication java.net

pathSeparator File

pathSeparatorChar File

PBEKeySpec javax.crypto.spec

PBEParameterSpec javax.crypto.spec

pcSupport BeanContextChildSupport

peek() DatagramSocketImpl, Stack

Permission java.security, java.security.acl

PermissionCollection java.security

Permissions java.security

permissions() AclEntry

PhantomReference java.lang.ref

PI Math, StrictMath

PIPE_SIZE PipedInputStream

PipedInputStream java.io

PipedOutputStream java.io

PipedReader java.io

PipedWriter java.io

PKCS8EncodedKeySpec java.security.spec

PM Calendar

Policy java.security

poll() ReferenceQueue

pop() Stack

file:///C|/orielly/jnut/ch29_01.htm (54 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

port SocketImpl

pos
BufferedInputStream, ByteArrayInputStream, CharArrayReader,
PushbackInputStream, StringBufferInputStream

POSITIVE_INFINITY Double, Float

pow() BigInteger, Math, StrictMath

PRC Locale

preceding() BreakIterator

previous()
BreakIterator, CharacterIterator, CollationElementIterator, ListIterator,
StringCharacterIterator

previousDouble() ChoiceFormat

previousIndex() ListIterator

PRIMARY Collator

primaryOrder() CollationElementIterator

Principal java.security

print() PrintStream, PrintWriter

println() PrintStream, PrintWriter

printStackTrace()
ClassNotFoundException, ExceptionInInitializerError,
InvocationTargetException, PrivilegedActionException, Throwable,
UndeclaredThrowableException

PrintStream java.io

PrintWriter java.io

PRIVATE Modifier

PRIVATE_USE Character

PRIVATE_USE_AREA UnicodeBlock

PrivateKey java.security

PrivilegedAction java.security

PrivilegedActionException java.security

PrivilegedExceptionAction java.security

Process java.lang

propagatedFrom BeanContextEvent

Properties java.util

propertyChange() BeanContextSupport, PropertyChangeListener

PropertyChangeEvent java.beans

PropertyChangeListener java.beans

PropertyChangeSupport java.beans

file:///C|/orielly/jnut/ch29_01.htm (55 of 78) [2/5/2003 7:52:38 PM]

Class, Method, and Field Index (Java in a Nutshell)

PropertyDescriptor java.beans

PropertyEditor java.beans

PropertyEditorManager java.beans

PropertyEditorSupport java.beans

PROPERTYNAME DesignMode

propertyNames() Properties

PropertyPermission java.util

PropertyResourceBundle java.util

PropertyVetoException java.beans

PROTECTED Modifier

ProtectionDomain java.security

PROTOCOL_VERSION_1 ObjectStreamConstants

PROTOCOL_VERSION_2 ObjectStreamConstants

ProtocolException java.net

Provider java.security

ProviderException java.security

proxy BeanContextServicesSupport

Proxy java.lang.reflect

PUBLIC Member, Modifier

PublicKey java.security

push() Stack

pushBack() StreamTokenizer

PushbackInputStream java.io

PushbackReader java.io

put()
AbstractMap, Attributes, Dictionary, HashMap, Hashtable, Map, Provider,
PutField, TreeMap, WeakHashMap

putAll() AbstractMap, Attributes, HashMap, Hashtable, Map, Provider, TreeMap

PutField java.io.ObjectOutputStream

putFields() ObjectOutputStream

putNextEntry() JarOutputStream, ZipOutputStream

putValue() Attributes

Q

file:///C|/orielly/jnut/ch29_01.htm (56 of 78) [2/5/2003 7:52:39 PM]

Class, Method, and Field Index (Java in a Nutshell)

quoteChar() StreamTokenizer

R

Random java.util

random() Math, StrictMath

RandomAccessFile java.io

RC2ParameterSpec javax.crypto.spec

RC5ParameterSpec javax.crypto.spec

read()

BufferedInputStream, BufferedReader, ByteArrayInputStream,
CharArrayReader, CheckedInputStream, CipherInputStream,
DataInputStream, DigestInputStream, FileInputStream,
FilterInputStream, FilterReader, GZIPInputStream,
InflaterInputStream, InputStream, InputStreamReader,
JarInputStream, LineNumberInputStream, LineNumberReader,
Manifest, ObjectInput, ObjectInputStream, PipedInputStream,
PipedReader, PushbackInputStream, PushbackReader,
RandomAccessFile, Reader, SequenceInputStream,
StringBufferInputStream, StringReader, ZipInputStream

readBoolean()
DataInput, DataInputStream, ObjectInputStream,
RandomAccessFile

readByte()
DataInput, DataInputStream, ObjectInputStream,
RandomAccessFile

readChar()
DataInput, DataInputStream, ObjectInputStream,
RandomAccessFile

readChildren() BeanContextSupport

readClassDescriptor() ObjectInputStream

readDouble()
DataInput, DataInputStream, ObjectInputStream,
RandomAccessFile

Reader java.io

readExternal() Externalizable

readFields() ObjectInputStream

readFloat()
DataInput, DataInputStream, ObjectInputStream,
RandomAccessFile

readFully()
DataInput, DataInputStream, ObjectInputStream,
RandomAccessFile

READING Attribute

file:///C|/orielly/jnut/ch29_01.htm (57 of 78) [2/5/2003 7:52:39 PM]

Class, Method, and Field Index (Java in a Nutshell)

readInt()
DataInput, DataInputStream, ObjectInputStream,
RandomAccessFile

readLine()
BufferedReader, DataInput, DataInputStream, LineNumberReader,
ObjectInputStream, RandomAccessFile

readLong()
DataInput, DataInputStream, ObjectInputStream,
RandomAccessFile

readObject() ObjectInput, ObjectInputStream

readObjectOverride() ObjectInputStream

readResolve() Attribute, CertificateRep

readShort()
DataInput, DataInputStream, ObjectInputStream,
RandomAccessFile

readStreamHeader() ObjectInputStream

readUnsignedByte()
DataInput, DataInputStream, ObjectInputStream,
RandomAccessFile

readUnsignedShort()
DataInput, DataInputStream, ObjectInputStream,
RandomAccessFile

readUTF()
DataInput, DataInputStream, ObjectInputStream,
RandomAccessFile

ready()
BufferedReader, CharArrayReader, FilterReader,
InputStreamReader, PipedReader, PushbackReader, Reader,
StringReader

receive() DatagramSocket, DatagramSocketImpl, PipedInputStream

Reference java.lang.ref

ReferenceQueue java.lang.ref

ReflectPermission java.lang.reflect

refresh() Policy

regionMatches() String

registerEditor() PropertyEditorManager

registerValidation() ObjectInputStream

rehash() Hashtable

rejectedSetBCOnce BeanContextChildSupport

releaseBeanContextResources() BeanContextChildSupport, BeanContextServicesSupport

releaseService()
BCSSProxyServiceProvider, BeanContextServiceProvider,
BeanContextServices, BeanContextServicesSupport

remainder() BigInteger

file:///C|/orielly/jnut/ch29_01.htm (58 of 78) [2/5/2003 7:52:39 PM]

Class, Method, and Field Index (Java in a Nutshell)

remove()

AbstractCollection, AbstractList, AbstractMap,
AbstractSequentialList, ArrayList, Attributes, BCSIterator,
BeanContextSupport, Collection, Dictionary, HashMap, HashSet,
Hashtable, Iterator, LinkedList, List, ListIterator, Map, Provider,
ReferenceQueue, Set, TreeMap, TreeSet, Vector, WeakHashMap

removeAll()
AbstractCollection, BeanContextSupport, Collection, List, Set,
Vector

removeAllElements() Vector

removeBeanContextMembershipListener() BeanContext, BeanContextSupport

removeBeanContextServicesListener() BeanContextServices, BeanContextServicesSupport

removeCertificate() Identity

removeElement() Vector

removeElementAt() Vector

removeEntry() Acl

removeFirst() LinkedList

removeIdentity() IdentityScope

removeLast() LinkedList

removeMember() Group

removePermission() AclEntry

removePropertyChangeListener()
BeanContextChild, BeanContextChildSupport, Customizer,
PropertyChangeSupport, PropertyEditor, PropertyEditorSupport

removeProvider() Security

removeRange() AbstractList, ArrayList, Vector

removeShutdownHook() Runtime

removeVetoableChangeListener()
BeanContextChild, BeanContextChildSupport,
VetoableChangeSupport

renameTo() File

replace() String, StringBuffer

replaceObject() ObjectOutputStream

requestPasswordAuthentication() Authenticator

reset()

Adler32, BufferedInputStream, BufferedReader,
ByteArrayInputStream, ByteArrayOutputStream, CharArrayReader,
CharArrayWriter, Checksum, CollationElementIterator, CRC32,
Deflater, FilterInputStream, FilterReader, Inflater, InputStream,
LineNumberInputStream, LineNumberReader, Mac,
MessageDigest, ObjectOutputStream, PushbackReader, Reader,
StringBufferInputStream, StringReader

resetSyntax() StreamTokenizer

file:///C|/orielly/jnut/ch29_01.htm (59 of 78) [2/5/2003 7:52:39 PM]

Class, Method, and Field Index (Java in a Nutshell)

resolveClass() ClassLoader, ObjectInputStream

resolveObject() ObjectInputStream

resolveProxyClass() ObjectInputStream

ResourceBundle java.util

responseCode HttpURLConnection

responseMessage HttpURLConnection

resume() Thread, ThreadGroup

retainAll()
AbstractCollection, BeanContextSupport, Collection, List, Set,
Vector

reverse() Collections, StringBuffer

reverseOrder() Collections

revokeService() BeanContextServices, BeanContextServicesSupport

rint() Math, StrictMath

roll() Calendar, GregorianCalendar

round() Math, StrictMath

ROUND_CEILING BigDecimal

ROUND_DOWN BigDecimal

ROUND_FLOOR BigDecimal

ROUND_HALF_DOWN BigDecimal

ROUND_HALF_EVEN BigDecimal

ROUND_HALF_UP BigDecimal

ROUND_UNNECESSARY BigDecimal

ROUND_UP BigDecimal

RSAKey java.security.interfaces

RSAKeyGenParameterSpec java.security.spec

RSAPrivateCrtKey java.security.interfaces

RSAPrivateCrtKeySpec java.security.spec

RSAPrivateKey java.security.interfaces

RSAPrivateKeySpec java.security.spec

RSAPublicKey java.security.interfaces

RSAPublicKeySpec java.security.spec

RuleBasedCollator java.text

run()
PrivilegedAction, PrivilegedExceptionAction, Runnable, Thread,
TimerTask

runFinalization() Runtime, System

file:///C|/orielly/jnut/ch29_01.htm (60 of 78) [2/5/2003 7:52:39 PM]

Class, Method, and Field Index (Java in a Nutshell)

runFinalizersOnExit() Runtime, System

Runnable java.lang

Runtime java.lang

RuntimeException java.lang

RuntimePermission java.lang

S

sameFile() URL, URLStreamHandler

SATURDAY Calendar

save() Properties

SC_BLOCK_DATA ObjectStreamConstants

SC_EXTERNALIZABLE ObjectStreamConstants

SC_SERIALIZABLE ObjectStreamConstants

SC_WRITE_METHOD ObjectStreamConstants

scale() BigDecimal

schedule() Timer

scheduleAtFixedRate() Timer

SEALED Name

SealedObject javax.crypto

search() Stack

SECOND Calendar

SECOND_FIELD DateFormat

SECONDARY Collator

secondaryOrder() CollationElementIterator

SecretKey javax.crypto

SecretKeyFactory javax.crypto

SecretKeyFactorySpi javax.crypto

SecretKeySpec javax.crypto.spec

SecureClassLoader java.security

SecureRandom java.security

SecureRandomSpi java.security

Security java.security

SecurityException java.lang

file:///C|/orielly/jnut/ch29_01.htm (61 of 78) [2/5/2003 7:52:39 PM]

Class, Method, and Field Index (Java in a Nutshell)

SecurityManager java.lang

SecurityPermission java.security

seek() RandomAccessFile

send() DatagramSocket, DatagramSocketImpl, MulticastSocket

separator File

separatorChar File

SEPTEMBER Calendar

SequenceInputStream java.io

Serializable java.io

serializable BeanContextServicesSupport

SerializablePermission java.io

serialize() BeanContextSupport

serialVersionUID
DSAPrivateKey, DSAPublicKey, Key, PrivateKey,
PublicKey

ServerSocket java.net

serviceAvailable()
BeanContextChildSupport, BeanContextServicesListener,
BeanContextServicesSupport

serviceClass
BeanContextServiceAvailableEvent,
BeanContextServiceRevokedEvent

serviceProvider BCSSServiceProvider

serviceRevoked()
BCSSProxyServiceProvider, BeanContextChildSupport,
BeanContextServiceRevokedListener,
BeanContextServicesSupport

services BeanContextServicesSupport

Set java.util

set()
AbstractList, AbstractSequentialList, Array, ArrayList,
BitSet, Calendar, Field, LinkedList, List, ListIterator,
ThreadLocal, URL, Vector

set2DigitYearStart() SimpleDateFormat

setAccessible() AccessibleObject

setAddress() DatagramPacket

setAllowUserInteraction() URLConnection

setAmPmStrings() DateFormatSymbols

setAsText() PropertyEditor, PropertyEditorSupport

setBeanContext() BeanContextChild, BeanContextChildSupport

setBeanInfoSearchPath() Introspector

file:///C|/orielly/jnut/ch29_01.htm (62 of 78) [2/5/2003 7:52:39 PM]

Class, Method, and Field Index (Java in a Nutshell)

setBeginIndex() FieldPosition

setBit() BigInteger

setBoolean() Array, Field

setBound() PropertyDescriptor

setByte() Array, Field

setCalendar() DateFormat

setCertificateEntry() KeyStore

setChanged() Observable

setChar() Array, Field

setCharAt() StringBuffer

setChoices() ChoiceFormat

setComment() ZipEntry, ZipOutputStream

setCompressedSize() ZipEntry

setConstrained() PropertyDescriptor

setContentHandlerFactory() URLConnection

setContextClassLoader() Thread

setCrc() ZipEntry

setCurrencySymbol() DecimalFormatSymbols

setDaemon() Thread, ThreadGroup

setData() DatagramPacket

setDatagramSocketImplFactory() DatagramSocket

setDate() Date

setDateFormatSymbols() SimpleDateFormat

setDecimalFormatSymbols() DecimalFormat

setDecimalSeparator() DecimalFormatSymbols

setDecimalSeparatorAlwaysShown() DecimalFormat

setDecomposition() Collator

setDefault() Authenticator, Locale, TimeZone

setDefaultAllowUserInteraction() URLConnection

setDefaultRequestProperty() URLConnection

setDefaultUseCaches() URLConnection

setDesignTime() BeanContextSupport, Beans, DesignMode

setDictionary() Deflater, Inflater

setDigit() DecimalFormatSymbols

file:///C|/orielly/jnut/ch29_01.htm (63 of 78) [2/5/2003 7:52:39 PM]

Class, Method, and Field Index (Java in a Nutshell)

setDisplayName() FeatureDescriptor

setDoInput() URLConnection

setDoOutput() URLConnection

setDouble() Array, Field

setDSTSavings() SimpleTimeZone

setEditorSearchPath() PropertyEditorManager

setElementAt() Vector

setEndIndex() FieldPosition

setEndRule() SimpleTimeZone

setEras() DateFormatSymbols

setErr() System

setError() PrintStream, PrintWriter

setErrorIndex() ParsePosition

setExpert() FeatureDescriptor

setExtra() ZipEntry

setFileNameMap() URLConnection

setFirstDayOfWeek() Calendar

setFloat() Array, Field

setFollowRedirects() HttpURLConnection

setFormat() MessageFormat

setFormats() MessageFormat

setGregorianChange() GregorianCalendar

setGroupingSeparator() DecimalFormatSymbols

setGroupingSize() DecimalFormat

setGroupingUsed() NumberFormat

setGuiAvailable() Beans

setHidden() FeatureDescriptor

setHours() Date

setID() TimeZone

setIfModifiedSince() URLConnection

setIn() System

setInDefaultEventSet() EventSetDescriptor

setIndex() CharacterIterator, ParsePosition, StringCharacterIterator

setIndexedReadMethod() IndexedPropertyDescriptor

file:///C|/orielly/jnut/ch29_01.htm (64 of 78) [2/5/2003 7:52:39 PM]

Class, Method, and Field Index (Java in a Nutshell)

setIndexedWriteMethod() IndexedPropertyDescriptor

setInfinity() DecimalFormatSymbols

setInfo() Identity

setInput() Deflater, Inflater

setInt() Array, Field

setInterface() MulticastSocket

setInternationalCurrencySymbol() DecimalFormatSymbols

setKeepAlive() Socket

setKeyEntry() KeyStore

setKeyPair() Signer

setLastModified() File

setLength() DatagramPacket, RandomAccessFile, StringBuffer

setLenient() Calendar, DateFormat

setLevel() Deflater, ZipOutputStream

setLineNumber() LineNumberInputStream, LineNumberReader

setLocale() BeanContextSupport, MessageFormat

setLocalPatternChars() DateFormatSymbols

setLong() Array, Field

setMaximumFractionDigits() DecimalFormat, NumberFormat

setMaximumIntegerDigits() DecimalFormat, NumberFormat

setMaxPriority() ThreadGroup

setMessageDigest() DigestInputStream, DigestOutputStream

setMethod() ZipEntry, ZipOutputStream

setMinimalDaysInFirstWeek() Calendar

setMinimumFractionDigits() DecimalFormat, NumberFormat

setMinimumIntegerDigits() DecimalFormat, NumberFormat

setMinusSign() DecimalFormatSymbols

setMinutes() Date

setMonetaryDecimalSeparator() DecimalFormatSymbols

setMonth() Date

setMonths() DateFormatSymbols

setMultiplier() DecimalFormat

setName() Acl, FeatureDescriptor, Thread

setNaN() DecimalFormatSymbols

file:///C|/orielly/jnut/ch29_01.htm (65 of 78) [2/5/2003 7:52:39 PM]

Class, Method, and Field Index (Java in a Nutshell)

setNegativePermissions() AclEntry

setNegativePrefix() DecimalFormat

setNegativeSuffix() DecimalFormat

setNumberFormat() DateFormat

setObject() Customizer

setOffset() CollationElementIterator, ObjectStreamField

setOption() DatagramSocketImpl, SocketImpl, SocketOptions

setOut() System

setParameter() Signature

setParent() ResourceBundle

setParseIntegerOnly() NumberFormat

setPatternSeparator() DecimalFormatSymbols

setPercent() DecimalFormatSymbols

setPerMill() DecimalFormatSymbols

setPolicy() Policy

setPort() DatagramPacket

setPositivePrefix() DecimalFormat

setPositiveSuffix() DecimalFormat

setPreferred() FeatureDescriptor

setPrincipal() AclEntry

setPriority() Thread

setPropagatedFrom() BeanContextEvent

setPropagationId() PropertyChangeEvent

setProperties() System

setProperty() Properties, Security, System

setPropertyEditorClass() PropertyDescriptor

setPublicKey() Identity

setRawOffset() SimpleTimeZone, TimeZone

setReadMethod() PropertyDescriptor

setReadOnly() File, PermissionCollection

setReceiveBufferSize() DatagramSocket, Socket

setRequestMethod() HttpURLConnection

setRequestProperty() URLConnection

setScale() BigDecimal

file:///C|/orielly/jnut/ch29_01.htm (66 of 78) [2/5/2003 7:52:39 PM]

Class, Method, and Field Index (Java in a Nutshell)

setSeconds() Date

setSecurityManager() System

setSeed() Random, SecureRandom

setSendBufferSize() DatagramSocket, Socket

setShort() Array, Field

setShortDescription() FeatureDescriptor

setShortMonths() DateFormatSymbols

setShortWeekdays() DateFormatSymbols

setSigners() ClassLoader

setSize() Vector, ZipEntry

setSocketFactory() ServerSocket

setSocketImplFactory() Socket

setSoLinger() Socket

setSoTimeout() DatagramSocket, ServerSocket, Socket

setStartRule() SimpleTimeZone

setStartYear() SimpleTimeZone

setStrategy() Deflater

setStrength() Collator

setSystemScope() IdentityScope

setTcpNoDelay() Socket

setText()
BreakIterator, CollationElementIterator,
StringCharacterIterator

setTime() Calendar, Date, ZipEntry

setTimeInMillis() Calendar

setTimeToLive() DatagramSocketImpl, MulticastSocket

setTimeZone() Calendar, DateFormat

setTTL() DatagramSocketImpl, MulticastSocket

setUnicast() EventSetDescriptor

setURL() URLStreamHandler

setURLStreamHandlerFactory() URL

setUseCaches() URLConnection

setValue()
Entry, FeatureDescriptor, PropertyEditor,
PropertyEditorSupport

setWeekdays() DateFormatSymbols

setWriteMethod() PropertyDescriptor

file:///C|/orielly/jnut/ch29_01.htm (67 of 78) [2/5/2003 7:52:39 PM]

Class, Method, and Field Index (Java in a Nutshell)

setYear() Date

setZeroDigit() DecimalFormatSymbols

setZoneStrings() DateFormatSymbols

shiftLeft() BigInteger

shiftRight() BigInteger

SHORT DateFormat, TimeZone

Short java.lang

ShortBufferException javax.crypto

shortValue()
Byte, Double, Float, Integer, Iterator, Long, Number,
Short

shuffle() Collections

shutdownInput() Socket, SocketImpl

shutdownOutput() Socket, SocketImpl

SIGN Signature

sign() Signature

Signature java.security

SIGNATURE_VERSION Name

SignatureException java.security

SignatureSpi java.security

SignedObject java.security

Signer java.security

signum() BigDecimal, BigInteger

SimpleBeanInfo java.beans

SimpleDateFormat java.text

SimpleTimeZone java.util

SIMPLIFIED_CHINESE Locale

sin() Math, StrictMath

singleton() Collections

singletonList() Collections

singletonMap() Collections

file:///C|/orielly/jnut/ch29_01.htm (68 of 78) [2/5/2003 7:52:39 PM]

Class, Method, and Field Index (Java in a Nutshell)

size()

AbstractCollection, AbstractMap, ArrayList, Attributes,
BeanContextMembershipEvent, BeanContextSupport,
BitSet, ByteArrayOutputStream, CharArrayWriter,
Collection, DataOutputStream, Dictionary, HashMap,
HashSet, Hashtable, IdentityScope, KeyStore, LinkedList,
List, Map, Set, TreeMap, TreeSet, Vector, WeakHashMap,
ZipFile

skip()

BufferedInputStream, BufferedReader,
ByteArrayInputStream, CharArrayReader,
CheckedInputStream, CipherInputStream,
FileInputStream, FilterInputStream, FilterReader,
InflaterInputStream, InputStream,
LineNumberInputStream, LineNumberReader,
ObjectInput, PushbackInputStream, Reader,
StringBufferInputStream, StringReader, ZipInputStream

skipBytes()
DataInput, DataInputStream, ObjectInputStream,
RandomAccessFile

slashSlashComments() StreamTokenizer

slashStarComments() StreamTokenizer

sleep() Thread

SMALL_FORM_VARIANTS UnicodeBlock

SO_BINDADDR SocketOptions

SO_KEEPALIVE SocketOptions

SO_LINGER SocketOptions

SO_RCVBUF SocketOptions

SO_REUSEADDR SocketOptions

SO_SNDBUF SocketOptions

SO_TIMEOUT SocketOptions

Socket java.net

SocketException java.net

SocketImpl java.net

SocketImplFactory java.net

SocketOptions java.net

SocketPermission java.net

SoftReference java.lang.ref

sort() Arrays, Collections

SortedMap java.util

SortedSet java.util

file:///C|/orielly/jnut/ch29_01.htm (69 of 78) [2/5/2003 7:52:39 PM]

Class, Method, and Field Index (Java in a Nutshell)

source EventObject

SPACE_SEPARATOR Character

SPACING_MODIFIER_LETTERS UnicodeBlock

SPECIALS UnicodeBlock

SPECIFICATION_TITLE Name

SPECIFICATION_VENDOR Name

SPECIFICATION_VERSION Name

sqrt() Math, StrictMath

Stack java.util

StackOverflowError java.lang

start() Thread

START_PUNCTUATION Character

startsWith() String

state Signature

STATIC Modifier

stop() Thread, ThreadGroup

store() KeyStore, Properties

STORED ZipEntry, ZipOutputStream

STREAM_MAGIC ObjectStreamConstants

STREAM_VERSION ObjectStreamConstants

StreamCorruptedException java.io

StreamTokenizer java.io

STRICT Modifier

StrictMath java.lang

String java.lang

StringBuffer java.lang

StringBufferInputStream java.io

StringCharacterIterator java.text

StringIndexOutOfBoundsException java.lang

StringReader java.io

StringTokenizer java.util

StringWriter java.io

SUBCLASS_IMPLEMENTATION_PERMISSION ObjectStreamConstants

subList() AbstractList, List, Vector

file:///C|/orielly/jnut/ch29_01.htm (70 of 78) [2/5/2003 7:52:39 PM]

Class, Method, and Field Index (Java in a Nutshell)

subMap() SortedMap, TreeMap

Subset java.lang.Character

subSet() SortedSet, TreeSet

SUBSTITUTION_PERMISSION ObjectStreamConstants

substring() String, StringBuffer

subtract() BigDecimal, BigInteger

SUNDAY Calendar

SUPERSCRIPTS_AND_SUBSCRIPTS UnicodeBlock

supportsCustomEditor() PropertyEditor, PropertyEditorSupport

SURROGATE Character

SURROGATES_AREA UnicodeBlock

suspend() Thread, ThreadGroup

sval StreamTokenizer

sync() FileDescriptor

SyncFailedException java.io

SYNCHRONIZED Modifier

synchronizedCollection() Collections

synchronizedList() Collections

synchronizedMap() Collections

synchronizedSet() Collections

synchronizedSortedMap() Collections

synchronizedSortedSet() Collections

System java.lang

T

tailMap() SortedMap, TreeMap

tailSet() SortedSet, TreeSet

TAIWAN Locale

TAMIL UnicodeBlock

tan() Math, StrictMath

TC_ARRAY ObjectStreamConstants

TC_BASE ObjectStreamConstants

TC_BLOCKDATA ObjectStreamConstants

file:///C|/orielly/jnut/ch29_01.htm (71 of 78) [2/5/2003 7:52:39 PM]

Class, Method, and Field Index (Java in a Nutshell)

TC_BLOCKDATALONG ObjectStreamConstants

TC_CLASS ObjectStreamConstants

TC_CLASSDESC ObjectStreamConstants

TC_ENDBLOCKDATA ObjectStreamConstants

TC_EXCEPTION ObjectStreamConstants

TC_LONGSTRING ObjectStreamConstants

TC_MAX ObjectStreamConstants

TC_NULL ObjectStreamConstants

TC_OBJECT ObjectStreamConstants

TC_PROXYCLASSDESC ObjectStreamConstants

TC_REFERENCE ObjectStreamConstants

TC_RESET ObjectStreamConstants

TC_STRING ObjectStreamConstants

TCP_NODELAY SocketOptions

TELUGU UnicodeBlock

TERTIARY Collator

tertiaryOrder() CollationElementIterator

testBit() BigInteger

THAI UnicodeBlock

Thread java.lang

ThreadDeath java.lang

ThreadGroup java.lang

ThreadLocal java.lang

Throwable java.lang

THURSDAY Calendar

TIBETAN UnicodeBlock

time Calendar

Timer java.util

TimerTask java.util

TimeZone java.util

TIMEZONE_FIELD DateFormat

TITLECASE_LETTER Character

toArray()
AbstractCollection, ArrayList, BeanContextMembershipEvent,
BeanContextSupport, Collection, LinkedList, List, Set, Vector

file:///C|/orielly/jnut/ch29_01.htm (72 of 78) [2/5/2003 7:52:39 PM]

Class, Method, and Field Index (Java in a Nutshell)

toBigInteger() BigDecimal

toBinaryString() Integer, Long

toByteArray() BigInteger, ByteArrayOutputStream, CollationKey

toCharArray() CharArrayWriter, String

toDegrees() Math, StrictMath

toExternalForm() URL, URLStreamHandler

toGMTString() Date

toHexString() Integer, Long

toLocaleString() Date

toLocalizedPattern() DecimalFormat, SimpleDateFormat

toLowerCase() Character, String

toOctalString() Integer, Long

TooManyListenersException java.util

toPattern() ChoiceFormat, DecimalFormat, MessageFormat, SimpleDateFormat

toRadians() Math, StrictMath

toString()

AbstractCollection, AbstractMap, Acl, AclEntry, AlgorithmParameters,
Annotation, Attribute, BigDecimal, BigInteger, BitSet, Boolean, Byte,
ByteArrayOutputStream, Calendar, Certificate, Character, CharArrayWriter,
Class, CodeSource, Constructor, CRL, Date, DigestInputStream,
DigestOutputStream, Double, EventObject, Field, FieldPosition, File, Float,
Hashtable, Identity, IdentityScope, InetAddress, Integer, Locale, Long,
MessageDigest, Method, Modifier, Name, Object, ObjectStreamClass,
ObjectStreamField, Package, ParsePosition, Permission, PermissionCollection,
Principal, PrivilegedActionException, ProtectionDomain, Provider, ServerSocket,
Short, Signature, Signer, SimpleTimeZone, Socket, SocketImpl,
StreamTokenizer, String, StringBuffer, StringWriter, Subset, Thread,
ThreadGroup, Throwable, UnresolvedPermission, URL, URLConnection, Vector,
X509CRLEntry, ZipEntry

totalMemory() Runtime

toTitleCase() Character

toUpperCase() Character, String

toURL() File

traceInstructions() Runtime

traceMethodCalls() Runtime

TRADITIONAL_CHINESE Locale

TRANSIENT Modifier

translateKey() KeyFactory, SecretKeyFactory

file:///C|/orielly/jnut/ch29_01.htm (73 of 78) [2/5/2003 7:52:39 PM]

Class, Method, and Field Index (Java in a Nutshell)

TreeMap java.util

TreeSet java.util

trim() String

trimToSize() ArrayList, Vector

TRUE Boolean

TT_EOF StreamTokenizer

TT_EOL StreamTokenizer

TT_NUMBER StreamTokenizer

TT_WORD StreamTokenizer

ttype StreamTokenizer

TUESDAY Calendar

TYPE Boolean, Byte, Character, Double, Float, Integer, Long, Short, Void

U

UK Locale

UNASSIGNED Character

uncaughtException() ThreadGroup

UNDECIMBER Calendar

UndeclaredThrowableException java.lang.reflect

UnicodeBlock java.lang.Character

UNINITIALIZED Signature

UnknownError java.lang

UnknownHostException java.net

UnknownServiceException java.net

unmodifiableCollection() Collections

unmodifiableList() Collections

unmodifiableMap() Collections

unmodifiableSet() Collections

unmodifiableSortedMap() Collections

unmodifiableSortedSet() Collections

unread() PushbackInputStream, PushbackReader

UnrecoverableKeyException java.security

UnresolvedPermission java.security

file:///C|/orielly/jnut/ch29_01.htm (74 of 78) [2/5/2003 7:52:39 PM]

Class, Method, and Field Index (Java in a Nutshell)

UnsatisfiedLinkError java.lang

unscaledValue() BigDecimal

UnsupportedClassVersionError java.lang

UnsupportedEncodingException java.io

UnsupportedOperationException java.lang

update()
Adler32, Checksum, Cipher, CRC32, Mac, MessageDigest, Observer,
Signature

UPPERCASE_LETTER Character

url URLConnection

URL java.net

URLClassLoader java.net

URLConnection java.net

URLDecoder java.net

URLEncoder java.net

URLStreamHandler java.net

URLStreamHandlerFactory java.net

US Locale

USE_ALL_BEANINFO Introspector

useCaches URLConnection

useDaylightTime() SimpleTimeZone, TimeZone

useProtocolVersion() ObjectOutputStream

usingProxy() HttpURLConnection

UTC() Date

UTFDataFormatException java.io

V

valid() FileDescriptor

validateObject() ObjectInputValidation

validatePendingAdd() BeanContextSupport

validatePendingRemove() BeanContextSupport

validatePendingSetBeanContext() BeanContextChildSupport

valueOf()
BigDecimal, BigInteger, Boolean, Byte, Double, Float, Integer, Long, Short,
String

file:///C|/orielly/jnut/ch29_01.htm (75 of 78) [2/5/2003 7:52:39 PM]

Class, Method, and Field Index (Java in a Nutshell)

values() AbstractMap, Attributes, HashMap, Hashtable, Map, Provider, TreeMap

vcSupport BeanContextChildSupport

Vector java.util

VERIFY Signature

verify() Certificate, Signature, SignedObject, X509CRL

VerifyError java.lang

vetoableChange() BeanContextSupport, VetoableChangeListener

VetoableChangeListener java.beans

VetoableChangeSupport java.beans

VirtualMachineError java.lang

Visibility java.beans

Void java.lang

VOLATILE Modifier

W

wait() Object

waitFor() Process

WeakHashMap java.util

WeakReference java.lang.ref

WEDNESDAY Calendar

WEEK_OF_MONTH Calendar

WEEK_OF_MONTH_FIELD DateFormat

WEEK_OF_YEAR Calendar

WEEK_OF_YEAR_FIELD DateFormat

whitespaceChars() StreamTokenizer

wordChars() StreamTokenizer

write()

BufferedOutputStream, BufferedWriter, ByteArrayOutputStream,
CharArrayWriter, CheckedOutputStream, CipherOutputStream, DataOutput,
DataOutputStream, DeflaterOutputStream, DigestOutputStream,
FileOutputStream, FilterOutputStream, FilterWriter, GZIPOutputStream,
Manifest, ObjectOutput, ObjectOutputStream, OutputStream,
OutputStreamWriter, PipedOutputStream, PipedWriter, PrintStream,
PrintWriter, PutField, RandomAccessFile, StringWriter, Writer,
ZipOutputStream

WriteAbortedException java.io

file:///C|/orielly/jnut/ch29_01.htm (76 of 78) [2/5/2003 7:52:39 PM]

Class, Method, and Field Index (Java in a Nutshell)

writeBoolean() DataOutput, DataOutputStream, ObjectOutputStream, RandomAccessFile

writeByte() DataOutput, DataOutputStream, ObjectOutputStream, RandomAccessFile

writeBytes() DataOutput, DataOutputStream, ObjectOutputStream, RandomAccessFile

writeChar() DataOutput, DataOutputStream, ObjectOutputStream, RandomAccessFile

writeChars() DataOutput, DataOutputStream, ObjectOutputStream, RandomAccessFile

writeChildren() BeanContextSupport

writeClassDescriptor() ObjectOutputStream

writeDouble() DataOutput, DataOutputStream, ObjectOutputStream, RandomAccessFile

writeExternal() Externalizable

writeFields() ObjectOutputStream

writeFloat() DataOutput, DataOutputStream, ObjectOutputStream, RandomAccessFile

writeInt() DataOutput, DataOutputStream, ObjectOutputStream, RandomAccessFile

writeLong() DataOutput, DataOutputStream, ObjectOutputStream, RandomAccessFile

writeObject() ObjectOutput, ObjectOutputStream

writeObjectOverride() ObjectOutputStream

Writer java.io

writeReplace() Certificate

writeShort() DataOutput, DataOutputStream, ObjectOutputStream, RandomAccessFile

writeStreamHeader() ObjectOutputStream

writeTo() ByteArrayOutputStream, CharArrayWriter

writeUTF() DataOutput, DataOutputStream, ObjectOutputStream, RandomAccessFile

written DataOutputStream

X

X509Certificate java.security.cert

X509CRL java.security.cert

X509CRLEntry java.security.cert

X509EncodedKeySpec java.security.spec

X509Extension java.security.cert

xor() BigInteger, BitSet

Y

file:///C|/orielly/jnut/ch29_01.htm (77 of 78) [2/5/2003 7:52:39 PM]

Class, Method, and Field Index (Java in a Nutshell)

YEAR Calendar

YEAR_FIELD DateFormat

yield() Thread

Z

ZERO BigInteger

ZipEntry java.util.zip

ZipException java.util.zip

ZipFile java.util.zip

ZipInputStream java.util.zip

ZipOutputStream java.util.zip

ZONE_OFFSET Calendar

28.1. The javax.crypto.spec
Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

file:///C|/orielly/jnut/ch29_01.htm (78 of 78) [2/5/2003 7:52:39 PM]

file:///C|/orielly/jnut/copyrght.htm

Java in a Nutshell--Index

Index

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Chapter 29. Class, Method,
and Field Index

Colophon

Copyright © 2001 O'Reilly & Associates, Inc. All Rights Reserved.

file:///C|/orielly/jnut/index/index.htm [2/5/2003 7:52:49 PM]

file:///C|/orielly/jnut/index/idx_0.htm
file:///C|/orielly/jnut/index/idx_a.htm
file:///C|/orielly/jnut/index/idx_b.htm
file:///C|/orielly/jnut/index/idx_c.htm
file:///C|/orielly/jnut/index/idx_d.htm
file:///C|/orielly/jnut/index/idx_e.htm
file:///C|/orielly/jnut/index/idx_f.htm
file:///C|/orielly/jnut/index/idx_g.htm
file:///C|/orielly/jnut/index/idx_h.htm
file:///C|/orielly/jnut/index/idx_i.htm
file:///C|/orielly/jnut/index/idx_j.htm
file:///C|/orielly/jnut/index/idx_k.htm
file:///C|/orielly/jnut/index/idx_l.htm
file:///C|/orielly/jnut/index/idx_m.htm
file:///C|/orielly/jnut/index/idx_n.htm
file:///C|/orielly/jnut/index/idx_o.htm
file:///C|/orielly/jnut/index/idx_p.htm
file:///C|/orielly/jnut/index/idx_q.htm
file:///C|/orielly/jnut/index/idx_r.htm
file:///C|/orielly/jnut/index/idx_s.htm
file:///C|/orielly/jnut/index/idx_t.htm
file:///C|/orielly/jnut/index/idx_u.htm
file:///C|/orielly/jnut/index/idx_v.htm
file:///C|/orielly/jnut/index/idx_w.htm
file:///C|/orielly/jnut/index/idx_x.htm
file:///C|/orielly/jnut/index/idx_y.htm
file:///C|/orielly/jnut/index/idx_x.htm
file:///C|/orielly/jnut/colophon.htm
file:///C|/orielly/index.htm
file:///C|/orielly/jnut/copyrght.htm

	Local Disk
	A Deskop Quick Reference (Java in a Nutshell: Java™ in a Nutshell)
	Preface (Java in a Nutshell)
	Contents of This Book (Java in a Nutshell)
	Related Books (Java in a Nutshell)
	Java Programming Resources Online (Java in a Nutshell)
	Examples Online (Java in a Nutshell)
	Conventions Used in This Book (Java in a Nutshell)
	Request for Comments (Java in a Nutshell)
	How the Quick Reference Is Generated (Java in a Nutshell)
	Acknowledgments (Java in a Nutshell)
	Introducing Java (Java in a Nutshell)
	Introduction (Java in a Nutshell)
	Key Benefits of Java (Java in a Nutshell)
	An Example Program (Java in a Nutshell)
	Java Syntax from the Ground Up (Java in a Nutshell)
	Comments (Java in a Nutshell)
	Identifiers and Reserved Words (Java in a Nutshell)
	Primitive Data Types (Java in a Nutshell)
	Expressions and Operators (Java in a Nutshell)
	Statements (Java in a Nutshell)
	Methods (Java in a Nutshell)
	Classes and Objects (Java in a Nutshell)
	Array Types (Java in a Nutshell)
	Reference Types (Java in a Nutshell)
	Packages and the Java Namespace (Java in a Nutshell)
	Java File Structure (Java in a Nutshell)
	Defining and Running Java Programs (Java in a Nutshell)
	Differences Between C and Java (Java in a Nutshell)
	Object-Oriented Programming in Java (Java in a Nutshell)
	Creating and Initializing Objects (Java in a Nutshell)
	Destroying and Finalizing Objects (Java in a Nutshell)
	Subclasses and Inheritance (Java in a Nutshell)
	Data Hiding and Encapsulation (Java in a Nutshell)
	Abstract Classes and Methods (Java in a Nutshell)
	Interfaces (Java in a Nutshell)
	Inner Class Overview (Java in a Nutshell)
	Static Member Classes (Java in a Nutshell)
	Member Classes (Java in a Nutshell)
	Local Classes (Java in a Nutshell)
	Anonymous Classes (Java in a Nutshell)
	How Inner Classes Work (Java in a Nutshell)
	Modifier Summary (Java in a Nutshell)
	C++ Features Not Found in Java (Java in a Nutshell)
	The Java Platform (Java in a Nutshell)
	Strings and Characters (Java in a Nutshell)
	Numbers and Math (Java in a Nutshell)
	Dates and Times (Java in a Nutshell)
	Arrays (Java in a Nutshell)
	Collections (Java in a Nutshell)
	Types, Reflection, and Dynamic Loading (Java in a Nutshell)
	Threads (Java in a Nutshell)
	Files and Directories (Java in a Nutshell)
	Input and Output Streams (Java in a Nutshell)
	Networking (Java in a Nutshell)
	Processes (Java in a Nutshell)
	Security (Java in a Nutshell)
	Cryptography (Java in a Nutshell)
	Java Security (Java in a Nutshell)
	Java VM Security and Class File Verification (Java in a Nutshell)
	Authentication and Cryptography (Java in a Nutshell)
	Access Control (Java in a Nutshell)
	Security for Everyone (Java in a Nutshell)
	Permission Classes (Java in a Nutshell)
	JavaBeans (Java in a Nutshell)
	JavaBeans Conventions (Java in a Nutshell)
	Bean Contexts and Services (Java in a Nutshell)
	Java Programming and Documentation Conventions (Java in an Nutshell)
	Portability Conventions and Pure Java Rules (Java in a Nutshell)
	Java Documentation Comments (Java in a Nutshell)
	Java Development Tools (Java in a Nutshell)
	API Quick Reference (Java in a Nutshell)
	How To Use This Quick Reference (Java in a Nutshell)
	Reading a Quick-Reference Entry (Java in a Nutshell)
	The java.beans Package (Java in a Nutshell)
	The java.beans.beancontext Package (Java in a Nutshell)
	The java.io Package (Java in a Nutshell)
	The java.lang Package (Java in a Nutshell)
	The java.lang.ref Package (Java in a Nutshell)
	The java.lang.reflect Package (Java in a Nutshell)
	The java.math Package (Java in a Nutshell)
	The java.net Package (Java in a Nutshell)
	The java.security Package (Java in a Nutshell)
	The java.security.acl Package (Java in a Nutshell)
	The java.security.cert Package (Java in a Nutshell)
	The java.security.interfaces Package (Java in a Nutshell)
	The java.security.spec Package (Java in a Nutshell)
	The java.text Package (Java in a Nutshell)
	The java.util Package (Java in a Nutshell)
	The java.util.jar Package (Java in a Nutshell)
	The java.util.zip Package (Java in a Nutshell)
	The javax.crypto Package (Java in a Nutshell)
	The javax.crypto.interfaces Package (Java in a Nutshell)
	The javax.crypto.spec Package (Java in a Nutshell)
	Class, Method, and Field Index (Java in a Nutshell)
	Java in a Nutshell--Index

